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Abstract. We prove that Kaletha’s toral supercuspidal L-packets satisfy the

twisted endoscopic character relation in some cases, including general linear
groups equipped with an involution. Consequently, we show that Kaletha’s

construction of the local Langlands correspondence for toral supercuspidal

representations coincides with Arthur’s. The strategy is to emulate Kaletha’s
proof of the standard endoscopic character relation in the twisted setting by

appealing to Waldspurger’s framework “l’endoscopie tordue n’est pas si tor-

due”.
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1. Introduction

One fundamental objective in representation theory of reductive groups over
local fields is to establish the local Langlands correspondence. For a connected
reductive group G defined over a local field F , the local Langlands correspondence
is a natural map from the set Π(G) of isomorphism classes of irreducible admissible
representations ofG := G(F ) to the set Φ(G) of equivalence classes of L-parameters
of G. Here, each fiber of the map is expected to be finite; we let ΠG

ϕ denote

the fiber at φ ∈ Φ(G) and call it an L-packet. Thus, we may think of the local
Langlands correspondence as a natural partition of Π(G) into finite sets labeled by
L-parameters:

Π(G) =
⊔

ϕ∈Φ(G)

ΠG
ϕ .

While the local Langlands correspondence was constructed by Langlands ([Lan89])
when F is archimedean, its existence is still conjectural in general when F is non-
archimedean. However, numerous results have been obtained up to the present.
Let us review some of them in the following by focusing only on the case where F
is a p-adic field, i.e., a non-archimedean local field of characteristic zero.

Firstly, the local Langlands correspondence has been completely established for
several specific groups. The particularly important examples include the results
of Harris–Taylor for GLn ([HT01]), Arthur for quasi-split special orthogonal or
symplectic groups ([Art13]), and Mok for quasi-split unitary groups ([Mok15]).

On the other hand, one might also attempt to construct the local Langlands
correspondence by restricting the class of representations instead of the class of
groups. An important example of this direction is the work of DeBacker–Reeder
([DR09]), which established the local Langlands correspondence for supercuspidal
representations which are of depth zero and regular of arbitrary unramified groups.
After the work of DeBacker–Reeder, Kaletha investigated some particular cases of
positive depth supercuspidal representations ([Kal13, Kal15]). Currently, all these
constructions have been uniformly generalized by Kaletha himself to a considerably
broad class of supercuspidal representations called regular (more generally, non-
singular/semisimple) supercuspidal representations of tamely ramified connected
reductive groups ([Kal19b, Kal19c]).

Taking into account these two possible approaches toward the local Langlands
correspondence (i.e., the “vertical” direction which restricts the class of groups
and the “horizontal” direction which restricts the class of representations), it is
natural to ask whether two different constructions indeed give rise to the identical
correspondence. This problem is not only interesting in itself but also technically
important. For example, the above-mentioned constructions for specific groups
have a favorable compatibility with the global classification theory of automorphic
representations. On the other hand, Kaletha’s construction is highly explicit since
it is ultimately based on the local Langlands correspondence for tori (note that this
is parallel to Langlands’ construction [Lan89] in the archimedean case). If we get
the coincidence of these different constructions, we can combine their advantages.

Based on this motivation, we first investigated the case of GLn in a joint work of
Kazuki Tokimoto. In [OT21], we proved that the local Langlands correspondences
of Harris–Taylor and Kaletha coincide for any regular supercuspidal representation
of GLn(F ) whenever p 6= 2 (note that now this result has been generalized by
Tokimoto to all inner forms of GLn in [Tok23]).
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The aim of this paper is to establish a methodology for comparing Kaletha’s
construction with others for more general groups. Especially, we prove the following:

Theorem 1.1 (Theorems 15.11 and 15.12). Let H be a quasi-split special orthog-
onal or symplectic group over F . Suppose that p is sufficiently large. The Local
Langlands correspondences of Arthur and Kaletha coincide for any “toral” super-
cuspidal representation of H := H(F ).

We briefly explain what “toral” supercuspidal representations are (see Section
4 for more details). Let G be a tamely ramified connected reductive group over
F in the following. In [Yu01], Yu established an explicit method for producing a
broad class of supercuspidal representations, which are called tame supercuspidal
representations. Yu’s construction associates a tame supercuspidal representation

to each tuple (~G, ~ϑ, ~r,x, ρ0) called a cuspidal G-datum. Here, we only recall that
~G = (G0 ⊊ · · · ⊊ Gd) is a sequence of tame Levi subgroups of G and ρ0 is a
depth zero cuspidal representation of an open compact-modulo-center subgroup of
G0 (hence regarded as a representation of a finite reductive group). In [Kal19b],
by invoking the Deligne–Lusztig theory [DL76], Kaletha introduced the notion of
regularity for tame supercuspidal representations and discovered that regular su-
percuspidal representations can be re-parametrized by much simpler data (S, ϑ)
called tame elliptic regular pairs, which consist only of a tame elliptic maximal
torus S of G contained in G0 and a character ϑ of S := S(F ) satisfying a certain
regularity condition. Based on this re-parametrization, he assigned an L-parameter
to each regular supercuspidal representation and analyzed the internal structures
of the resulting L-packets. Toral supercuspidal representations constitute a special
class among regular supercuspidal representations; they are tame supercuspidal

representations obtained from cuspidal G-data whose ~G are of the form (S ⊊ G).
To obtain Theorem 1.1, what we have to do is verify that Kaletha’s toral su-

percuspidal L-packets satisfy the twisted endoscopic character relation, which is
the characterization of Arthur’s correspondence. Thus we next review the general
framework of twisted endoscopy. Suppose that H is an endoscopic group for (G, θ)
in the sense of Kottwitz–Shelstad, where θ is an F -rational pinning-preserving auto-
morphism of G (see Section 8). In particular, H is equipped with an L-embedding

ξ̂ : LH ↪→ LG, which enables us to regard any L-parameter φH of H as an L-

parameter of G (write φ) by composing φH with ξ̂. Suppose that the local Lang-
lands correspondence both for G and H are available, so that we may associate
L-packets ΠH

ϕH
and ΠG

ϕ to both φH and φ. Assume that φH and φ are tempered.

Π(G) ⊃ ΠG
ϕ

oo LLC for G ///o/o/o/o/o/o/o/o/o/o/o/o LG

Π(H) ⊃ ΠH
ϕH

oo LLC for H ///o/o/o/o/o/o/o WF × SL2(C)
ϕH

//

ϕ
55lllllllll
LH

ξ̂

OO

In this situation, it is expected that the following holds:

Expectation 1.2 (Twisted endoscopic character relation). For each π ∈ ΠG
ϕ there

exists a constant ∆spec
ϕ,π ∈ C such that the following identity holds for any strongly

regular semisimple δ ∈ G̃(F ):∑
π∈ΠG

ϕ

∆spec
ϕ,π Φπ̃(δ) =

∑
γ∈H/st

∆̊(γ, δ)
∑

πH∈ΠH
ϕH

ΦπH
(γ).(1)
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Here,

• G̃ denotes the twisted space determined by G and θ, i.e., the non-identity
component of the semi-direct product group G⋊ 〈θ〉 (see Section 3.1);
• ΦπH

is the normalized (Harish-Chandra) character of πH ∈ ΠH
ϕH

and Φπ̃ is

the normalized twisted character of π ∈ ΠG
ϕ (see Section 5.1), which can be

defined only when π is θ-stable (thus the coefficient ∆spec
ϕ,π is zero unless π

is θ-stable);
• the sum on the right-hand side is over the stable conjugacy classes of norms
of δ in H in the sense of twisted endoscopy (see Section 8.2);

• ∆̊ on the right-hand side is the transfer factor of Kottwitz–Shelstad (see
Section 8.3).

By linear independence of twisted characters, a family {∆spec
ϕ,π }π∈ΠG

ϕ
of constants

as above is unique if exists.
In the untwisted case (i.e., θ is trivial), Kaletha proved that Expectation 1.2 is in-

deed true for toral supercuspidal L-packets under some assumptions on p ([Kal19b,
Theorem 6.3.4]; see [FKS23, Section 4.4] for a more general result in the untwisted
situation).

The point is that when H is a quasi-split special orthogonal or symplectic group,
we can find a general linear group G = GLn with an involution θ such that H is
an endoscopic group for (G, θ). The expected identity (1) then tells us the sum of
characters of representations in each L-packet ΠH

ϕH
of H in terms of the twisted

characters of representations of GLn; this information is enough to characterize
ΠH
ϕH

as a finite set of representations by linear independence of characters. What

Arthur did is to prove that there indeed exists a finite set ΠH
ϕH

for each φH satisfying

the identity (1) with ΠG
ϕ which is determined by Harris–Taylor’s local Langlands

correspondence for GLn. Therefore, as we already know the coincidence of Kaletha’s
construction with Harris–Taylor’s, it is enough to verify the twisted endoscopic
character relation for Kaletha’s L-packets in order to obtain the coincidence of
Kaletha’s and Arthur’s constructions.

The main result of this paper is as follows:

Theorem 1.3. Suppose that p is sufficiently large (compared to G). Kaletha’s toral
supercuspidal L-packets satisfy Expectation 1.2 in the following cases:

(1) G = GLn or
(2) G is general, θ is involutive, and toral supercuspidal L-packets arise from

a torus S splitting over a finite extension E/F with odd ramification index.

We explain the outline of proof of Theorem 1.3 in the following. Our strategy
is quite simple in some sense; we reproduce Kaletha’s proof of the standard (un-
twisted) endoscopic character relation while taking into account the effect of the
twist θ. Thus let us first review Kaletha’s proof in the untwisted setting briefly.

The starting point of Kaletha’s proof is an explicit formula of the characters of
tame supercuspidal representations due to Adler–DeBacker–Spice ([AS09, DS18]).
In the toral setting, it is as follows. Let π(S,ϑ) be the toral supercuspidal repre-
sentation of G arising from a tame elliptic regular pair (S, ϑ). Let r ∈ R>0 be the
depth of the character ϑ and X∗ ∈ (LieS)∗(F ) be an element representing the re-
striction of ϑ to the “depth r part” Sr of S (see Section 4.2 for details). Let δ ∈ G
be any elliptic regular semisimple element. Then, by the theory of Adler–Spice
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[AS08], we can take a normal r-approximation δ = δ<r · δ≥r. Roughly speaking,
this is a nice product decomposition of δ into a part “p-adically shallower than r”
and a part “p-adically deeper than or equal to r”. One of its important properties
is that two parts δ<r and δ≥r commute; even more strongly, the deeper part δ≥r
belongs to the connected centralizer Gδ<r

:= ZG(δ<r)
◦ of the shallower part. The

Adler–DeBacker–Spice formula is expressed by using a normal r-approximation as
follows (the symbol g(−) denotes the conjugate g(−)g−1):

Φπ(S,ϑ)
(δ) = ∆G

IV(δ)
∑

g∈S\G/Gδ<r
gδ<r∈S

ε(gδ<r) · ϑ(gδ<r) · ι̂
Gδ<r
gX∗ (log(δ≥r)),(2)

where ∆G
IV(−) is the fourth transfer factor of Kottwitz–Shelstad, ε(gδ<r) is a root of

unity determined by gδ<r, and ι̂
Gδ<r
gX∗ (−) denotes the normalized Fourier transform

of the orbital integral with respect to gX∗ taken in the (Lie algebra of) Gδ<r
(see

Section 6.7). The important observation here is that ι̂
Gδ<r
gX∗ (−), which is nothing

but the Lie algebra analogue of the Harish-Chandra characters of representations,
is used to express the contribution of the deeper part δ≥r. In fact, by the theo-
rem of Waldspurger and Ngô ([Wal06, Ngô10]; see Section 11.4), we can compare
the Fourier transforms of Lie algebra orbital integrals between any group and its
standard endoscopic group (this can be thought of as a Lie algebra analogue of the
standard endoscopic character relation). The principal idea of Kaletha’s strategy is
to reduce the standard endoscopic character relation to the Lie algebra transfer the-
orem of Waldspurger–Ngô through the Adler–DeBacker–Spice character formula.

Now let H be an endoscopic group of G (with trivial θ) and suppose that both
ΠH
ϕH

and ΠG
ϕ consist of toral supercuspidal representations (of depth r ∈ R>0).

When γ ∈ H is a norm of δ ∈ G, we may transfer a normal r-approximation
δ = δ<r · δ≥r to γ = γ<r · γ≥r. Therefore, by applying the Adler–DeBacker–Spice
formula to all the characters of representations in ΠG

ϕ and ΠH
ϕH

with respect to

these r-approximations, the G-side and the H-side of (1) are rewritten as follows:∑
π(S,ϑ)∈ΠG

ϕ

∆spec
ϕ,π(S,ϑ)

·∆G
IV(δ)

∑
g∈S\G/Gδ<r

gδ<r∈S

ε(gδ<r) · ϑ(gδ<r) · ι̂
Gδ<r
gX∗ (log(δ≥r)),(3)

(4)
∑

γ∈H/st

∆̊(γ, δ)
∑

π(SH,ϑH)∈ΠH
ϕH

∆H
IV(γ)

∑
h∈SH\H/Hγ<r

hγ<r∈SH

ε(hγ<r)·ϑH(hγ<r)· ι̂
Hγ<r
hX∗

H
(log(γ≥r)).

Note that the Lie algebra orbital integrals are taken not in G and H but in the
“descended” groups Gδ<r

and Hγ<r
. The crucially important ingredient here is the

theory of descent for standard endoscopy due to Langlands–Shelstad [LS90], which
guarantees that the group Hγ<r again has a structure of an endoscopic group of
Gδ<r . Moreover, the transfer factor for the pair (G,H) is related to that of the
descended pair (Gδ<r

,Hγ<r
). Then the basic setup for utilizing the Lie algebra

transfer is done.

G
standard endoscopy

descent ///o/o/o/o/o/o/o Gδ<r

standard endoscopy

H
descent ///o/o/o/o/o/o/o Hγ<r
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However, there are still several subtle points remaining. Firstly, before thinking
about comparing the summands of (3) and (4) via the Lie algebra transfer, we must
investigate how the index sets of those sums can be compared. Another related task
is to rewrite both sides (3) and (4) in a way such that the Fourier transforms of
orbital integrals are summed up over rational conjugacy classes within a stable
conjugacy class (in Gδ<r

or Hγ<r
), so that the Lie algebra transfer can be applied.

Kaletha resolved these issues by an ingenious trick of rearranging the sums. By
construction, the members of ΠG

ϕ are labeled by the rational conjugacy classes

within the stable conjugacy class of admissible embeddings (see Definition 7.7) of
S into G. The second index set of (3) can be thought of as a set measuring the
difference between the rational conjugacy in G and that in Gδ<r . Hence the double
sums in (3) are combined into a single sum over Gδ<r

-conjugacy classes within the
stable G-conjugacy class of admissible embeddings. If we again partition this sum
based on the stable Gδ<r

-conjugacy, we can obtain a sum over the desired index
set, i.e., Gδ<r

-conjugacy classes within the stable Gδ<r
-conjugacy class. The same

argument can be also applied to the H-side (4). Then, by utilizing the “descent
lemma”, which was established in [Kal15, Section 5.4], we can relate the sum over
stable Gδ<r

-conjugacy classes within the stable G-conjugacy class to that over
Hγ<r

-conjugacy classes within the stable H-conjugacy class.

GΠG
ϕ

iiii
iii descent lem.

VVVVV
VV HΠH

ϕH

iiii
iii descent lem.

VVVVV
VV

G
ADS formula

TTTT
TT Gδ<r

Lie alg. trans.
iiiii

i H
ADS formula

TTTT
TT Hγ<r

Lie alg. trans.
iiiii

i
Gδ<r Hγ<r

Secondly, we also have to relate the roots of unity “ε” in the summands in (3)
and (4). These factors are explicitly computed in [AS09, DS18]; they reflect the
symmetry of the root system Φ(G,S), which is a finite set equipped with a (typ-
ically, highly nontrivial) Galois action. Kaletha first showed that this part can
be re-interpreted in terms of several invariants having a more “endoscopic” nature
such as the second transfer factors ∆II ([Kal19b, Corollary 4.8.2]). Then, by com-

puting the transfer factor ∆̊(γ, δ) explicitly and also by utilizing various nontrivial
results on the arithmetic invariants such as local root numbers and Weil constants,
he eventually proved that all of these subtle quantities perfectly fit together.

Now, let us move on to the twisted situation. In the following, we let θ be a
nontrivial F -rational involution of G and H is an endoscopic group of (G, θ). Our
first task is to establish a twisted version of the Adler–DeBacker–Spice formula. For
this, we have to start with investigating a twisted version of the notion of a normal
r-approximation because the Adler–DeBacker–Spice formula is based on it. The key
observation is the following. Let γ = γ<r · γ≥r be a normal r-approximation to an
elliptic regular semisimple element γ ∈ G (in the usual, untwisted, sense). In fact,
a normal r-approximation is a refinement of a topological Jordan decomposition;
the shallower part γ<r is furthermore decomposed into a topologically semisimple
part γ0 and a topologically unipotent part γ+<r such that γ = γ0 · (γ+<r · γ≥r)
gives a topological Jordan decomposition of γ in the sense of [Spi08]. If we put
γ+ := γ+<r · γ≥r, then γ+ belongs to Gγ0 and the decomposition γ+ = γ+<r · γ≥r
is a normal r-approximation to γ+ in Gγ0 . Here, we note that the converse is
not always true; even if we take a topological Jordan decomposition γ = γ0 · γ+
and a normal r-approximation γ+ = γ+<r · γ≥r in Gγ0 , the resulting decomposition
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γ = (γ0 · γ+<r) · γ≥r might not be a normal r-approximation to γ in G. The point is
that, however, the property that γ+ = γ+<r ·γ≥r is a normal r-approximation in Gγ0

is enough so that the arguments in [AS08, AS09, DS18] work well. Based on this
observation, we arrive at the following construction (rather than the “definition”)

of a normal r-approximation to an elliptic regular semisimple element δ ∈ G̃(F ):

(1) Take a topological Jordan decomposition δ = δ0 ·δ+ by [Spi08]. Here, while

δ0 lies in G̃(F ), δ+ lies in the “untwisted” part G(F ), in fact, even Gδ0(F ).
(2) Take a normal r-approximation δ+ = δ+<r · δ≥r in Gδ0 . Here, note that

δ+ ∈ Gδ0 is no longer “twisted”, hence the work of Adler–Spice [AS08] is
enough so that we can find a normal r-approximation to δ+ in Gδ0 .

With the normal r-approximation to δ obtained in this way, we can reproduce
all the arguments necessary for the Adler–DeBacker–Spice formula in the twisted
setting. The resulting formula is expressed in the following way:

Φπ̃(S,ϑ)
(δ) = ∆G̃

IV(δ)
∑

g∈S\G/Gδ<r
gδ<r∈S̃

ε̃(gδ<r) · ϑ̃(gδ<r) · ι̂
Gδ<r
gX∗ (log(δ≥r)).(5)

Here, we put “∼” on the symbols to indicate that these are quantities determined
in this twisted context. Although we wrote the above formula (5) in a way parallel
to (2), the actual expression of ε̃ is much more complicated than in the untwisted
case (see Proposition 6.11 for the details). One of the subtleties comes from the
twisted character formula of the Weil representations of finite symplectic groups. As
a toral supercuspidal representation is constructed by using the (Heisenberg–)Weil
representation of a finite symplectic group, the proof of Adler–DeBacker–Spice for-
mula is eventually reduced to computing the characters of Weil representations. In
[AS09, DS18], it was done by appealing to an explicit formula of Gérardin [Gér77].
Gérardin’s result can be also applied to compute the twisted characters of Weil rep-
resentations, but we additionally need to handle a lot of case-by-case computation
depending on the symmetry of Φ(G,S) (see Sections 6.6).

By looking at the formula (5), we notice that the contribution of the deeper part
δ≥r is expressed via the Fourier transform of a Lie algebra orbital integral with
respect to the descended group Gδ<r

as well as in the untwisted case. Therefore,
one might expect that the same strategy again works in this twisted setting. Unfor-
tunately, in the twisted setting, it is not always the case that Hγ<r

has a structure
of an endoscopic group of Gδ<r . Nevertheless, it is still possible to relate Hγ<r

to Gδ<r by introducing another variant of the notion of standard endoscopy called
non-standard endoscopy. More precisely, there exists a group H̄ such that H̄ is a
standard endoscopic group of the simply-connected cover of Gδ<r

and also that the
simply-connected covers of H̄ and Hγ<r

form a non-standard endoscopic pair. Fur-
thermore, the Lie algebra transfer for Fourier transforms of orbital integrals is also
available for the non-standard endoscopic pair. This is the framework “l’endoscopie
tordue n’est pas si tordue” established by Waldspurger ([Wal08]).

G̃

twisted endoscopy

descent ///o/o/o/o/o/o/o Gδ<r
Gδ<r,sc

oo

standard endoscopy

H̄ H̄sc
oo

non-standard endoscopy

H
descent

///o/o/o/o/o/o/o Hγ<r
Hγ<r,sc

oo
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Now we gained the right to attempt to mimic Kaletha’s proof. Let us discuss the
rearranging argument on the index sets of the sums in the twisted endoscopic char-
acter relation. The first difficulty is that only θ-stable members of ΠG

ϕ contribute
to the twisted endoscopic character relation. Hence we must clarify the θ-stability
condition in terms of admissible embeddings, which parametrize the members of
ΠG
ϕ . We deal with this issue by examining the notion of a twisted maximal torus.

The second difficulty is that Kaletha’s descent lemma, which is necessary for the
index sets comparison, needs a major modification. The idea of the descent lemma
in the untwisted case is to utilize admissible isomorphisms, which are F -rational
isomorphisms between maximal tori of G and those of H. For a given F -rational
admissible embedding of a maximal torus SH into H, by composing it with an
admissible isomorphism between SH and a maximal torus (say S) in G, we may
produce an F -rational admissible embedding of S into G. However, this construc-
tion no longer works in the twisted setting because an admissible isomorphism in
twisted endoscopy is an F -rational isomorphism between an F -rational maximal
torus of H and the coinvariant (with respect to the “twist”) of a maximal torus of
G. To resolve this issue, we utilize the notion of a diagram introduced by Wald-
spurger (see Definition 10.1). A diagram induces an admissible isomorphism, but
also encapsulates more information. Hence it can be thought of as a “rigidification”
of an admissible isomorphism. Using diagrams instead of admissible isomorphisms,
we can reproduce Kaletha’s descent lemma in the twisted setting.

We next discuss comparing the roots of unity appearing in the G-side with
those in the H-side. Our basic strategy is to unravel various arithmetic or root-
theoretic invariants using similar techniques as in the untwisted case. However,
somehow our computation left us with a very complicated quantity as a ratio of
a summand in the G-side to that in the H-side (see (37) and also (43)). What
we do is, rather than trying to express this ratio more explicitly, just defining the
coefficient “∆spec

ϕ,π ” in the endoscopic character relation to be exactly this ratio.
Then the endoscopic character relation holds almost tautologically. Instead, the
well-definedness of ∆spec

ϕ,π becomes quite nontrivial; a priori ∆spec
ϕ,π heavily depends

on the elliptic regular semisimple element δ ∈ G̃ taken at the beginning. Thus
what we do next is to show that ∆spec

ϕ,π is in fact independent of the choice of δ.

By examining each factor involved in ∆spec
ϕ,π , we see that it is enough to check that

the quantity (44), which is much simpler than (37), is independent of δ. In fact,
every factor appearing in (37) is related to ramified symmetric roots contained in
the restricted root system (in the sense of Kottwitz–Shelstad; see Section 3.3) of a
maximal torus S of G associated to a θ-stable toral supercuspidal representation
π. Therefore, if the restricted root system does not contain any ramified symmetric
root, then (44) is trivial. This is how we obtained Theorem 1.3 (2). What we
eventually verified is that (44) is trivial also when G = GLn; this is achieved by
explicitly classifying the possible Galois actions on (restricted) root systems of GLn.

Let us finish this introduction by giving several concluding remarks. We believe
that it is possible to generalize our results in various directions. The artificial as-
sumption onG or S of Theorem 1.3 stems only from the last part of the proof, which
is about the well-definedness of ∆spec

ϕ,π . Probably this part can be dealt with in gen-
eral by a case-by-case computation based on a classification of twisted endoscopy;
cf. [Wal08, Chapitre 14–18]. Also, the assumption that θ is involutive is in fact
not necessary in most parts of our arguments (except only for the above-mentioned

9



part on ∆spec
ϕ,π ). Thus it should be also fairly possible to drop the assumption on θ.

We expect that it is also possible to establish a depth-zero version of our result by
replacing the Adler–DeBacker–Spice character formula with the one of DeBacker–
Reeder [DR09]. It is a natural problem to extend our result to the case of general
regular (or even non-singular) supercuspidal representations, but it should require
twisting the recent work of Spice [Spi18, Spi21], which are quite deep.

We finally would like to emphasize that our arguments are also inspired by Mezo’s
proof of the twisted endoscopic character relation for discrete series L-packets of
real reductive groups (cf. [Mez13]). We think that our constant ∆spec

ϕ,π is nothing but
the p-adic version of what is called the spectral transfer factor in the archimedean
setting; see Chapter 1 and also (115)–(117) of [Mez13].

Organization of this paper. In Section 2, we list our fundamental notation.
In Section 3, we establish a version of the theory of good product expansion by
Adler–Spice in the twisted space setting. In Section 4, we review Yu’s construction
of tame supercuspidal representations with emphasis on the toral case. In Section
5, we establish a preliminary version of a twisted Adler–DeBacker–Spice character
formula for toral supercuspidal representations. In the main theorem of this section
(Theorem 5.16), the contribution of the shallow part of δ remains not to be com-
puted. In Section 6, we compute the contribution of the shallow part by appealing
to Gérardin’s character formula. Some of the results needed in this section are sum-
marized in Appendix A. In Section 7, we review Kaletha’s construction of the local
Langlands correspondence for regular supercuspidal representations. In Section 8,
we review the framework of twisted endoscopy. In Section 9, we investigate the
structure of a θ-stable regular supercuspidal L-packets. In Section 10, we examine
the notion of a diagram and establish a twisted version of Kaletha’s descent lemma.
In Section 11, we briefly review Waldspurger’s framework. In Sections 12 and 13,
we prove some technical lemmas needed in the computation of the spectral transfer
factor. In Section 14, we compare the G-side and the H-side of the endoscopic
character relation. Especially, we introduce the spectral transfer factor. In Section
15, we prove that the spectral transfer factor is well-defined in the GLn case, which
implies that the twisted endoscopic character relation holds for toral supercuspidal
L-packets of twisted GLn.
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2. Notation and assumptions on p

2.1. Notation. Let us summarize the basic notation used in this paper here.

2.1.1. p-adic fields. We fix a p-adic field F , i.e., F is a finite extension of Qp. We

also fix an algebraic closure F of F . For any extension E of F in F , we write OE ,
pE , kE , and ΓE for the ring of integers of E, the maximal ideal of OE , the residue
field OE/pE , and the absolute Galois group Gal(F/E) of E, respectively. For any
finite extension E of F in F , we write WE , IE , and PE for the Weil groups of E,
its inertia subgroup, and its wild inertia subgroup, respectively. For any r ∈ R>0,
let IrF denote the r-th upper ramification filtration of IF . We fix a valuation valF
of F such that valF (F ) = Z. We extend it to F and again write valF for it. We
define an absolute value | · |F of F by | · |F := p− valF (·).

Because ΓF appears so often in this paper, we simply write Γ for ΓF . Similarly,
we simply write k for kF .

We fix an additive character ψF : F → C× satisfying ψF |pF
≡ 1 but ψF |OF

6≡ 1.

2.1.2. Algebraic varieties and algebraic groups. In this paper, we use a bold letter
for an algebraic variety and use an italic letter for the set of its F -valued points
when it is defined over F . For example, if X is an algebraic variety defined over F ,
then X := X(F ).

For any algebraic group G, we write X∗(G) and X∗(G) for the group of charac-
ters and cocharacters of G, respectively. We let ZG denote the center of G. When
G is defined over F , so is ZG and the set of its F -valued points is denoted by ZG.

For any torus S torus equipped with an automorphism θS, we let SθS and SθS
denote the invariant and coinvariant of S with respect to θS, respectively.

2.1.3. Centralizers and normalizers. Suppose that G is an algebraic group and X
is an algebraic variety having a left and right actions of G, for which we write
G ×X ×G → X : (g1, x, g2) 7→ g1 · x · g2. Then we define the conjugate action of
G on X by G×X→ X : (g, x) 7→ g · x · g−1. We introduce the following notation:

• For g ∈ G, let [g] denote the conjugation automorphism X → X : x 7→
g · x · g−1. We also often write gx := [g](x) = g · x · g−1.
• For x ∈ X, let Gx denote the full stabilizer of x in G with respect to the
conjugate action, i.e., Gx := {g ∈ G | [g](x) = x}.
• For x ∈ X, let Gx denote the connected stabilizer of x in G with respect
to the conjugate action, i.e., Gx := Gx,◦.

Note that, when G and X are F -rational, [g] is also F -rational if g ∈ G(F ).
Similarly, Gx and Gx are F -rational if x ∈ X(F ).

For any subset Y ⊂ X, we put

• ZG(Y ) := {g ∈ G | [g](y) = y for any y ∈ Y } and
• NG(Y ) := {g ∈ G | [g](Y ) ⊂ Y }.

When Y is a singleton {y}, we simply write ZG(y) := ZG(Y ) (= Gy) and NG(y) :=
NG(Y ). If G and X are defined over F and Y is a subset of X(F ), then ZG(Y )
and NG(Y ) are defined over F and the sets of their F -valued points are denoted
by ZG(Y ) and NG(Y ), respectively.
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2.1.4. Reductive groups. For any connected reductive group G and its maximal
torus S, we let Φ(G,S) and Φ∨(G,S) denote the set of roots and coroots of S in
G, respectively. Note that, when both G and S are defined over F , the sets Φ(G,S)
and Φ∨(G,S) are equipped with an action of Γ. We let ΩG(S) be the Weyl group
of S in G, i.e., ΩG(S) := NG(S)/S. We sometimes loosely write ΩG for ΩG(S)
when the choice of a maximal torus S is clear from the context (e.g., when S is a
maximal torus belonging to a splitting of G).

We write g for the Lie algebra of G. When G is defined over F , g is an algebraic
variety over F , hence we write g := g(F ) as explained above.

2.1.5. Bruhat–Tits theory. Suppose that G is a connected reductive group over F .
We follow the notation on Bruhat–Tits theory used by [AS08, AS09, DS18]. (See,
for example, [AS08, Section 3.1] for details.) Especially, B(G, F ) (resp. Bred(G, F ))
denotes the enlarged (resp. reduced) Bruhat–Tits building of G over F . We define

R̃ to be the set Rt{r+ | r ∈ R}t{∞} with a natural order. Then, for any r ∈ R̃≥0

and x ∈ Bred(G, F ), we can consider the r-th Moy–Prasad filtration Gx,r of G with

respect to the point x. For any r, s ∈ R̃≥0 satisfying r < s, we write Gx,r:s for the

quotient Gx,r/Gx,s. We put Gr :=
⋃

x∈Bred(G,F )Gx,r for r ∈ R̃≥0. Similarly, we

have the Moy–Prasad filtration {gx,r}r on the Lie algebra g = g(F ), their quotients
gx,r:s, and the unions gr. We also have the Moy–Prasad filtration on the dual Lie
algebra g∗ := HomF (g, F ) defined by

g∗x,r := {Y ∗ ∈ g∗ | 〈gx,(−r)+, Y ∗〉 ⊂ pF }

for any r ∈ R≥0 and x ∈ Bred(G, F ) (g∗x,r+ is defined to be
⋃
s>r g

∗
x,s).

Suppose that S is an F -rational tamely ramified maximal torus of G. By fixing
an S-equivariant embedding of B(S, F ) into B(G, F ), we may regard B(S, F ) as a
subset of B(G, F ). Then, for any point x ∈ B(G, F ), the property that “x belongs
to the image of B(S, F )” does not depend on the choice of such an embedding (see
the second paragraph of [FKS23, Section 3] for details). For any point x ∈ B(G, F )
which belongs to B(S, F ), we have Sb ⊂ Gx, where Sb denotes the maximal bounded
subgroup of S. When S is elliptic in G, the image of B(S, F ) in Bred(G, F ) consists
of only one point. If x ∈ B(G, F ) belongs to the image of B(S, F ), we say that x is
associated to S.

We also fix a family of mock-exponential maps gx,r → Gx,r for x ∈ B(G, F ) and
r ∈ R̃>0 and simply write “exp” for it (see [AS09, Appendix A]; cf. [Hak18, Section
3.4]). We write “log” for the inverse of exp. It is guaranteed that a mock exponential
map in the sense of [AS09, Appendix A] always exists under the assumption that
p ∤ |ΩG|, which we will assume later.

2.1.6. Finite sets with Galois actions. We put Σ := Γ×{±1}. Suppose that Φ is a
finite set with an action of Σ, e.g., the set of roots of an F -rational maximal torus
in a connected reductive group (−1 acts on Φ via α 7→ −α in this case). Following

[AS09], we put Φ̇ := Φ/Γ and Φ̈ := Φ/Σ.
For each α ∈ Φ, we put Γα (resp. Γ±α) to be the stabilizer of α (resp. {±α}) in

Γ. Let Fα (resp. F±α) be the subfield of F fixed by Γα (resp. Γ±α). Hence we have
Γα = ΓFα

and Γ±α = ΓF±α
:

F ⊂ F±α ⊂ Fα ←→ Γ ⊃ Γ±α ⊃ Γα.

We abbreviate the residue field kFα
of Fα (resp. kF±α

of F±α) as kα (resp. k±α).
12



We say that α is asymmetric if Fα = F±α and that α is symmetric if Fα ⊋ F±α.
We remark that α is symmetric if and only if the Γ-orbit of α contains−α. By noting
that the extension Fα/F±α is necessarily quadratic if α is symmetric, we say that α
is (symmetric) unramified (resp. ramified) if Fα/F±α is unramified (resp. ramified).
We write Φasym, Φur, Φram, and Φsym for the set of asymmetric elements, symmetric
unramified elements, symmetric ramified elements, and symmetric elements of Φ,
respectively.

For α ∈ Φsym, we let κα : F
×
±α → C× denote the quadratic character of F×

±α
corresponding to the quadratic extension Fα/F±α under the local class field theory.

Note that, if α is symmetric, Γα = Σα. This implies that the sets Φ̇sym and

Φ̈sym can be naturally identified (and, of course, the same is true for Φur or Φram).

2.1.7. Several arithmetic invariants. For any finite extension E± of F and its qua-
dratic extension E, we let λE/E± := λE/E±(ψF ◦ TrE±/F ) denote the Langlands
constant with respect to the nontrivial additive character ψF ◦TrE±/F of E± (see,
e.g., [BH06, 30.4]). When the quadratic extension E/E± is given by Fα/F±α as in
Section 2.1.6, we even write λα for λFα/F±α

.

In this paper, we often consider the root number ε( 12 , X
∗(S)C, ψF ) of the ε-factor

of the Galois representation X∗(S)C obtained from an F -rational torus (see [BH06,
Section 30] or [Tat79, Section 3.6] for the definition of the ε-factor). We shortly
write ε(S) := ε( 12 , X

∗(S)C, ψF ).

2.1.8. Finite fields. Suppose that k is a finite field of odd characteristic p. Then
the multiplicative group k× is cyclic of even order, hence there exists a unique
nontrivial sign character k× → {±1}. We write sgnk×(−) for this character.

Next, we furthermore suppose that [k : Fp] is even. Then, there uniquely exists

a subextension k± satisfying [k : k±] = 2. We let k1 denote the kernel of the norm

map Nrk/k± : k× → k×±. By noting that k1 is also cyclic of even order, we write

sgnk1(−) for the unique nontrivial sign character of k1.

2.2. Assumptions on p. From Section 3.4, we assume that p is odd. In Section
4.1, we add the assumption that p does not divide the order of the absolute Weyl
group of G. From Section 11 to the end of this paper, we furthermore assume that
p is greater than or equal to (2 + eF )n, where n is the minimum of the dimension
of a faithful representation of G and eF is the ramification degree of F/Qp.

3. Twisted spaces

In this section, we review basics of twisted spaces and establish a version of the
theory of good product expansion by Adler–Spice ([AS08]) in twisted spaces.

3.1. Twisted spaces. Recall that the theory of twisted endoscopy ([KS99]) starts
with fixing a triple (G, θ,a). Here,

• G is a connected reductive group over F ,
• θ is an F -rational quasi-semisimple automorphism of G (i.e., θ preserves a
Borel pair), and

• a ∈ H1(WF ,ZĜ), where Ĝ is the Langlands dual group of G over C.
In this paper, we focus on the case where (G, θ,a) satisfies the following conditions:

• G is quasi-split (hence, we may and do fix an F -splitting splG = (B,T, {Xα}α)
of G);
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• θ preserves splG and is involutive, i.e., the order of θ is 2;
• a is trivial.

Example 3.1. We particularly have the following example in mind. Let G be the
general linear group GLn over F . Let θ be the F -rational automorphism of G
defined by

θ(g) := Jn
tg−1J−1

n ,

where Jn is an anti-diagonal matrix of size n whose (i, n+ 1− i)-th entry is given
by (−1)i−1 and tg denotes the transpose of g. Then θ is involutive and preserves
the standard splitting of GLn. This is the case considered in Arthur’s theory of the
endoscopic classification of representations of quasi-split classical groups ([Art13]).

Following Labesse ([Lab04]) and Waldspurger ([Wal08]), we work with the for-
malism of twisted spaces as follows. We put

G̃ := Gθ.

This is a twisted space in the sense of Labesse, that is, an algebraic variety over F
which is a bi-G-torsor. As an algebraic variety, it is isomorphic to G by the map
written by g 7→ gθ. The right and left actions of G on G̃ is given by

g1 · (gθ) · g2 = (g1gθ(g2))θ.

Thus the conjugate action of G on G̃ is given by

[g1](gθ) := g1 · (gθ) · g−1
1 = (g1gθ(g1)

−1)θ.

Note that the θ-twisted conjugacy inG (as in [KS99]) is amount to theG-conjugacy

in G̃. The conjugate action of G̃ on G is also defined by, for δ = gθ ∈ G̃,

[δ] := [g] ◦ θ : G→ G.

3.2. Twisted maximal torus. We next investigate the notion of a twisted max-
imal torus.

Definition 3.2 ([MW18, Section 4.1]). Let (S̃,S) be a pair of

• an F -rational maximal torus S of G and
• an F -rational S-twisted subspace S̃ of G̃ (i.e., subvariety of G̃ which is a

bi-S-torsor under the bi-S-action on S̃ ⊂ G̃).

We say that (S̃,S) is an F -rational twisted maximal torus of G̃ if the following two
conditions are satisfied:

(1) There exists a Borel subgroup BS of G (not necessarily defined over F )

containing S and satisfying S̃ = NG̃(S) ∩NG̃(BS).

(2) The set S̃ = S̃(F ) of F -valued points of S̃ is not empty.

By the condition (1) of Definition 3.2, every η ∈ S̃ acts on S by the conjugation

[η]. Since S̃ is an S-twisted space and S is commutative, this action is independent
of the choice of η. We let θS denote this automorphism of S. Note that we can take
η to be F -rational by the condition (2) of Definition 3.2, hence θS is F -rational.
Moreover, since θ is involutive, so is θS.

When (S, S̃) is an F -rational twisted maximal torus of G̃, we often simply say

that “S̃ is an F -rational twisted maximal torus of G̃”. For an F -rational twisted
maximal torus S̃ of G̃, we put S♮ := SθS,◦. Note that, for any η ∈ S̃, we have
S♮ = Sη ⊂ Gη. The relationship between S and S♮ is described as follows:
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Proposition 3.3. For any F -rational twisted maximal torus S̃ of G̃, we have

(1) ZG(S♮) = S,

(2) ZG(S̃)◦ = S♮, and

(3) for any η ∈ S̃, S♮ is a maximal torus of Gη (when η ∈ S̃, both S and Gη

are F -rational).

Proof. Let η ∈ S̃. Let BS be a Borel subgroup of G containing S and satisfying
S̃ = NG̃(S) ∩ NG̃(BS). Then [η] defines an automorphism of G preserving the
Borel pair (BS,S). We apply Steinberg’s result ([Ste68]), which is summarized in
[KS99, Theorem 1.1.A], to the automorphism [η]. By [KS99, Theorem 1.1.A (2)],
S ∩Gη is a maximal torus of Gη. Since Sη ⊂ S ∩Gη ⊂ Sη, the connectedness of
S∩Gη implies that Sη = S∩Gη. Thus we get the assertion (3) (the F -rationality

of S and Gη when η ∈ S̃ is clear). Moreover, by [KS99, Theorem 1.1.A (4)], we get
the assertion (1).

Let us check the assertion (2). As the inclusion ZG(S̃)◦ ⊃ S♮ is obvious, we

show the converse inclusion. Let g ∈ ZG(S̃)◦. Then we have gsηg−1 = sη for any

s ∈ S since S̃ = Sη. Note that, as η ∈ S̃, we have ZG(S̃)◦ ⊂ ZG(η̃)◦ = Gη. Thus
gsηg−1 = sη (for any s ∈ S) if and only if gsg−1 = s (for any s ∈ S), which implies
that g ∈ S. Hence we get g ∈ S ∩Gη = Sη = S♮. □

Recall that an element δ ∈ G̃ is said to be

• semisimple if [δ] is quasi-semisimple,
• regular semisimple if δ is semisimple and Gδ is a torus, and
• strongly regular semisimple if δ is semisimple and Gδ is abelian

(see [KS99, Sections 3.2 and 3,3]).
Let AG̃ denote the maximal split subtorus of ZθG.

Definition 3.4. (1) Let S̃ be an F -rational twisted maximal torus of G̃. We

say that S̃ is elliptic if S♮ is anisotropic modulo AG̃.

(2) For any semisimple element δ ∈ G̃, we say that δ is elliptic if there exists

an F -rational elliptic twisted maximal torus S̃ of G̃ such that δ ∈ S̃.

Remark 3.5. If (S̃,S) is an F -rational twisted maximal torus of G̃ whose S is

elliptic, then (S̃,S) is elliptic. Indeed, as we have an injection

S♮/AG̃ ↪→ S♮/(ZG ∩ S♮) ↪→ S/ZG,

the ellipticity of S in G (which is equivalent to the anisotropy of S modulo ZG)
implies that the anisotropy of S♮ modulo AG̃.

Lemma 3.6. Let S be an F -rational maximal torus of G. If there exists a semisim-
ple element η ∈ G̃ and a Borel subgroup BS containing S such that (BS,S) is

preserved by [η], then (S̃,S) := (Sη,S) is an F -rational twisted maximal torus of

(G̃,G).

Proof. Since G̃ = Gη and [η] preserves (BS,S), we have

NG̃(S) ∩NG̃(BS) =
(
NG(S) ∩NG(BS)

)
η = Sη = S̃.

Moreover, obviously S̃ = S̃(F ) is not empty as it contains η. □
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3.3. Steinberg’s result on the structure of descended groups. Let S̃ be an
F -rational twisted maximal torus of G̃ and BS a Borel subgroup which contains
S and is preserved by the action of S̃. By fixing an element gS ∈ G satisfying
[gS](BS,S) = (B,T), we get an isomorphism [gS] : (S̃,S)

∼−→ (T̃,T). Note that the

isomorphism [gS] : S
∼−→ T is independent of the choice of gS ∈ G and that the

automorphism θS of S is transported to θ on T via [gS], i.e., θ ◦ [gS] = [gS] ◦ θS.
For any η ∈ S̃, its connected centralizer Gη is a connected reductive group with

a maximal torus S♮ (Proposition 3.3). In this subsection, we review some facts
about the structure of the root system Φ(Gη, .S

♮) following [Wal08, Section 3.3]
(we will review more details in Section 12.1).

We write T♮ := Tθ,◦. We put

• Y ∗(T) := X∗(T)/(X∗(T) ∩ (1− θ)X∗(T)Q) and
• Y∗(T) := X∗(T)/(X∗(T) ∩ (1− θ)X∗(T)Q).

We write p∗ : X∗(T)→ Y ∗(T) and p∗ : X∗(T)→ Y∗(T) for the natural surjections.
Then we have the following:

(1) Y ∗(T) ∼= X∗(T♮) is the Z-dual to X∗(T)θ ∼= X∗(T
♮);

(2) Y∗(T) is the Z-dual to X∗(T)θ.

We put Θ := 〈θ〉. Note that the action of Θ on (G,T) induces an action on
Φ(G,T). For any α ∈ Φ(G,T), we let lα be the cardinality of the Θ-orbit of α in
Φ(G,T) and define an element N(α) ∈ Φ(G,T) by

N(α) :=

lα−1∑
i=0

θi(α).

We also define lα∨ and N(α∨) for any α∨ ∈ Φ∨(G,T) in the same manner. For
α ∈ Φ(G,T), we shortly write αres := p∗(α). We define a set Φres(G,T) by

Φres(G,T) = {p∗(α) | α ∈ Φ(G,T)} ⊂ Y ∗(T) ∼= X∗(T♮).

Then Φres(G,T) forms a (possibly non-reduced) root system. We call elements of
Φres(G,T) restricted roots. Following [KS99, Section 1.3], we say that α ∈ Φ(G,T)
(or its associated αres) is of

• type 1 if 2αres,
1
2αres /∈ Φres(G,T),

• type 2 if 2αres ∈ Φres(G,T),
• type 3 if 1

2αres ∈ Φres(G,T).

We put

%α :=

®
1 if α is of type 1 or 3,

2 if α is of type 2,
ςα :=

®
1 if α is of type 1 or 2,

−1 if α is of type 3.

We also define a set Φ∨
res(G,T) by

Φ∨
res(G,T) = {%α ·N(α∨) | α ∈ Φ∨(G,T)} ⊂ X∗(T)θ ∼= X∗(T

♮).

Then we have bijections

Φ(G,T)/Θ
1:1−−→ Φres(G,T) : α 7→ αres (:= p∗(α)),

Φ∨(G,T)/Θ
1:1−−→ Φ∨

res(G,T) : α 7→ %α ·N(α).

(We note that Φres(G,T) and Φ∨
res(G,T) are denoted by Σres and Σ̌res in [Wal08,

Section 3.3], respectively.)
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Remark 3.7 ([KS99, (1.3.3)]). There exists a restricted root of type 2 or 3 only when
Φ(G,T) contains an irreducible component of Dynkin type A2n which is preserved
and acted by θ nontrivially.

Now let η be an element of S̃ and let ν ∈ T be the element such that

[gS](η) = νθ ∈ T̃ = Tθ.

Then [gS] : G → G induces an isomorphism between (Gη,S
♮) and (Gνθ,T

♮). In
particular, the sets Φ(Gη,S

♮) and Φ∨(Gη,S
♮) can be identified with Φ(Gνθ,T

♮)
and Φ∨(Gνθ,T

♮), respectively (note that here we ignore the Galois actions). The
latter sets are described in terms of the restricted roots and coroots as follows:

Φ(Gνθ,T
♮) = {p∗(α) | α ∈ Φ(G,T);N(α)(ν) = ςα} ⊂ Φres(G,T),

Φ∨(Gνθ,T
♮) = {%α ·N(α∨) | α∨ ∈ Φ∨(G,T);N(α)(ν) = ςα} ⊂ Φ∨

res(G,T).

Note that these sets are thought of as subsets of X∗(T♮) and X∗(T
♮).

3.4. Good product expansion in twisted spaces. We discuss a twisted version
of the theory of good product expansion due to Adler and Spice ([AS08]).

We first recall the definition of a good product expansion of elements of p-
adic groups in the untwisted case. We temporarily let G be any tamely ramified
connected reductive group over F . Let Ḡ be the quotient G/Z◦

G of G by the
identity component of the center ZG of G.

Definition 3.8 ([AS08, Definitions 4.11 and 6.1]). (1) We say that an element
γ ∈ G is good of depth zero if γ is semisimple and its image γ̄ in Ḡ is ab-
solutely semisimple, i.e., every character value of γ̄ (see [AS08, Definition
A.4]) is of finite prime-to-p order.

(2) For d ∈ R>0, an element γ ∈ G is said to be good of depth d if there exists
an F -rational tame-modulo-center torus S in G such that
• γ ∈ Sd ∖ Sd+, and
• for every α ∈ Φ(G,S), α(γ) = 1 or valF (α(γ)− 1) = d.

Definition 3.9 ([AS08, Definition 6.4]). For r ∈ R̃, a sequence γ = (γi)0≤i<r of
elements of G indexed by real numbers 0 ≤ i < r is called a good sequence if

• γi is 1 or a good of depth i for each 0 ≤ i < r, and
• there exists an F -rational tame torus S of G such that γi ∈ S for every
0 ≤ i < r.

To a good sequence γ = (γi)0≤i<r, we associate subgroups of G to γ as follows:

C
(r)
G (γ) :=

( ⋂
0≤i<r

ZG(γi)
)◦
, Z

(r)
G (γ) := Z

C
(r)
G (γ)

.

Definition 3.10 ([AS08, Definition 6.8]). For γ ∈ G, a good sequence γ =

(γi)0≤i<r (r ∈ R̃>0) is called an r-approximation to γ if there exists a point

x ∈ B(C(r)
G (γ), F ) satisfying γ ∈ (

∏
0≤i<r γi)Gx,r. When we have γ ∈ C

(r)
G (γ),

we say that γ is a normal r-approximation to γ.

When we have a normal r-approximation γ to γ, we put

γ<r :=
∏

0≤i<r

γi, γ≥r := γ · γ−1
<r
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and simply say that “γ = γ<r · γ≥r is a normal r-approximation.” Note that γ≥r
commutes with γ<r when γ = γ<r · γ≥r is a normal r-approximation.

Now we move on to the setting of twisted spaces. Let (G, θ) be as in Section

3.1. In particular, we have a twisted space G̃ = Gθ. From now on, we assume that

p is odd.

We put G† := G ⋊ 〈θ〉. Note that this is a disconnected reductive group whose

identity component is G and non-identity component is given by G̃. Recall that
AG̃ is the maximal split subtorus of ZθG. To extend the theory of Adler–Spice to

G†, we utilize Spice’s topological Jordan decomposition.

Definition 3.11 ([Spi08, Definition 1.6]). For γ ∈ G†, we say that a pair (γ0, γ+)
of elements of G† is a topological p-Jordan decomposition modulo AG̃ of γ if

• γ = γ0γ+ = γ+γ0,
• γ0 is absolutely p-semisimple modulo AG̃, i.e., the image γ̄0 of γ0 in G†/AG̃

is of finite prime-to-p order, and
• γ+ is topologically p-unipotent modulo AG̃, i.e., the image γ̄+ of γ+ in

G†/AG̃ satisfies limn→∞ γ̄p
n

+ = 1.

In this paper, we refer to a topological p-Jordan decomposition modulo AG̃

simply as a topological Jordan decomposition. Similarly, when an element γ is ab-
solutely p-semisimple modulo AG̃ (resp. topologically p-unipotent modulo AG̃), we
often simply say that γ is topologically semisimple (resp. topologically unipotent)
as long as there is no risk of confusion.

Remark 3.12. Note that, for a given element γ ∈ G†, its topological Jordan de-
composition is unique modulo AG̃ if it exists. More precisely, if both (γ0, γ+) and
(γ′0, γ

′
+) are topological Jordan decompositions of γ, then we have γ̄0 = γ̄′0 and

γ̄+ = γ̄′+ in G†/AG̃.

Proposition 3.13. Let S be a torus equipped with an involutive automorphism θS.
Then the order of π0(S

θS) = SθS/SθS,◦ is a power of 2.

Proof. Recall that the abelian category of groups of multiplicative types (i.e., al-
gebraic groups isomorphic to a product of Gm’s or µn’s for n ∈ Z>1) is equivalent
to the opposite of the abelian category of finitely generated Z-modules by taking
the character groups (e.g., see [Poo17, Theorem 5.5.10]). Thus, the short exact
sequence

1→ SθS,◦ → SθS → π0(S
θS)→ 1

induces a short exact sequence

1→ X∗(π0(S
θS))→ X∗(SθS)→ X∗(SθS,◦)→ 1.

Since π0(S
θS) is finite and abelian, we have |π0(SθS)| = |X∗(π0(S

θS))|. Thus it
suffices to show that |X∗(π0(S

θS))| is a power of 2.
Note that X∗(π0(S

θS)) is the torsion part of X∗(SθS). From the left exact
sequence

1→ SθS → S
1−θS−−−→ S,

where the map 1− θS is given by s 7→ s · θS(s)−1, we get a right exact sequence

X∗(S)
1−θ∗S−−−→ X∗(S)→ X∗(SθS)→ 0.
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Hence, by fixing an identification X∗(S) ∼= Z⊕n, it is enough to show that the
cokernel of the homomorphism 1− θ∗S : Z⊕n → Z⊕n has no `-torsion for any prime
number ` 6= 2. Equivalently, it suffices to show that Cok(1 − θ∗S) ⊗Z Zℓ has no
torsion for any ` 6= 2. Since tensoring Zℓ over Z preserves the right-exactness,
Cok(1− [η]∗)⊗Z Zℓ is isomorphic to the cokernel of 1− θ∗S : Z

⊕n
ℓ → Z⊕n

ℓ .

We put V := Z⊕n
ℓ , on which θ∗S acts. Since θ∗S is involutive, we have a decom-

position V = V + ⊕ V − such that θS acts on V + (resp. V −) via identity (resp.
negation). Indeed, the projection from V to V ± is given by v 7→ 1

2 (v ± θ∗S(v)).
(Note that here we use ` 6= 2.) From this, we immediately see that the cokernel of
1− θ∗S is free again by noting that ` 6= 2. □

We say that an elliptic semisimple element δ of G̃ is tame if there exists an F -
rational elliptic twisted maximal torus (S̃,S) such that S is tame and δ ∈ S̃. We
note that if G is tamely ramified and p does not divide the order of the absolute
Weyl group of G, any F -rational maximal torus of G is tame by [Fin21, Theorem

3.3]. In particular, any elliptic semisimple element δ of G̃ is tame.

Proposition 3.14. Let δ be a tame elliptic semisimple element of G̃. Then there
exists a pair (δ0, δ+) of elements of G† such that

(1) δ = δ0δ+ = δ+δ0,

(2) δ0 ∈ G̃ ⊂ G† is absolutely p-semisimple modulo AG̃,

(3) δ+ ∈ Gδ0,0+ ⊂ G† is topologically p-unipotent, and

(4) δ0 and δ+ belong to the closure 〈δ〉AG̃ of 〈δ〉AG̃ in G†.

In particular, (δ0, δ+) is a topological Jordan decomposition of δ.

Proof. Since δ is elliptic semisimple, there exists an F -rational elliptic twisted max-
imal torus S̃ of G̃ such that δ ∈ S̃ by definition (Definition 3.4). Since the asso-
ciated automorphism θS of S can be thought of as the conjugation by δ on S, the
element δ2 of S is fixed by θS. In other words, δ2 belongs to SθS . Thus, by putting
k := π0(S

θS), we see that δ2k ∈ S♮ (recall that S♮ := SθS,◦).

Since S̃ is elliptic, S♮ is anisotropic modulo AG̃, hence S♮ is compact modulo

AG̃. In particular, δ2k has a topological Jordan decomposition in S♮/AG̃ according

to [Spi08, Proposition 1.8]. More precisely, if we write δ̄′ for the image of δ2k in
S♮/AG̃, then we have two elements δ̄′0 and δ̄′+ of S♮/AG̃ such that

• δ̄′ = δ̄′0δ̄
′
+ = δ̄′+δ̄

′
0,

• δ̄′0 is of finite prime-to-p order,
• δ̄′+ is topologically p-unipotent.

We put S̄♮ := S♮/AG̃. We note that the image of δ̄′+ under the natural injection

S♮/AG̃ ↪→ S̄♮ = (S♮/AG̃)(F )

belongs to the pro-unipotent radical S̄♮0+ of the unique parahoric subgroup S̄♮0 of

S̄♮. Indeed, by [Spi08, Lemma 2.21], the topological p-unipotency of δ̄′+ implies the

topological F -unipotency of δ̄′+ in the sense of [Spi08, Definition 2.15], that is, δ̄′+
belongs to S̄♮(E)0+ for the splitting field E of S̄♮. Since the torus S̄♮ is tame, we

have S̄♮(E)0+ ∩ S̄♮ = S̄♮0+ (see [Yu01, Proposition 2.2]).
By applying [Kal19b, Lemma 3.1.4 (2)] to the short exact sequence

1→ AG̃ → S♮ → S̄♮ → 1,
19



we see that the map S♮0+ → S̄♮0+ is surjective. Thus we can take an element δ′+ ∈ S
♮
0+

mapping to δ̄′+ ∈ S̄
♮
0+.

Now note that 2k is a power of 2 by Proposition 3.13, in particular, 2k is prime

to p. Thus we can take δ+ ∈ S♮0+ satisfying δ2k+ = δ′+ as follows. Let a ∈ Z>0 be a
positive integer such that pa ≡ 1 (mod 2k). Then the topological p-unipotency of
δ′+ implies that the sequence ß

δ
′ p

an−1
2k

+

™
n=1,2,...

is Cauchy. If we let δ−1
+ ∈ S♮0+ be the limit of this sequence, then we have δ2k+ = δ′+.

We put δ0 := δ · δ−1
+ . Then obviously δ0 belongs to S̃ ⊂ G̃. Since δ+ belongs

to S♮, δ+ commutes with δ0. Moreover, by the construction, δ2k0 belongs to S♮ and
its image in S♮/AG̃ is of finite prime-to-p order. Hence, again by noting that 2k is
prime to p, we conclude that δ0 is absolutely p-semisimple modulo AG̃. Finally, in

order to check that δ0, δ+ ∈ 〈δ〉AG̃, it suffices to show only δ+ ∈ 〈δ〉AG̃. Since the

similar statement holds for δ̄′+, namely, δ̄′+ ∈ 〈δ̄′〉 ⊂ S♮/AG̃, we have δ′+ ∈ 〈δ2k〉AG̃.

By the construction of δ+, this implies that δ+ ∈ 〈δ〉AG̃. □

In the rest of this paper, for a tame elliptic semisimple element δ of G̃, we call a
decomposition as in Proposition 3.14 a topological Jordan decomposition of δ.

Definition 3.15. Let δ ∈ G̃ be a tame elliptic semisimple element. A normal

r-approximation to δ (r ∈ R̃>0) is a pair (δ = δ0δ+, δ+) of

• a topological decomposition δ = δ0δ+ of δ and
• a normal r-approximation δ+ = (δi)0<i<r to δ+ in Gδ0 .

For a normal r-approximation (δ = δ0δ+, δ+) to a tame elliptic semisimple ele-

ment δ ∈ G̃, we put

δ+<r :=
∏

0<i<r

δi, δ<r :=
∏

0≤i<r

δi, δ≥r := δ−1
<rδ,

C
(r)
G (δ) := C

(r)
Gδ0

(δ+).

When (δ = δ0δ+, δ+) is a normal r-approximation to δ, we often simply say that

“δ = δ0δ
+
<rδ≥r is a normal r-approximation to δ”.

Lemma 3.16. Let δ and (δ0, δ+) be as in Proposition 3.14. If δ is elliptic regular

semisimple in G̃, then so is δ+ in Gδ0 .

Proof. Let S̃ be an F -rational elliptic twisted maximal torus of G̃ containing δ.
Then, by Proposition 3.3 (3), S♮ is a maximal torus of Gδ. Since Gδ is a torus by
the regular semisimplicity of δ, this implies that Gδ = S♮. As we have (Gδ0)δ+ ⊂
Gδ = S♮, we see that (Gδ0)δ+ = S♮ and δ+ is regular semisimple in Gδ0 .

Let us check that S♮ is elliptic in Gδ0 . Again by Proposition 3.3 (3), S♮ is a

maximal torus of Gδ0 . Since S̃ is elliptic, S♮ is anisotropic modulo AG̃. As AG̃ is

contained in the center of Gδ0 , the maximal torus S♮ of Gδ0 is elliptic. □

Proposition 3.17. Suppose that G is tamely ramified and p does not divide the
order of the absolute Weyl group ΩG of G. Then any elliptic semisimple element
δ ∈ G̃ has a normal r-approximation.
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Proof. Since the existence of a topological Jordan decomposition of δ is guaranteed
by Proposition 3.14, we only have to show that δ+ has a normal r-approximation in
Gδ0 . By [AS08, Lemma 8.1], any bounded-modulo-ZGδ0

element of Gδ0 belonging
to an F -rational tame maximal torus of Gδ0 has a normal r-approximation as long

as the assumption “(GdGδ0 )” is satisfied (see [AS08, Definition 6.3]). Since δ+ is
bounded-modulo-ZGδ0

, it is enough to show that δ+ is contained in an F -rational

tame maximal torus of Gδ0 and that (GdGδ0 ) is satisfied.
As remarked above, the assumption on p implies that δ is tame, hence we can

find an F -rational elliptic twisted maximal torus (S̃,S) such that δ ∈ S̃. This
implies that S♮ is an F -rational tame maximal torus of Gδ0 . By construction, δ+
belongs to S♮. As p does not divide the order of the absolute Weyl group ΩGδ0

of

Gδ0 (note that this is a subgroup of ΩG; see [KS99, Section 1.1]), the assumption

(GdGδ0 ) is satisfied by [Fin21, Theorem 3.6]. □

Lemma 3.18. Let δ ∈ G̃ be a tame elliptic semisimple element having a normal
r-approximation δ = δ0δ

+
<rδ≥r. Then δ0 belongs to 〈δ<r〉AG̃.

Proof. We let δ̄0 denote the image of δ0 in G†/AG̃. Let p′ be the order of δ̄0,

which is prime to p. If we take k ∈ Z>0 such that pk ≡ 1 (mod p′), then we have

δ̄p
k

0 = δ̄0. Hence, for any n ∈ Z>0, we have δ̄p
nk

0 = δ̄p
(n−1)k

0 = · · · = δ̄0. Since δ
+
<r is

topologically p-unipotent and commutes with δ0, we have

(δ̄<r)
pnk

= (δ̄0)
pnk

· (δ̄+<r)p
nk

= δ̄0 · (δ̄+<r)p
nk

−−−−→
n→∞

δ̄0.

Thus δ̄0 belongs to 〈δ̄<r〉 ⊂ G†/AG̃. It can be easily checked that this implies that

δ0 belongs to 〈δ<r〉AG̃ ⊂ G̃. □

Lemma 3.19. Let δ ∈ G̃ be a tame elliptic semisimple element having a normal
r-approximation δ = δ0δ

+
<rδ≥r. Then we have

(Gδ0)δ+<r
= Gδ<r

Proof. The statement can be proved by a similar argument to the untwisted case
(cf. [AS08, Corollary 6.14]) as we explain in the following.

We may take an F -rational tame twisted maximal torus S̃ containing δ, δ0, and
δ<r. Indeed, as δ+ = δ+<rδ≥r is a normal r-approximation in Gδ0 , δ+ belongs
to (Gδ0)δ+<r

, hence we can find an F -rational tame maximal torus S′ of (Gδ0)δ+<r

containing δ+ (note that δ+ is semisimple). Then S′ contains δ+<r and δ+. By
Steinberg’s result (see [KS99, Theorem 1.1.A]), S := ZG(S′) gives an F -rational
tame maximal torus of G. Moreover, S is [δ0]-stable and there exists an [δ0]-stable

Borel subgroup containing S. Hence, by Lemma 3.6, S̃ := Sδ0 is an F -rational
tame twisted maximal torus of G̃. (Note that then S′ = S♮.) By construction, we

have δ, δ0, δ<r ∈ S̃.
Since δ<r = δ0δ

+
<r, the inclusion (Gδ0)δ+<r

⊂ Gδ<r is obvious. Let us show that

this inclusion is in fact the equality. As S♮ is a maximal torus both in (Gδ0)δ+<r

and Gδ<r , it suffices to check that Φ((Gδ0)δ+<r
,S♮) equals Φ(Gδ<r ,S

♮). By taking

gS ∈ G as in Section 3.3, we put

ν<rθ :=
gSδ<r ∈ Tθ, ν0θ :=

gSδ0 ∈ Tθ, ν+<r :=
gSδ+<r ∈ T♮.
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Then Φ((Gδ0)δ+<r
,S♮) and Φ(Gδ<r

,S♮) are identified with Φ((Gν0θ)ν+
<r
,T♮) and

Φ(Gν<rθ,T
♮), respectively. By the description explained in Section 3.3, we have

Φ(Gν0θ,T
♮) = {αres | α ∈ Φ(G,T);N(α)(ν0) = ςα},

hence

Φ((Gν0θ)ν+
<r
,T♮) = {αres | α ∈ Φ(G,T);N(α)(ν0) = ςα and αres(ν

+
<r) = 1}.

On the other hand, we have

Φ(Gν<rθ,T
♮) = {αres | α ∈ Φ(G,T);N(α)(ν<r) = ςα}.

Thus our task is to check that, for any α ∈ Φ(G,T) satisfying N(α)(ν<r) = ςα,
we have N(α)(ν0) = ςα and αres(ν

+
<r) = 1. Let α ∈ Φ(G,T) be such a root. By

the definition of lα, we have
∑1
i=0 θ

i(α) = 2
lα

∑lα−1
i=0 θi(α). Thus we get

N(α)(ν<r)
2
lα =

Ålα−1∑
i=0

θi(α)

ã
(ν<r)

2
lα

=

Å 1∑
i=0

θi(α)

ã
(ν<r) = α

Å 1∏
i=0

θi(ν<r)

ã
= α

(
(ν<rθ)

2
)
.

Hence, noting that (ν<rθ)
2 = (ν0θ)

2 · ν+,2<r , we have

ς
2
lα
α = α

(
(ν<rθ)

2
)
= α

(
(ν0θ)

2
)
· α(ν+<r)2.

Since δ0 is of finite prime-to-p order moduloAG̃ and δ+<r is topologically p-unipotent,

we see that α((ν0θ)
2) ∈ F×

is of finite prime-to-p order (note that AG̃ is killed by

any root) and α(ν+<r)
2 ∈ F

×
is topologically p-unipotent. Thus, by noting that

ςα ∈ {±1} and p 6= 2, we must have α(ν+<r)
2 = 1, which furthermore implies that

α(ν+<r) = 1. Then we get

ςα = N(α)(ν<r) = N(α)(ν0) ·N(α)(ν+<r) = N(α)(ν0).

□

4. Regular supercuspidal representations

4.1. Regular supercuspidal representations. In the following, we assume that

• G is tamely ramified over F , and
• p 6= 2 and p does not divide the order of the absolute Weyl group ΩG of G.

In [Yu01], Yu introduced the notion of a cuspidal G-datum and attached an irre-
ducible supercuspidal representation of G to each cuspidal G-datum. Recall that

a cuspidal G-datum is a quintuple Σ = (~G, ~ϑ, ~r,x, ρ0) consisting of the following
objects (here we follows the convention of [HM08, Section 3.1]):

• ~G is a sequence G0 ⊊ G1 ⊊ · · · ⊊ Gd = G of tame Levi subgroups such
that ZG0/ZG is anisotropic,
• x is a vertex of the reduced Bruhat–Tits building Bred(G0, F ) of G0,
• ~r is a sequence 0 ≤ r0 < · · · < rd−1 ≤ rd such that 0 < r0 when d > 0,

• ~ϑ is a sequence (ϑ0, . . . , ϑd) of characters ϑi of G
i satisfying

– for 0 ≤ i < d, ϑi is G
i+1-generic of depth ri at x, and
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– for i = d, ®
depthx(ϑd) = rd if rd−1 < rd,

ϑd = 1 if rd−1 = rd,

• ρ0 is an irreducible representation of G0
x whose restriction to G0

x,0 contains

the inflation of a cuspidal representation of the quotient G0
x,0:0+.

We call the representations obtained from cuspidal G-data by Yu’s construction
tame supercuspidal representations.

The “fibers” of Yu’s construction was investigated by Hakim–Murnaghan; in
[HM08], they introduced an equivalence relation called G-equivalence and proved
that two cuspidal G-data give rise to the same (isomorphic) supercuspidal repre-
sentations if and only if two data are G-equivalent. Thus Yu’s construction gives
the following bijective map:

{cusp. G-data}/G-eq.
1:1

Yu’s construction
// {tame s.c. rep’ns of G}/∼

In [Kal19b], Kaletha introduced the notion of (extra) regularity for cuspidal G-
data (see [Kal19b, Section 3]). Tame supercuspidal representations arising from
(extra) regular cuspidal G-data are called (extra) regular supercuspidal representa-
tions. Kaletha discovered that (extra) regular cuspidal G-data can be parametrized
by much simpler data called tame elliptic (extra) regular pairs. Let us recall the
definition of a tame elliptic (extra) regular pair:

Definition 4.1 ([Kal19b, Definition 3.7.5]). A tame elliptic regular (resp. extra
regular) pair is a pair (S, ϑ) consisting of

• a tame elliptic F -rational maximal torus S of G and
• a character ϑ : S → C×

satisfying the following conditions:

(1) By choosing a finite tamely ramified extension E of F splitting S, we put

Φ0+ := {α ∈ Φ(G,S) | (ϑ ◦NrE/F ◦α∨)|E×
0+
≡ 1}.

Then the action of IF on Φ0+ preserves a set of positive roots.
(2) We put G0 to be the tame Levi subgroup of G with maximal torus S and

root system Φ0+. Then ϑ|S0 has trivial stabilizer for the action ofNG0(S)/S
(resp. ΩG0(S)(F )).

Kaletha’s re-parametrizing result [Kal19b, Proposition 3.7.8] asserts that G-
equivalence classes of (extra) regular cuspidal G-data bijectively correspond to
G-conjugacy classes of tame elliptic (extra) regular pairs. We write π(S,ϑ) for the
(extra) regular supercuspidal representation which corresponds to a tame elliptic
(extra) regular pair (S, ϑ).

{cusp. G-data}/G-eq.
1:1 // {tame s.c. rep’ns of G}/∼

{(ex.) reg. cusp. G-data}/G-eq.

∪
1:1 // {(ex.) reg. s.c. rep’ns of G}/∼

∪

{tame ell. (ex.) reg. pairs}/G-conj.
��1:1
OO

(S,ϑ) 7→π(S,ϑ)

11dddddddddddddd
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4.2. Toral supercuspidal representations. We next give more detailed expla-
nation of Yu’s construction in the case of toral supercuspidal representations, which
will be mainly treated in this paper.

Definition 4.2. We say that a cuspidal G-datum Σ = (~G, ~ϑ, ~r,x, ρ0) is toral if it
satisfies the following:

• d = 1 and G0 is an F -rational tame elliptic maximal torus S of G (thus
~G = (S ⊂ G)),

• 0 < r0 = r1 (=: r),

• ~ϑ = (ϑ0, ϑ1), where
– ϑ0 is a G-generic character of S of depth r (put ϑ := ϑ0), and
– ϑ1 = 1,

• ρ0 is the trivial representation 1.

We call a tame supercuspidal representation associated to a toral cuspidal G-datum
toral supercuspidal representation.

Remark 4.3. We caution that, in some literature, the terminology “toral” only
means that G0 is a torus. For example, in [FS21], they distinguish these two
versions of torality by calling the one of Definition 4.2 the “0-torality”. We decided
to use “toral” rather than “0-toral” in this paper following [DS18] and [Kal19b].

Under the bijection of [Kal19b, Proposition 3.7.8] mentioned above, a tame
elliptic regular pair corresponding to a toral cuspidal G-datum ((S ⊂ G), (r =
r), (ϑ,1),x,1) is simply given by (S, ϑ). Let us call a tame elliptic regular pair
obtained in this way a tame elliptic toral pair. We note that the torality implies
the extra regularity.

In the following, we fix a tame elliptic toral pair (S, ϑ). Let x ∈ Bred(G, F ) be
the point associated to S and r ∈ R>0 be the depth of ϑ. We put s := r/2 and
define the subgroups K, J , and J+ of G by

K := SGx,s, J := (S,G)x,(r,s), J+ := (S,G)x,(r,s+),

where (S,G)x,(r,s) and (S,G)x,(r,s+) are the groups defined according to the manner
of Yu (see [Yu01, Sections 1 and 2]). Note that we have K = SJ .

Since the depth of ϑ is r, we can extend ϑ to a character ϑ̂ of J+ satisfying

ϑ̂|J+ ≡ 1. Then, by the definition of the G-genericity, there exists an element X∗

of s∗−r which is G-generic of depth r in the sense of [Yu01, Section 8] and satisfies

ϑ̂(exp(Y )) = ψF (〈Y,X∗〉)

for any Y ∈ gx,s+:r+ (or, equivalently, for any Y ∈ ss+:r+). Here, as explained in
[Yu01, Section 8], we may regard s∗ as a subspace of g∗ by considering the coadjoint
action of S on g∗. We recall that the definition of G-genericity consists of two
conditions GE1 and GE2. The condition GE1 requires that valF (〈Hα, X

∗〉) = −r
for any α ∈ Φ(G,S), where Hα := dα∨(1). We do not review the condition GE2
because GE1 implies GE2 by [Yu01, Lemma 8.1] when p is not a torsion prime
for the dual based root datum of G. (Recall that we have assumed the p ∤ |ΩG|,
which is equivalent to p ∤ |ΩĜ|. In fact, this implies that p is not a torsion prime
for the dual based root datum of G; see [Fin21, Lemma 3.2].)

The point of the construction is that, by putting N := Ker ϑ̂ ⊂ J+, the quotient
J/N has the structure of a finite Heisenberg group:
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• The center of J/N is given by J+/N , which is isomorphic to µp ∼= Fp via ϑ
(here we fix an isomorphism µp ∼= Fp).
• The quotient J/J+ has a symplectic space with respect to the pairing

(J/J+)× (J/J+)→ µp ∼= Fp : (g, g′) 7→ ϑ̂([g, g′])

(see [Yu01, Section 11]; we will review the structure of the symplectic space
J/J+ in more detail in Section 6.1).

Therefore, as an application of the Stone–von Neumann theorem, there exists a
unique irreducible representation of J/N whose central character on J+/N is given

by ϑ̂. Furthermore, as the conjugate action of S on J preserves J+ and N and
induces a symplectic action on J/J+, we can extend the (inflation of) the represen-
tation of J to the semi-direct group S ⋉ J , for which we write ω(S,ϑ) (so-called the
Heisenberg–Weil representation). Then the tensor representation ω(S,ϑ)⊗(ϑ⋉1) of
S⋉J descends to SJ = K (factors through the canonical map S⋉J ↠ K). We let
ρ(S,ϑ) be the descended representation ofK. The toral supercuspidal representation
π(S,ϑ) is given by

π(S,ϑ) := c-IndGK ρ(S,ϑ).

We also recall the definitions of a few more groups and representations which
will be needed later (for describing the Adler–DeBacker–Spice character formula in
Sections 5 and 6):

Kσ := SGx,0+, σ(S,ϑ) := IndKσ

K ρ(S,ϑ),

τ(S,ϑ) := IndGx

K ρ(S,ϑ) (∼= IndGx

Kσ
σ(S,ϑ)).

5. Twisted Adler–DeBacker–Spice formula: preliminary form

In this and the next sections, we discuss a twisted version of the character formula
of Adler–DeBacker–Spice for toral supercuspidal representations ([AS09, DS18]).
Our arguments heavily depend on the work [AS08, AS09, DS18]. We note that sev-
eral technical assumptions on p are required so that the theory of Adler–DeBacker–
Spice works, but it is enough to assume only the oddness and the non-badness of
p (for the root system of G in the sense of [SS70, I.4.1], see also [AS08, Section
A]) whenever G is tamely ramified by [Kal19b, Section 4.1]. Recall that we have
assumed that p is odd and does not divide the order of the absolute Weyl group
ΩG of G; in fact, this implies the non-badness of p ([Fin21, Lemma 3.2]).

5.1. Twisted character of a θ-stable representation. Let us first recall the
basics of twisted characters of irreducible admissible representations. See [LH17,
Section 2.6] for the details of the content of this subsection.

Let η ∈ G̃. Then [η] is an F -rational automorphism of G. Recall that, for an
irreducible admissible representation π of G realized on a C-vector space V , its
η-twist πη is defined by the action

πη(g) := π ◦ [η](g) = π(ηgη−1)

on the same representation space V . We say that π is η-stable if πη is isomorphic
to π as a representation of G.

25



Remark 5.1. Note that, if we write η = η◦θ with an element η◦ ∈ G, then we
have [η] = [η◦] ◦ θ. Hence, as [η◦] does not change the isomorphism class of any
representation, π is η-stable if and only if π is θ-stable. More explicitly, π(η◦) gives
an intertwiner between πθ and πη, i.e., πη(g) ◦π(η◦) = π(η◦) ◦πθ(g) for any g ∈ G.

Suppose that π is an η-stable irreducible admissible representation of G. We fix
an intertwiner

Iηπ : π
∼−→ πη

(note that such an Iηπ is unique up to C×-multiple, as π is irreducible) and put

π̃(gη) := π(g) ◦ Iηπ
for any gη ∈ G̃ with g ∈ G. Then we get a representation π̃ of G̃ on the representa-
tion space V of π, i.e., π̃ : G̃ → AutC(V ) is a map satisfying the following relation

for any g1, g2 ∈ G and δ ∈ G̃:

π̃(g1 · δ · g2) = π(g1) ◦ π̃(δ) ◦ π(g2).

For any f ∈ C∞
c (G̃), an operator π̃(f) on V is defined by

π̃(f) :=

∫
δ∈G̃

f(δ)π̃(δ) dδ,

where dδ is a measure on G̃ obtained by transferring a Haar measure on dg on G
by the bijection G→ G̃ : g 7→ gη. Then, as in the untwisted case, the operator π̃(f)
is of finite rank and hence we can define its trace. In this setting, the (η-)twisted

character Θπ̃ of π is defined to be the unique locally constant function on G̃rs such
that

tr π̃(f) =

∫
G̃rs

Θπ̃(δ)f(δ) dδ

for every f ∈ C∞
c (G̃) satisfying supp(f) ⊆ G̃rs, where G̃rs denotes the set of regular

semisimple elements of G̃.

Remark 5.2. (1) We emphasize that the twisted representation π̃ and the twisted
character Θπ̃ depend on the choice of an intertwiner Iηπ between π and πη

although this dependence is not reflected to the symbol π̃. For any c ∈ C×,
cIηπ := (c · idV )◦ Iηπ is again an intertwiner between π and πη. If we define a
twisted representation by using cIηπ (let us write cπ̃ for it), then its twisted
character is simply given by Θcπ̃ = c ·Θπ̃.

(2) As mentioned in Remark 5.1, for any η = η◦θ ∈ G̃, π is η-stable if and
only if it is θ-stable. When Iθπ is an intertwiner between π and πθ, then
Iηπ := π(η◦)◦Iθπ gives an intertwiner between π and πη. If we write π̃[Iηπ ] and

π̃[Iθπ] for the twisted representations of G̃ obtained from π by using these
two intertwiners Iηπ and Iθπ, then we can easily check that π̃[Iηπ ] = π̃[Iθπ]. In
particular, we have Θπ̃[Iηπ ] = Θπ̃[Iθπ ].

5.2. Twist and intertwiner. Let η ∈ G̃. Only in this subsection, for any sub-
group H of G, we let Hη denote its conjugate [η]−1(H) = η−1Hη. We caution
that this usage of notation is temporary; in other places of this paper, the upper η
denotes the stabilizer of η.

For any tame elliptic toral pair (S, ϑ) of G, its η-twist

(S, ϑ)η := ([η]−1(S), ϑ ◦ [η])
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is again a tame elliptic toral pair ofG. Thus we have the toral regular supercuspidal
representation π(S,ϑ)η associated (S, ϑ)η. On the other hand, we also have the η-
twist πη(S,ϑ) of the toral regular supercuspidal representation π(S,ϑ) associated to

(S, ϑ). In fact, these representations are isomorphic. Let us investigate how we can
construct an intertwiner π(S,ϑ)η ∼= πη(S,ϑ).

Recall from Section 4.1 that π(S,ϑ) is defined to be the compact induction

c-IndGK ρ(S,ϑ) of a representation ρ(S,ϑ) of an open compact-mod-center subgroup
K = SJ of G. Hence the η-twisted representation πη(S,ϑ) is isomorphic to the

compact induction of ρη(S,ϑ) from Kη to G by the following explicit intertwiner:

(1) c-IndGKη ρ
η
(S,ϑ)

∼−→ (c-IndGK ρ(S,ϑ))
η = πη(S,ϑ) : f 7→ f ◦ [η]−1.

On the other hand, we can easily see that the open compact-mod-center subgroup
associated to η-twisted pair (S, ϑ)η is given by Kη = SηJη. Thus π(S,ϑ)η is given

by the compact induction c-IndGKη ρ(S,ϑ)η of a representation ρ(S,ϑ)η of Kη.
Let us consider the relationship between the representations ρη(S,ϑ) and ρ(S,ϑ)η of

Kη. The representation ρ(S,ϑ) of K is defined to be the push-out of the represen-
tation ω(S,ϑ) ⊗ (ϑ⋉ 1) of S ⋉ J along the natural multiplication map S ⋉ J ↠ SJ .
Hence ρη(S,ϑ) is the push-out of ωη(S,ϑ) ⊗ (ϑη ⋉ 1) along Sη ⋉ Jη ↠ SηJη. On

the other hand, ρ(S,ϑ)η is defined to be the push-out of ω(S,ϑ)η ⊗ (ϑη ⋉ 1) along
Sη⋉Jη ↠ SηJη. We note that both of ωη(S,ϑ) and ω(S,ϑ)η are Heisenberg–Weil rep-

resentations with central character ϑ̂η. Hence, by the Stone–von Neumann theorem,
ωη(S,ϑ) and ω(S,ϑ)η are isomorphic. Let us fix an intertwiner

Iηω(S,ϑ)
: ω(S,ϑ)η

∼−→ ωη(S,ϑ),

which naturally induces an intertwiner

Iηρ(S,ϑ)
: ρ(S,ϑ)η

∼−→ ρη(S,ϑ).

Then we get an intertwiner between IndGKη ρ(S,ϑ)η and IndGKη ρ
η
(S,ϑ) given by

(2) IndGKη ρ(S,ϑ)η
∼−→ IndGKη ρ

η
(S,ϑ) : f 7→ Iηρ(S,ϑ)

◦ f.

Therefore, combining (1) with (2), we obtain an intertwiner Iηπ(S,ϑ)
between

π(S,ϑ)η and πη(S,ϑ) given by f 7→ Iηρ(S,ϑ)
◦ f ◦ [η]−1:

π(S,ϑ)η = c-IndGKη ρ(S,ϑ)η
(2)−−→ c-IndGKη ρ

η
(S,ϑ)

(1)−−→ (c-IndGK ρ(S,ϑ))
η = πη(S,ϑ).

From now on (until the end of Section 6), suppose that we have the following:

• an F -rational tame elliptic twisted maximal torus (S̃,S) of (G̃,G), and
• a tame elliptic toral pair (S, ϑ) of depth r ∈ R>0 which is η-invariant, i.e.,

(S, ϑ) = (S, ϑ)η, for η ∈ S̃. (Note that (S, ϑ) is η-invariant for some η ∈ S̃
if and only if so is for any η ∈ S̃.)

Let us fix a base point η ∈ S̃ which is topologically semisimple in the following.

Note that we can always find such an element since S̃ is nonempty by the definition
of a twisted maximal torus (Definition 3.2); apply Proposition 3.14 to any element

of S̃ and take the topologically semisimple part.
Then, by using the intertwiner I

η
π(S,ϑ)

we just constructed, we obtain a represen-

tation π̃(S,ϑ) of G̃ and its twisted character Θπ̃(S,ϑ)
(see Section 5.1).
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We note that, since [η] preserves S, the point x ∈ Bred(G, F ) associated to S is
stabilized by the action on Bred(G, F ) induced from [η]. Accordingly, every group
used in the construction of ρ(S,ϑ) (such as Gx,s, K, J , J+, and so on) is stabilized by

[η]. Then we also have a twisted representation ρ̃(S,ϑ) of K̃ := Kη and its twisted

character Θρ̃(S,ϑ)
, which is a function on K̃ defined by

Θρ̃(S,ϑ)
(kη) := tr

(
ρ(S,ϑ)(k) ◦ I

η
ρ(S,ϑ)

)
.

Also note that I
η
ρ(S,ϑ)

naturally induces an intertwiner between σ(S,ϑ) and its η-twist

σ
η

(S,ϑ) (recall that σ(S,ϑ) is a representation of Kσ defined by IndKσ

K ρ(S,ϑ)). Thus we

get a twisted representation σ̃(S,ϑ) of K̃σ := Kση and its twisted character Θσ̃(S,ϑ)
,

which is a function on K̃σ defined by

Θσ̃(S,ϑ)
(kη) := tr

(
σ(S,ϑ)(k) ◦ I

η
σ(S,ϑ)

)
.

We emphasize that the construction of the intertwiner I
η
π(S,ϑ)

explained above in-

volves the unspecified choice of an intertwiner I
η
ω(S,ϑ)

: ω(S,ϑ)η
∼= ω

η

(S,ϑ) of Heisenberg–

Weil representations. In Section 6.2, we will choose I
η
ω(S,ϑ)

in an explicit way.
We finally recall that, by the torality of ϑ, there exists a G-generic element

X∗ ∈ s∗−r of depth r which lifts a unique element of s∗−r:−r+ satisfying ϑ(exp(Y )) =
ψF (〈Y,X∗〉) for any Y ∈ ss+:r+. We note that

ϑ ◦ [η](exp(Y )) = ϑ(exp([η](Y ))) = ψF (〈[η](Y ), X∗〉) = ψF (〈Y, [η](X∗)〉),
where we again write [η] for the action on s induced by [η] and used that exp: ss+:r+

∼=
Ss+:r+ is [η]-equivariant (the action of [η] on X∗ is, by definition, given by the iden-
tity 〈[η](Y ), X∗〉 = 〈Y, [η](X∗)〉). Thus, as we have ϑ ◦ [η] = ϑ by the assumption,
we see that [η](X∗) equals X∗ in s∗−r:−r+.

Lemma 5.3. We may take X∗ ∈ s∗−r to be [η]-invariant.

Proof. Since p 6= 2, we have 1
2 (X

∗ + [η](X∗)) ∈ s∗−r. Note that this element is
[η]-invariant. Moreover, as the image of X∗ in s∗−r:−r+ is [η]-invariant, the image

of 1
2 (X

∗ + [η](X∗)) in s∗−r:−r+ is equal to the image of X∗. Thus, by replacing X∗

with 1
2 (X

∗ + [η](X∗)), we get a desired element. □

In the following, by this lemma, we assume that an element X∗ ∈ s∗−r represent-
ing the character ϑ|Sr

is invariant under [η]|S = θS.
We finish this subsection by showing one more lemma.

Lemma 5.4. For any η ∈ S̃, the restriction (S♮, ϑ♮ := ϑ|S♮) gives a tame elliptic
toral pair of Gη (of depth r).

Proof. Note that, as we have S♮ ⊂ S, we have s♮ ⊂ s, hence s∗ ↠ s♮∗. We can

take an element of s♮∗−r representing the character ϑ♮ to be the image of X∗ taken

above via the natural map s∗ ↠ s♮∗. Our task is to show that X∗ is an Gη-
generic element of depth r. We note that our assumption that p ∤ |ΩG| implies that
p ∤ |ΩGη

| (recall that ΩGη
is regarded as a subgroup of ΩG). Thus it is enough to

only check that GE1 is satisfied, which requires that valF (〈Hαres
, X∗〉) = −r for

any αres ∈ Φ(Gη,S
♮), where Hαres

= dα∨
res(1) (see Section 4.2).

By the description of Φ(Gη,S
♮) and Φ∨(Gη,S

♮) as in Section 3.3, we have

Hαres
= %α·

∑lα−1
i=0 HθiS(α)

. AsX∗ is θS-invariant, we have 〈HθiS(α)
, X∗〉 = 〈Hα, θ

i
S(X

∗)〉 =
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〈Hα, X
∗〉. Hence 〈Hαres

, X∗〉 = %α · lα · 〈Hα, X
∗〉. Since X∗ is G-generic of depth

r and p ∤ %α · lα, we get valF (〈Hαres , X
∗〉) = −r. □

5.3. Separation lemma. In this subsection, we prove some technical lemma and
propositions which will be needed later.

The following follows from [KP23, Theorem 12.7.1] by using the tamely ramified
descent for the Bruhat–Tits buildings ([KP23, Section 12.9]).

Proposition 5.5. Let δ0 ∈ S̃ be absolutely p-semisimple modulo AG̃. There exist
an identification between the building B(Gδ0 , F ) and the fixed points of B(G, F )
under the action induced by [δ0] such that A(S♮, F ) is mapped to A(S, F )δ0 :

B(Gδ0 , F )
∼= // B(G, F )δ0 ⊂ B(G, F )

A(S♮, F )
∼= //

∪
A(S, F )δ0 ⊂

∪
A(S, F )

∪

Proposition 5.6. Let δ0 ∈ S̃ be absolutely p-semisimple modulo AG̃. Suppose

that the point x associated to S belongs to A(S♮, F ) under the identification as in

Proposition 5.5. Then we have the following for any r, s ∈ R̃>0 satisfying r < s:

(1) S♮r = (Sr)
δ0 (= (Sr)

θS) and S♮0+:r = (S0+:r)
δ0 ,

(2) Gδ0,x,r = (Gx,r)
δ0 and (S♮, Gδ0)x,(r,s(+)) = (S,G)δ0x,(r,s(+)),

(3) S♮0+Gδ0,x,r = (S0+Gx,r)
δ0 ,

(4) (S♮, Gδ0)x,(r,s):(r,s+) = (S,G)δ0x,(r,s):(r,s+).

Proof. Let us first show (1). Recall that δ0 acts on S via θS and we put S♮ := SθS,◦.
The r-th filtration of S is defined by

Sr := {t ∈ S0 | valF (χ(t)− 1) ≥ r for any χ ∈ X∗(S)},
where S0 denotes the Iwahori subgroup of S (here note that S is tamely ramified;
see [KP23, Definitions 2.5.13 and B.5.1]). Similarly, the r-th filtration of S♮ is
defined by

S♮r := {t ∈ S♮,0 | valF (χ(t)− 1) ≥ r for any χ ∈ X∗(S♮)}.
Thus, noting that S♮,0 is contained in S0, we have S♮r ⊂ (Sr)

θS . To show the
converse inclusion, we take any element t ∈ (Sr)

θS . By Proposition 3.13, there
exists a power of 2 (say k ∈ Z>0) satisfying t

k ∈ S♮r. Then, as discussed in the proof
of Proposition 3.14, we can remove k and get t ∈ S♮r since p 6= 2 and t is topologically
p-unipotent. We consider the latter part of (1). By the former part which we just

showed, we have S♮0+:r = (S0+)
δ0/(Sr)

δ0 . Note that we have (S0+)
δ0/(Sr)

δ0 ↪→
(S0+:r)

δ0 . Let s̄ be an element of (S0+:r)
δ0 represented by s ∈ S0+. Then sθS(s)

is an element of (S0+)
δ0 . Again by noting that sθS(s) is topologically p-unipotent

and p 6= 2, we can find an element t ∈ (S0+)
δ0 satisfying t2 = sθS(s). Then we have

t̄2 = s̄2, hence t̄ = s̄ since the order of (S0+:r)
δ0 is prime to 2. Hence we obtained

the surjectivity of the map (S0+)
δ0/(Sr)

δ0 ↪→ (S0+:r)
δ0 .

The assertion (2) follows from [KP23, Proposition 12.8.5] (together with the
tamely ramified descent of Bruhat–Tits theory). Note that the assumption of
[KP23, Proposition 12.8.5] is satisfied by (1).

Let us show (3). The inclusion S♮0+Gδ0,x,r ⊂ (S0+Gx,r)
δ0 is obvious. To check

the converse inclusion, let us take an element g of (S0+Gx,r)
δ0 . Since we have
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S0+ ∩Gx,r = Sr (see [AS08, Proposition 4.6]), we have a bijection

S0+:r = S0+/Sr
1:1−−→ S0+Gx,r/Gx,r.

This implies that the coset gGx,r is represented by an element s of S0+. As g is
[δ0]-invariant and the above bijection is [δ0]-equivariant, the coset sSr is also [δ0]-

invariant. Since we have (S0+:r)
δ0 = S♮0+:r by (1), we know that s can be taken to

be an element of S♮0+. Now let us write g = sg′ with s ∈ S♮0+ and g′ ∈ Gx,r. Since
g and s are δ0-invariant, so is g′. By (2), this implies that g′ ∈ Gδ0,x,r.

The assertion (4) follows from the same argument as in the proof of assertion
(1) by using (2). □

Lemma 5.7. Let δ be an elliptic regular semisimple element of G̃ with a topological
Jordan decomposition δ = δ0δ+. If δ belongs to S̃Gx,r, then δ0 belongs to Gx,r S̃ :=

{gs | g ∈ Gx,r, s ∈ S̃}.

Proof. For any element g ∈ G†, we write ḡ for its image in G†/AG̃. Similarly, we

write Gx,r and S for the images of Gx,r and S in G†/AG̃, respectively.

Since δ0 belongs to the closure of 〈δ〉 in G†/AG̃ (see Proposition 3.14), the

assumption δ ∈ S̃Gx,r implies that δ0 ∈ S̃Gx,r/AG̃. Let us take elements s0 ∈ S̃
and g+ ∈ Gx,r satisfying δ0 = g+s0. If we let p′ be the order of δ0, which is prime
to p, then we have

1 = δ0
p′

=

p′−1∏
i=0

[s0]
i(g+) · s0p

′
.

Since
∏p′−1
i=0 [s0]

i(g+) ∈ Gx,r, this implies that sp
′

0 lies in AG̃(S ∩ Gx,r) = AG̃Sr

(see [AS08, Proposition 4.6] for the equality). Furthermore, by noting that sp
′

0 is

fixed by [s0] and [s0] acts on S as θS and on AG̃ trivially, we have sp
′

0 ∈ AG̃(Sr)
θS .

Thus, by Proposition 5.6 (1), we get sp
′

0 ∈ AG̃S
♮
r. As p′ is prime to p, we can find

an element sr ∈ S♮r such that sp
′

0 ∈ AG̃ · sp
′

r (see the proof of Proposition 3.14, the

same argument as in the construction of δ+ works). Then, by replacing s0 ∈ S̃ with

s0s
−1
r ∈ S̃ and g+ ∈ Gx,r with g+sr, respectively, we may assume that

p′−1∏
i=0

[s0]
i(g+) = 1 and s0

p′ = 1.

In other words, we have an action of a finite cyclic group Z/p′Z on Gx,r given

by ī · g = [s0]
i(g) and a 1-cocycle Z/p′Z→ Gx,r given by 1̄ 7→ g+. Since p

′ is prime

to p and Gx,r is a pro-p group, the first group cohomology H1(Z/p′Z, Gx,r) is
trivial. (This follows from a standard argument by using that the action of Z/p′Z
is filtration-preserving; see the proof of [KP23, Theorem 13.8.5] for the details).
Hence the cohomology class of the 1-cocycle [1̄ 7→ g+] is trivial. Namely, there
exists an element k ∈ Gx,r such that kg+[s0](k)

−1 ∈ AG̃. This means that

kδ0 = kg+s0k
−1 = kg+[s0](k)

−1 · s0 ∈ AG̃ · S̃ = S̃.

□
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Proposition 5.8. Suppose that the point x associated to S belongs to A(S♮, F )
under the identification as in Proposition 5.5. Let δ be an elliptic regular semisim-
ple element of G̃ with a normal r-approximation δ = δ0δ

+
<rδ≥r. If δ belongs to

Gx,0+(S̃Gx,r), then there exists k ∈ Gx,0+ such that

δ0 ∈ S̃′, δ+<r ∈ S′♮, δ≥r ∈ Gδ<r,x,r,

where (S̃′,S′) := k(S̃,S). Here, the point x ∈ B(Gδ0 , F ) is regarded as a point of
B(Gδ<r

, F ) by an embedding B(Gδ<r
, F ) ↪→ B(Gδ0 , F ).

Proof. By replacing δ with its Gx,0+-conjugate, we may assume that δ itself belongs

to S̃Gx,r. By Lemma 5.7, we have δ0 ∈ kS̃ for some element k ∈ Gx,r. We put

(S̃′,S′) := k(S̃,S). Let us show that δ+<r ∈ S′♮ and δ≥r ∈ Gδ0,x,r.
Note that we have S̃′Gx,r = kS̃Gx,r = S̃Gx,r. Indeed, for any s ∈ S̃, we have

ks = s · s−1ks · k−1. As the s-conjugation on G preserves Gx,r, s
−1ks lies in

Gx,r, which implies that ks ∈ S̃Gx,r. Thus we get kS̃Gx,r ⊂ S̃Gx,r. By the same

argument for k−1, we also get S̃Gx,r ⊂ kS̃Gx,r, hence
kS̃Gx,r = S̃Gx,r.

Since we have δ0 ∈ S̃′ and δ = δ0δ+ ∈ S̃Gx,r = S̃′Gx,r, we know that δ+ ∈
S′Gx,r. On the other hand, by the construction of a topological Jordan decomposi-
tion 3.14, δ+ belongs to Gδ0,0+ ⊂ G0+. Since we have S

′Gx,r∩G0+ = S′
0+Gx,r (see

[AS08, Proposition 4.6]), we have δ+ ∈ S′
0+Gx,r. Furthermore, as δ+ commutes

with δ0, we get δ+ ∈ S′♮
0+Gδ0,x,r by Proposition 5.6 (3).

Now the situation is reduced to the untwisted setting. By applying [AS08,

Corollary 9.16] to δ+ ∈ S′♮
0+Gδ0,x,r, we get δ+<r ∈ Gδ0,x,0+S′♮. Thus, by taking

k′ ∈ Gδ0,x,0+ such that δ+<r ∈ k′S′♮ and replacing k with k′k, we have δ+<r ∈ S′♮.
On the other hand, [AS08, Lemma 9.13] implies that the point x belongs to the

set “Br(δ+)” (which is considered in the group Gδ0 ; see [AS08, Definition 9.5] for
the definition). By the description of the set Br(δ+) in [AS08, Lemma 9.6], we have

Br(δ+) = {y ∈ B(C(r)
Gδ0

(δ+), F ) | δ≥r ∈ Gδ0,y,r}.

Hence x belongs to the building of C
(r)
Gδ0

(δ+) = (Gδ0)δ+<r
(see [AS08, Corollary

6.14]), which furthermore equals Gδ<r
by Lemma 3.19, and we have δ≥r ∈ Gδ0,x,r.

By the definition of a normal approximation, δ≥r belongs to (Gδ0)δ+<r
= Gδ<r

. Thus

δ≥r lies in Gδ0,x,r ∩Gδ<r , which equals Gδ<r,x,r by [AS08, Proposition 4.6]. □

5.4. Twisted character formula of 1st form. Our aim in this and subsequent
sections is to establish a formula of the twisted character of Θπ̃(S,ϑ)

as in the un-

twisted case by Adler–DeBacker–Spice ([AS09, DS18]).
Since the pair (S, ϑ) is always fixed in the following, we simply write ω, ρ, σ, τ ,

π for the representations ω(S,ϑ), ρ(S,ϑ), σ(S,ϑ), τ(S,ϑ), and π(S,ϑ) (see Section 4.2),
respectively. Similarly, we simply write ρ̃, σ̃, and π̃ for the twisted representations
as introduced in Section 5.2. We use the identification of Bruhat–Tits buildings
and apartments as in Proposition 5.5 in the following. We may suppose that the
point x associated to S comes from A(S♮, F ).

In the following, we fix an elliptic regular semisimple element δ ∈ G̃ and a normal
r-approximation δ = δ0δ

+
<rδ≥r to δ, which exists by Proposition 3.17. We simply

write η := δ<r.
We start by showing the following lemma, which is a twisted version of [AS09,

Lemma 6.1]:
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Lemma 5.9. The set S\{g ∈ G | gη ∈ S̃}/Gη is finite.

Proof. First we note that ZG(S♮) = S (Proposition 3.3 (1)). Thus, if an element
n ∈ G belongs to NG(S♮), i.e., satisfies nS♮n−1 ⊂ S♮, then we get nSn−1 ⊃ S by
taking the centralizer groups in G. Hence n−1 ∈ NG(S), which implies n ∈ NG(S).
Thus we get NG(S♮) ⊂ NG(S). Since S is contained in NG(S♮) and of finite
index in NG(S), S is of finite index in NG(S♮). Thus it is enough to show that

NG(S♮)\{g ∈ G | gη ∈ S̃}/Gη is finite.

For any element g ∈ G satisfying gη ∈ S̃, by Proposition 3.3 (2), we have

gGη = Ggη = ZG(gη)◦ ⊃ ZG(S̃)◦ = S♮.

In other words, we have g−1

S♮ ⊂ Gη. Since S♮ is an F -rational maximal torus of

Gη (see Proposition 3.3 (3)), so is g
−1

S♮. Therefore we get an injection

NG(S
♮)\{g ∈ G | gη ∈ S̃} ↪→ {F -rational maximal tori of Gη} : g 7→ g−1

S♮.

By taking the quotients with respect to the action of Gη, we furthermore get

NG(S
♮)\{g ∈ G | gη ∈ S̃}/Gη ↪→ {F -rational maximal tori of Gη}/∼Gη

,

where the symbol ∼Gη denotes the equivalence class given by Gη-conjugation. As

the right-hand side is finite, NG(S
♮)\{g ∈ G | gη ∈ S̃}/Gη is also finite. □

Recall that σ̃ is a representation of K̃σ = S̃Gx,0+ and that Θσ̃ is its twisted

character with respect to the intertwiner as chosen in Section 5.2. Let Θ̇σ̃ be the
zero extension of Θσ̃ from K̃σ = S̃Gx,0+ to G̃.

The following lemma is a twisted version of [AS09, Proposition 4.3]. In fact, the
same proof as in [AS09, Proposition 4.3] works as we present in the following.

Lemma 5.10. For any g ∈ G, if Θ̇σ̃(gδ) 6= 0, then we have gδ ∈ Gx,0+(S̃Gx,r).

Proof. We put δ′ := gδ. We obtain a normal r-approximation δ′ = δ′0δ
′+
<rδ

′
≥r to δ

′ by

taking the g-conjugation of δ = δ0δ
+
<rδ≥r. Suppose that Θ̇σ̃(

gδ) 6= 0, in particular,

δ′ belongs to K̃σ = S̃Gx,0+. Then, by Proposition 5.8 (take r in Proposition 5.8 to

be 0+), we know that δ′0 ∈ Gx,0+ S̃ and δ′+ ∈ Gδ′0,x,0+.
Let t ∈ R>0 be the largest number such that δ′+ ∈ Gδ′0,x,t ∖ Gδ′0,x,t+. Then it

suffices to show that t ≥ r. Let us suppose that t < r for a contradiction.
We take k ∈ Gx,0+ satisfying δ′0 ∈ kS̃ and put (S̃′,S′) := (kS̃, kS). By [AS09,

Lemma 9.13] (we take (G′,G) to be (S′♮,Gδ′0
)), we know that x ∈ Bt(δ′+). In other

words, x belongs to the building of C
(t)
Gδ′0

(δ′+) = (Gδ′0
)δ′+<t

= Gδ′<t
and we have δ′≥t ∈

Gδ′<t,x,t
(cf. the proof of Proposition 5.8). For any h ∈ C(t)

Gδ′0
(δ′+)x,r−t = Gδ′<t,x,r−t,

we have [δ′−1, h] = [δ′−1
≥t , h] ∈ Gδ′0,x,r. Thus, by noting that σ is ϑ̂-isotypic on Gx,r

([AS08, Lemma 2.5]) and that Θσ̃ is invariant under Kσ-conjugation, we get

Θσ̃(δ
′) = Θσ̃(

hδ′) = Θσ̃(δ
′ · [δ′−1, h]) = Θσ̃(δ

′) · ϑ̂([δ′−1
≥t , h])

for any h ∈ Gδ′<r,x,r−t. Since ϑ̂([δ′−1
≥t ,−]) is nontrivial on Gδ′<r,x,r−t as proved in

the final paragraph of the proof of [AS09, Proposition 4.3], we conclude that Θσ̃(δ
′)

equals zero. This is a contradiction. □

We next establish a twisted version of [AS08, Lemma 6.3].
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Lemma 5.11. Let Kη be an open compact subgroup of Gη. Then the function

G/ZG → C : g 7→
∫
Kη

Θ̇σ̃
(
gkδ

)
dk

is compactly supported.

Proof. We let F : G→ C be the function given by

F(g) :=
∫
Kη

Θ̇σ̃
(
gkδ

)
dk.

Our task is to show that F is compactly supported modulo ZG.
We first note that the support of F is contained the following set:{

g ∈ G | gη ∈ Gx,0+ S̃
}
.

Indeed, if gkδ belongs to the support of Θ̇σ̃, then
gkδ have to lie in Gx,0+(S̃Gx,r) by

Lemma 5.10. On the other hand, as Kη is a subset of Gη, every k ∈ Kη commutes
with η = δ<r. Hence we have gkδ = gη · gkδ≥r. Thus, by Proposition 5.8, gη

necessarily belongs to Gx,0+ S̃.
We consider the following double quotient:

Kσ\
{
g ∈ G | gη ∈ Gx,0+ S̃

}
/Gη.

Since Kσ = SGx,0+, we have a natural surjection

S\
{
g ∈ G | gη ∈ S̃

}
/Gη ↠ Kσ\

{
g ∈ G | gη ∈ Gx,0+ S̃

}
/Gη.

As the former set is finite by Lemma 5.9, so is the latter set. Therefore, in order
to show that F is compactly supported modulo ZG, it is enough to show that
F is compactly supported modulo ZG on each double coset KσgGη. From now

on, we fix an element g ∈ G satisfying gη ∈ Gx,0+ S̃. By replacing g with some
other representative in the double coset KσgGη if necessary, we may suppose that

g satisfies gη ∈ S̃.
We define a function Fg : Gη → C by

Fg(h) :=
∫
Kη

Θ̇σ̃
(
ghkδ

)
dk.

Note that the function Θ̇σ̃ is invariant under Kσ-conjugation. Thus the function
F is left-Kσ-invariant, and the restriction of F to the double coset KσgGη is given
by F|KσgGη

(lgh) = Fg(h). As Kσ is compact modulo ZG, it is enough to show
that Fg is compactly supported modulo Gη ∩ ZG. Since AG̃ is defined to be the

maximal split subtorus of ZθG, we have AG̃ ⊂ Gη ∩ ZG ⊂ ZθG. Hence it suffices to
show that Fg is compactly supported modulo AG̃.

We compute Θ̇σ̃(
ghkδ) in the integrand of Fg. Since g is chosen to satisfy gη ∈ S̃,

by also noting that h, k ∈ Gη, we have ghkη = gη ∈ S̃. On the other hand, if

Θ̇σ̃(
ghkδ) is not zero, then we have ghkδ≥r ∈ Ggη,x,r by Lemma 5.10 and Proposition

5.8. Therefore, by noting that the restriction of σ on Gx,r is ϑ̂-isotypic ([AS09,
Lemma 2.5]), we get

Θ̇σ̃(
ghkδ) = Θ̇σ̃(

gη)1Ggη,x,r
(ghkδ≥r)ϑ̂(

ghkδ≥r).
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Since the term Θ̇σ̃(
gη) does not depend on h or k, it suffices to show that the

function

F̃g : Gη → C; h 7→
∫
Kη

1Ggη,x,r
(ghkδ≥r)ϑ̂(

ghkδ≥r) dk

is compactly supported modulo AG̃.
In the following, we put η′ := gη. Now recall that our toral cuspidal G-datum

is given by ((S ⊂ G),x, (r, r), (ϑ,1),1). We consider a toral cuspidal Gη′ -datum
((S♮ ⊂ Gη′),x, (r, r), (ϑ

♮,1),1), where we put ϑ♮ := ϑ|S♮ . (Note that the torality is
guaranteed by Lemma 5.4.) We express various objects appearing in Yu’s construc-
tion for this cuspidal Gη′ -datum by adding a subscript η′ to the notation used in
Section 4.1. Then, again by using Lemma 5.10, Proposition 5.8, and [AS09, Lemma
2.5], we have

Θ̇ση′ (
ghkδ≥r) = 1Gη′,x,r

(ghkδ≥r)ϑ̂η′(
ghkδ≥r).

Namely, we get

F̃g(h) =
∫
Kη

Θ̇ση′ (
ghkδ≥r) dk.

Since the representation c-Ind
Gη′

Kσ
η′
ση′ is supercuspidal by Yu’s theory, this func-

tion is compactly supported modulo ZGη′ , by Harish-Chandra’s well-known result

([HC70, Lemma 23]). Therefore, now our assertion is reduced to the compactness
of the quotient ZGη′/AG̃.

Since we have Gη′ ⊃ S♮, we have ZGη′ ⊂ S♮. As S̃ is an F -rational elliptic

twisted maximal torus of G̃, S♮ is anisotropic modulo AG̃ (see Definition 3.4),
hence Sη′ is compact modulo AG̃. Thus ZGη′ is compact modulo AG̃. □

Before we state the “first form” of a twisted version of Adler–DeBacker–Spice
character formula, we introduce some notation. Recall that, for any connected
reductive group J and a regular semisimple element X∗

J ∈ j∗, the Fourier transform
of the orbital integral µ̂J

X∗
J
is defined as follows (see [Kal19b, Section 4.2] for the

details). We consider a distribution OX∗
J
(−) on j∗ given by

OX∗
J
(f) :=

∫
J/ZJ(X∗)◦

f∗(hX∗
Jh

−1) dh

for f∗ ∈ C∞
c (j∗), where we fix a Haar measure dh on J . For any element f ∈ C∞

c (j),

we let f̂ denote its Fourier transform with respect to the fixed additive character

ψF , that is, f̂ is an element of C∞
c (j∗) given by

f̂(Y ∗) :=

∫
j

f(Y ) · ψF (〈Y, Y ∗〉) dY,

where dY is a Haar measure on j. Then the distribution f 7→ OX∗
J
(f̂) on j is

represented by a function µ̂J
X∗

J
on j, i.e., we have

OX∗
J
(f̂) =

∫
j

µ̂J
X∗

J
(Y ) · f(Y ) dY

for any f ∈ C∞
c (j). We emphasize that the function µ̂J

X∗
J
does not depend on the

choice of dY , but depends on the choice of dh.
Recall that, as discussed in the proof of Lemma 5.11, we have a tame elliptic

toral pair (S♮, ϑ♮) of Gη′ (here, η′ := gη for an element g ∈ G satisfying gη ∈ S̃)
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represented by X∗ ∈ s♮∗−r, which is the image of the fixed element X∗ ∈ (s∗−r)
θS

representing the character ϑ|Sr
(see Section 5.2). Since X∗ ∈ s♮∗−r, which is re-

garded as an element of g∗η′ , is Gη′ -generic of depth r, hence regular semisimple in

Gη′ . Hence we have ZGη′ (X
∗)◦ = S♮. By noting that Gη′/S

♮ is the quotient of

Gη′/(Gη′ ∩ ZG) by S♮/(Gη′ ∩ ZG), we choose a measure on Gη′/S
♮ which is the

quotient of the following two measures:

• the Haar measure dh on Gη′/(Gη′ ∩ ZG) satisfying dh
(
(Gη′ ∩Kσ)/(Gη′ ∩

ZG)
)
= 1;

• the Haar measure on S♮/(Gη′ ∩ ZG) whose total volume is 1 (note that
Gη′∩ZG is co-compact in S♮, which follows from that S♮ is compact modulo
ZGη′ ; cf. the final step of the proof of Lemma 5.11).

The following is a twisted version of [AS09, Theorem 6.4]:

Theorem 5.12. We have

Θπ̃(δ) =
∑

g∈S\G/Gη
gη∈S̃

Θσ̃(
gη) · µ̂Ggη

X∗

(
log(gδ≥r)

)
.(6)

Here, note that the condition gη ∈ S̃ implies that S♮ ⊂ Ggη, hence the function

µ̂
Ggη

X∗ (−) makes sense as explained above. In the definition of µ̂
Ggη

X∗ , we use the
Haar measure on Ggη/S

♮ explained above.

Proof. The starting point of the proof is the twisted version of Harish-Chandra’s
integration formula (see [LH17, Partie I, Théorème 6.2.1 (2)]):

Θπ̃(δ) =
deg π

dimσ

∫
G/ZG

∫
K
Θ̇σ̃(

ġkδ) dk dġ,

where K is an open compact subgroup of G, dk is the Haar measure on K satisfying
dk(K) = 1, and dġ is a Haar measure on G/ZG and deg π denotes the formal degree
of π with respect to the measure dġ.

We take an open compact subgroup Kη of Gη to be Kη = K ∩Gη. We let dc be
the Haar measure of Kη satisfying dc(Kη) = 1. Then we can replace the integral
over K in Harish-Chandra’s integration formula with an integral over Kη by the
following standard argument. First, since Kη ⊂ K and dc(Kη) = 1, we have∫

G/ZG

∫
K
Θ̇σ̃(

ġkδ) dk dġ =

∫
G/ZG

∫
Kη

∫
K
Θ̇σ̃(

ġkcδ) dk dc dġ.

By applying Fubini’s theorem to the inner double integral (note that both of Kη
and K are compact), we get∫

G/ZG

∫
Kη

∫
K
Θ̇σ̃(

ġkcδ) dk dc dġ =

∫
G/ZG

∫
K

∫
Kη

Θ̇σ̃(
ġkcδ) dc dk dġ.

Then, since the inner integral over Kη is compactly supported as a function on
ġ ∈ G/ZG (Lemma 5.11), we can apply Fubini’s theorem to the outer double
integral:∫

G/ZG

∫
K

∫
Kη

Θ̇σ̃(
ġkcδ) dc dk dġ =

∫
K

∫
G/ZG

∫
Kη

Θ̇σ̃(
ġkcδ) dc dġ dk.
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Finally, by using that dġ is right G-invariant and that dk(K) = 1, we get∫
K

∫
G/ZG

∫
Kη

Θ̇σ̃(
ġkcδ) dc dġ dk =

∫
G/ZG

∫
Kη

Θ̇σ̃(
ġcδ) dc dġ.

Now we consider the following partition of G/ZG into double cosets:∫
G/ZG

∫
Kη

Θ̇σ̃(
ġcδ) dc dġ =

∑
g∈Kσ\G/Gη

∫
KσgGη/ZG

∫
Kη

Θ̇σ̃(
ġcδ) dc dġ.

Note that, by Proposition 5.8 and Lemma 5.10, if the contribution of the summand
with respect to g ∈ Kσ\G/Gη is nonzero, then there exists an element g′ in the

double coset satisfying g′η ∈ Gx,0+ S̃. By Lemma 5.13, which will be proved later,
the natural surjective map

S\
{
g ∈ G | gη ∈ S̃

}
/Gη ↠ Kσ\

{
g ∈ G | gη ∈ Gx,0+ S̃

}
/Gη

is in fact bijective. Hence we see that the above sum of double integrals equals∑
g∈S\G/Gη

gη∈S̃

∫
KσgGη/ZG

∫
Kη

Θ̇σ̃(
ġcδ) dc dġ.(7)

Let us compute each summand by fixing g ∈ S\G/Gη satisfying gη ∈ S̃. We put

y := ġg−1 and c′ := gc = gcg−1.

Then, letting dy and dc′ be the Haar measures on Kσ
gGη/ZG and gKη naturally

induced from dġ and dc, respectively, we get∫
KσgGη/ZG

∫
Kη

Θ̇σ̃(
ġcδ) dc dġ =

∫
Kσ

gGη/ZG

∫
gKη

Θ̇σ̃(
yc′gδ) dc′ dy.

By putting δ′ := gδ, η′ := gη, and δ′≥r :=
gδ≥r, we get∫

Kσ
gGη/ZG

∫
gKη

Θ̇σ̃(
yc′gδ) dc′ dy =

∫
KσGη′/ZG

∫
Kη′

Θ̇σ̃(
yc′δ′) dc′ dy.

We let dh be the Haar measure on Gη′/(Gη′ ∩ ZG) ∼= Gη′ZG/ZG normalized
so that dh

(
(Gη′ ∩ Kσ)/(Gη′ ∩ ZG)

)
= 1. Let dẏ be the quotient measure on

KσGη′/Gη′ZG of dy by dh. Then we have∫
KσGη′/ZG

∫
Kη′

Θ̇σ̃(
yc′δ′) dc′ dy

=

∫
KσGη′/Gη′ZG

∫
Gη′/Gη′∩ZG

∫
Kη′

Θ̇σ̃(
ẏhc′δ′) dc′ dh dẏ.

Since Θ̇σ̃ is left-Kσ-invariant, this triple integral equals

dẏ(KσGη′/Gη′ZG)

∫
Gη′/Gη′∩ZG

∫
Kη′

Θ̇σ̃(
hc′δ′) dc′ dh.(8)

Let us compute the volume dẏ(KσGη′/Gη′ZG). SinceKσGη′/Gη′ZG
∼= Kσ/(Gη′∩

Kσ)ZG is equal to the quotient ofKσ/ZG by (Gη′∩Kσ)ZG/ZG
∼= (Gη′∩Kσ)/(Gη′∩

ZG), the volume dẏ(KσGη′/Gη′ZG) is given by

dy(Kσ/ZG) · dh
(
(Gη′ ∩Kσ)/(Gη′ ∩ ZG)

)−1
.
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By our choice of dh, we have dh((Gη′ ∩Kσ)/(Gη′ ∩ ZG)) = 1. On the other hand,
we have

dy(Kσ/ZG) = dġ(Kσg/ZG) = dġ(Kσ/ZG) =
dimσ

deg π
.

(The final equality is a well-known formula for the formal degree of a compactly
induced supercuspidal representation; see, for example, [LH17, Partie I, Théorème
6.2.1 (1)]. Recall that π is the compact induction of σ from Kσ to G.) Hence we
obtain dẏ(KσGη′/Gη′ZG) = dimσ/ deg π.

Let us next compute the double integral in (8). Recall that in the proof of
Lemma 5.11 we showed that

Θ̇σ̃(
hc′δ′) = Θσ̃(η

′)1Gη′,x,r
(hc

′
δ′≥r)ϑ̂(

hc′δ′≥r).

Note that δ′+ is regular semisimple in Gδ′0
by Lemma 3.16. As δ′+ = δ′+<rδ

′
≥r is

a normal r-approximation in Gδ′0
, the regular semisimplicity of δ′+ in Gδ′0

implies
that of δ′≥r in (Gδ′0

)δ′+<r
= Gη′ (Lemma 3.19 and [AS08, Corollary 6.14]). Thus

log(δ′≥r) ∈ gη′,x,r is also regular semisimple. By the orbital integral formula of

Adler–Spice [AS09, Lemma B.4], we get∫
Gη′/Gη′∩ZG

∫
Kη′

1Gη′,x,r
(hc

′
δ′≥r)ϑ̂(

hc′δ′≥r) dc
′ dh = µ̂

Gη′

X∗

(
log(δ′≥r)

)
.

□

Lemma 5.13. The natural surjective map

S\
{
g ∈ G | gη ∈ S̃

}
/Gη ↠ Kσ\

{
g ∈ G | gη ∈ Gx,0+ S̃

}
/Gη

is bijective.

Proof. Suppose that two double cosets SgGη and Sg′Gη map to the same double
coset KσgGη. Then, as Kσ = SGx,0+ and S normalizes Gx,0+, we may assume
that g′ is given by kg with some k ∈ Gx,0+. We write η′ := gη. As we have
SgGη = SGη′g and SkgGη = SkGη′g, it suffices to show that SGη′ = SkGη′ (for

η′ ∈ S̃ and k ∈ Gx,0+ satisfying kη′ ∈ S̃).
Let η′ = η′0η

′
+ and kη′ = kη′0

kη′+ be the topological Jordan decompositions
induced from η = η0η+. Let p

′ be the order of η0 modulo AG̃, which is prime-to-p.

By Lemma 3.18, the conditions η′, kη′ ∈ S̃ implies that η′0,
kη′0 ∈ S̃. Thus there

exists an element s+ ∈ S such that kη′0 = s+η
′
0. By noting that

s+ = kη′0 · η′0
−1

= k · (η′0kη′0
−1

)−1 ∈ Gx,0+,

s+ belongs to S ∩Gx,0+ = S0+. Since the order of η′0 and kη′0 modulo AG̃ is given
by p′, we get

1 = kη′0
p′

=

p′−1∏
i=0

[η′0]
i(s+) · η′0

p′
=

p′−1∏
i=0

[η′0]
i(s+)

in S/AG̃. Thus, by the same argument as in the proof of Lemma 5.7 (i.e., using

the vanishing of H1(Z/p′Z, S0+)), we can find an element t+ ∈ S0+ satisfying
t+s+[η

′
0](t+)

−1 ∈ AG̃, hence t+s+[η
′
0](t+)

−1 ∈ AG̃,0+. Then we have

t+kη′0 = t+(s+η
′
0) = t+s+[η

′
0](t+)

−1 · η′0.
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Hence, by replacing k with t+k, we may assume that kη′0 = aη′0 for some a ∈ AG̃,0+.

In other words, the image k of k in Gx,0+/AG̃,0+ is fixed by [η′0]. We note that the
short exact sequence

1→ AG̃,0+ → Gx,0+ → Gx,0+/AG̃,0+ → 1

induces an exact sequence

1→ A
η′0
G̃,0+

→ G
η′0
x,0+ → (Gx,0+/AG̃,0+)

η′0 → H1(〈[η′0]〉, AG̃,0+)

and that H1(〈[η′0]〉, AG̃,0+) vanishes since 〈[η′0]〉 is of order 2 and AG̃,0+ is a pro-p

group. Thus we can find an element k′ ∈ Gη
′
0

x,0+ whose image k′ in Gx,0+/AG̃,0+

equals k. As we have G
η′0
x,0+ = Gη′0,x,0+ by Proposition 5.6 (2), this implies that k

belongs to Gη′0,x,0+AG̃,0+ = Gη′0,x,0+.

Now we utilize [AS08, Lemma 9.10], which asserts that if

• (G′,G) is a tame reductive F -sequence,
• γ ∈ G is an element having a normal r-approximation,

• x ∈ B(C(r)
G (γ), F ) ∩ B(G′, F ),

• k ∈ Gx,0+, and

• Z(r)
G (γ) ⊂ G′ and kZ

(r)
G (γ) ⊂ G′,

the element k belongs to G′
x,0+C

(r)
G (γ)x,0+. If we take

• (G,G′) := (Gη′0
,S♮),

• γ := η′+ (then C
(r)
Gη′

0

(γ) = (Gη′0
)η′+ = Gη′ by Lemma 3.19),

• x to be the point x belonging to A(S♮, F ), and
• k ∈ Gη′0,x,0+,

then the assumptions of [AS08, Lemma 9.10] are satisfied. Indeed, we have Z
(r)
G (γ) =

Z
C

(r)
G (γ)

= ZGη′ . As we have η′ ∈ S̃, we have Gη′ ⊃ S♮, hence Z
(r)
G (γ) ⊂ S♮. Sim-

ilarly, we have kZ
(r)
G (γ) ⊂ S♮. Thus we conclude that k belongs to S♮0+Gη′,x,0+ =

Gη′,x,0+. In particular, we get SGη′ = SkGη′ . □
Now, by Theorem 5.12, our task is to describe each summand of the right-hand

side of (6). We next show the following proposition, which is a twisted version of
[AS09, Proposition 5.3.2]:

Proposition 5.14. For any element η′ ∈ S̃ with a topological Jordan decomposition
η′ = η′0η

′
+, we have

Θσ̃(η
′) =

∑
g∈S♮

0+Gη′
0,x,s\[[η′+;x,r]]

(s)
G

η′
0

Θρ̃(
gη′),

where [[η′+;x, r]]
(s)
Gη′

0

is the subgroup as in [AS08, Definition 6.6] (taken in Gη′0).

Proof. Recall that the representation σ of SGx,0+ is defined by inducing the rep-
resentation ρ of SGx,s. Thus, by the Frobenius character formula for induced
representations, we have

Θσ̃(η
′) =

∑
g∈SGx,s\SGx,0+

gη′∈S̃Gx,s

Θρ̃(
gη′) =

∑
g∈S0+Gx,s\Gx,0+

gη′∈S̃Gx,s

Θρ̃(
gη′).
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Let us show that the index set on the most-right-hand side can be replaced with

the set {g ∈ S♮0+Gη′0,x,s\Gη′0,x,0+ |
gη′+ ∈ S♮0+Gη′0,x,s}. Suppose that a coset in

S0+Gx,s\Gx,0+ contains an element g satisfying gη′ ∈ S̃Gx,s. Then, since gη′ =
gη′0

gη′+ gives a topological Jordan decomposition of gη′, Proposition 3.14 (4) implies

that gη′0 ∈ S̃Gx,s. On the other hand, as η′ belongs to S̃, we have η′0 ∈ S̃ (this
also follows from Proposition 3.14 (4)). Thus there exists an element g+ ∈ SGx,s

satisfying gη′0 = g+η
′
0. As we have

g+ = gη′0η
′−1
0 = g · η′0g−1η′−1

0 ∈ Gx,0+,

g+ belongs to SGx,s ∩ Gx,0+ = S0+Gx,s. Then, by the same argument as in the
proofs of Lemma 5.7 or Lemma 5.13 using the vanishing of H1(Z/p′Z, S0+Gx,s),
we can find an element k ∈ S0+Gx,s such that kgη′0 = η′0. Therefore, by replacing

g with kg, we may assume that g belongs to Gx,0+ ∩Gη
′
0 = Gη′0,x,0+ (Proposition

5.6 (2)). In other words, we may assume that our coset in S0+Gx,s\Gx,0+ comes

from a coset in S♮0+Gη′0,x,s\Gη′0,x,0+ (note that S0+Gx,s ∩Gη′0,x,0+ = S♮0+Gη′0,x,s by
Proposition 5.6 (3)). Furthermore, as gη′+ belongs to S0+Gx,s and commutes with
gη′0 = η′0, we get gη′+ ∈ S0+Gx,s ∩Gη

′
0 = S♮0+Gη′0,x,s.

Now the same argument as in the proof of [AS09, Proposition 5.3.2] can be
applied to the descended group Gη′0 . (One of the most important inputs in the

proof of [AS09, Proposition 5.3.2] is the ϑ̂-isotypicity of the representation. In the

current situation, ρ is ϑ̂-isotypic on Gx,r, hence also on Gη′0,x,r.) Then we get

Θσ̃(η
′) =

∑
g∈S♮

0+Gη′
0,x,s\Gη′

0,x,0+

gη′+∈S♮
0+Gη′

0,x,s

Θρ̃(
gη′) =

∑
g∈S♮

0+Gη′
0,x,s\[[η′+;x,r]]

(s)
G

η′
0

Θρ̃(
gη′).

(We caution that our notation are different from those of Adler–Spice. Especially,
the representation ρ̃ in [DS18, Proposition 5.3.2] is nothing but our ρ(S,ϑ). In our
notation, the symbol ∼ basically denotes the twist of a representation.) □

Corollary 5.15. Let η ∈ S̃ be an element with a topological Jordan decomposition
η′ = η′0η

′
+. Then we have

Θσ̃(η
′) = Θρ̃(η

′) · |G̃Gη′
0
(ϑ, η′+)| ·GGη′

0
(ϑ, η′+),

where G̃Gη′
0
(ϑ, η′+) and GGη′

0
(ϑ, η′+) are the quantities defined in [AS09, Definition

5.2.4] (in the group Gη′0
).

Proof. By Proposition 5.14, Θσ̃(η
′) is given by the sum of Θρ̃(

gη′) over the set

g ∈ S♮0+Gη′0,x,s\[[η
′
+;x, r]]

(s)
Gη′

0

. For any element g ∈ [[η′+;x, r]]
(s)
Gη′

0

, we have

gη′ = gη′g−1 = η′ · η′−1gη′g−1 = η′ · [η′−1, g] = η′ · [η′−1
+ , g].

As g belongs to [[η+;x, r]]
(s)
Gη0

, we know that [η−1
+ , g] belongs to J+. (Note that this

is fact is necessary also in [AS09, Definition 5.2.4] and essentially proved in [AS09,
Section 5]; one can verify this property by using [AS08, Lemmas 5.30 and 5.32]).

By ϑ̂-isotypicity of ρ on J+, we have∑
g∈S♮

0+Gη′
0,x,s\[[η′+;x,r]]

(s)
G

η′
0

Θρ̃(
gη′) = Θρ̃(η

′)
∑

g∈S♮
0+Gη′

0,x,s\[[η′+;x,r]]
(s)
G

η′
0

ϑ̂([η′−1
+ , g]).
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The sum on the right-hand side is nothing but G̃Gη′
0
(ϑ, η′+) by definition. Since we

have G̃Gη′
0
(ϑ, η′+) = |G̃Gη′

0
(ϑ, η′+)| ·GGη′

0
(ϑ, η′+), we get the assertion. □

In summary, by combining Theorem 5.12 with Corollary 5.15, we obtain the
following:

Theorem 5.16. We have

Θπ̃(δ) =
∑

g∈S\G/Gη
gη∈S̃

Θρ̃(
gη) · |G̃Ggη0

(ϑ, gη+)| ·GGgη0
(ϑ, gη+) · µ̂

Ggη

X∗

(
log(gδ≥r)

)
.(9)

6. Twisted Adler–DeBacker–Spice formula

Let us keep the notation as in the previous section. Our aim in this section is to
compute Θρ̃(

gη) in each summand of (9). Recall that the representation ρ = ρ(S,ϑ)
is defined by descending ω(S,ϑ)⊗ (ϑ⋉1) from S⋉J to K = SJ . Hence, noting that
gη ∈ S̃, the computation of Θρ̃(

gη) is reduced to the computation of the twisted
character of the Weil representation ω(S,ϑ). For this, we repeat the computations
in the proofs of [AS09, Proposition 3.8] and [DS18, Proposition 4.21] by taking the
effect of the “twist” into consideration.

In the following (the rest of this paper), we assume that

no restricted root of type 2 or 3 appears in Φres(G,T).

Remark 6.1. We believe that this assumption is harmless for our purpose, namely,
study of the θ-stable toral supercuspidal representations. As explained in Remark
3.7, restricted roots of type 2 or 3 appear only when G contains a factor of type
A2n on which θ acts nontrivially. However, it is known that GL2n+1 does not
have θ-stable irreducible supercuspidal representation for such a θ whenever p 6= 2
(see, e.g., [Pra99, Proposition 4]). Hence, since we are assuming that p 6= 2, this
assumption does not cause any additional constraint.

6.1. Structure of the Heisenberg quotient. We first recall the description of
the group J/J+ according to Adler–Spice ([AS09, Proof of Proposition 3.8]). By
fixing a finite tamely ramified extension E of F splitting S, we put

V := Lie(S,G)(E)x,(r,s):(r,s+) and V := VΓ.

Recall that we have

J/J+ ∼= (S,G)x,(r,s):(r,s+) = (S,G)(E)Γx,(r,s):(r,s+).

Thus the exponential map Lie(S,G)(E)x,(r,s):(r,s+)
∼−→ (S,G)(E)x,(r,s):(r,s+) in-

duces an identification

V
∼−→ J/J+.

Let us investigate the space V by using the root space decomposition of g with
respect to the maximal torus S in G. For α ∈ Φ(G,S), we put Vα to be the
image of gα(E) ∩ Lie(S,G)(E)x,(r,s) in Lie(S,G)(E)x,(r,s):(r,s+). Then the root
space decomposition g ∼= s⊕

⊕
α∈Φ(G,S) gα naturally induces a decomposition

V =
⊕

α∈Φ(G,S)

Vα.
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For each α ∈ Φ(G,S), we put Vα := VΓα
α (recall that Γα is the stabilizer of α in Γ).

Here, note that Vα and Vα might be zero depending on α ∈ Φ(G,S). We define a
subset Ξ(G,S) of Φ(G,S) by

Ξ(G,S) := {α ∈ Φ(G,S) | Vα 6= 0}.

Note that, for any α ∈ Ξ(G,S), the space Vα is (noncanonically) isomorphic to
the residue field kα of Fα. Also note that Ξ(G,S) is preserved by the action of
Σ = Γ× {±1} on Φ(G,S). In the following, we simply write Ξ for Ξ(G,S).

For Γα ∈ Φ̇(G,S), we put

VΓα :=
⊕
β∈Γα

Vβ and VΓα := VΓ
Γα.

Then, for any Γα ∈ Φ̇(G,S), we have

Vα
∼−→ VΓα =

( ⊕
β∈Γα

Vβ

)Γ

: Xα 7→
∑

σ∈Γ/Γα

σ(Xα).

Therefore we get

V ∼=
⊕
Γα∈Ξ̇

VΓα =
⊕
Σα∈Ξ̈

VΣα,(10)

where we put VΣα := VΓα ⊕ V−Γα for α ∈ Ξasym and VΣα := VΓα for α ∈ Ξsym.
Recall that V ∼= J/J+ has a structure of a symplectic Fp-vector space given by

(J/J+)× (J/J+)→ µp ∼= Fp : (g, g′) 7→ ϑ̂([g, g′])

(see Section 4.2). In fact, the above decomposition (10) gives a orthogonal decom-
position of V into symplectic subspaces. Each symplectic subspace VΣα is described
as follows.

Asymmetric case: Suppose that α ∈ Ξasym. We put V±α := Vα ⊕ V−α.
Under the identification V ∼= J/J+, the symplectic form on J/J+ is trans-
formed into the symplectic form on V given by

V × V → Fp : (X1, X2) 7→ c · Trk/Fp
(〈X∗, [X1, X2]〉),

where c ∈ F×
p is a constant determined by the fixed identification µp ∼= Fp.

Here, 〈X∗, [X1, X2]〉 ∈ k denotes the pairing of X∗ ∈ s∗r:r+ with the s-
part of [X1, X2] ∈ gx,r:r+ (i.e., the trivial isotypic component with respect
to the S-action). Recall that the identification Vα ∼= VΓα ⊂ V is given
by Xα 7→

∑
σ∈Γ/Γα

σ(Xα). By noting that, for any α1, α2 ∈ Ξ, we have

〈X∗, [Xα1
, Xα2

]〉 6= 0 only if α2 = −α1, the resulting symplectic form V±α×
V±α → Fp maps (Xα +X−α, Yα + Y−α) to

c ·
∑

σ∈Γ/Γα

∑
σ′∈Γ/Γα

Trk/Fp
(〈X∗, [σ(Xα +X−α), σ

′(Yα + Y−α)]〉)

= c ·
∑

σ∈Γ/Γα

Trk/Fp
(〈X∗, σ([Xα, Y−α] + [X−α, Yα])〉).

SinceX∗ is F -rational, this equals c·eα·Trkα/Fp
(〈X∗, [Xα, Y−α]+[X−α, Yα]〉).

We recall that Vα ∼= kα. Hence, by fixing nonzero elements Xα ∈ Vα and
X−α ∈ V−α so that Xα ∈ Vα and X−α ∈ V−α are identified with 1 ∈ kα, we
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may think of the above symplectic form as the symplectic form on kα ⊕ kα
which maps (x+ + x−, y+ + y−) to

Trkα/Fp
(C · (x+y− − x−y+)),

where we put C := c · eα · 〈X∗, [Xα, X−α]〉 ∈ k×α .
Symmetric case: Suppose that α ∈ Ξsym. Let τα ∈ Γ/Γα be the unique ele-

ment satisfying τα(α) = −α. By the same discussion as in the asymmetric
case, we see that the symplectic form on Vα induced from that on J/J+ is
given by

(Xα, Yα) 7→ c ·
∑

σ∈Γ/Γα

∑
σ′∈Γ/Γα

Trk/Fp
(〈X∗, [σ(Xα), σ

′(Yα)]〉)

= c ·
∑

σ∈Γ/Γα

Trk/Fp
(〈X∗, σ([Xα, τα(Yα)])〉)

= c · eα · Trkα/Fp
(〈X∗, [Xα, τα(Yα)]〉).

By recalling that Vα ∼= kα and fixing a nonzero element Xα ∈ Vα, we may
think of the above symplectic form as the symplectic form on kα which
maps (x, y) to

Trkα/Fp
(C · xτα(y)),

where we put C := c · eα · [Xα, τα(Xα)] ∈ k×α . Note that τα(C) = −C.
Let us introduce one particular property of the set Ξ deduced from the above

description of the symplectic form:

Lemma 6.2. The set Ξ does not contain any symmetric ramified root.

Proof. This fact is explained in the proof of [DS18, Proposition 4.21]. For the sake
of completeness, we explain it here. Let α ∈ Ξsym. Then, as explained above, we
have Vα ∼= kα and the symplectic form on Vα × Vα is given by

kα × kα → Fp : (x, y) 7→ Trkα/Fp
(C · xτα(y))

with an element C ∈ k×α satisfying τα(C) = −C. If α is ramified, then τα acts
trivially on kα, hence there cannot exist such an element C. Thus α must be
unramified. □

6.2. Intertwiner of Heisenberg–Weil representations. Recall that we fixed a
topologically semisimple element η ∈ S̃ (Section 5.2). Hence any element η′ ∈ S̃ is
written as η′ = s · η with a unique element s ∈ S. Note that the action of [η] on
g induces an action on the set Φ(G,S) of order 2, which does not depend on the

choice of η ∈ S̃. By abuse of notation, let us write θS for this action and ΘS for
the group 〈θS〉 generated by θS. To be more precise, for any α ∈ Φ(G,S), θS(α)
is the root given by θS(α) = α ◦ [η]−1. Whenever there is no risk of confusion,
we abbreviate θS(α) even as θ(α). We note that, for Xα ∈ gα, [η](Xα) belongs to
gθ(α). We also note that, as η is F -rational, the actions of ΘS and Σ = Γ × {±1}
on Φ(G,S) commute. Especially, the symmetry of Φ(G,S) is preserved by ΘS.

Let us investigate the action [η] on J/J+ through the isomorphism V ∼= J/J+
and the above decomposition (10) of V . Note that [η] preserves the symplectic
structure of V . Indeed, for any g, g′ ∈ J/J+, we have

ϑ̂([[η](g), [η](g′)]) = ϑ̂([ηgη−1, ηg′η−1]) = ϑ̂([η]([g, g′])) = ϑ̂([g, g′]).
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Moreover, each VΣα is mapped onto VΣθ(α), respectively. In particular, the action
of ΘS on Φ(G,S) preserves Ξ.

As in Section 3.3, for any α ∈ Φ(G,S), we let lα be the cardinality of the
ΘS-orbit of α. We furthermore introduce a number denoted by mα as follows:

Definition 6.3. For α ∈ Φ(G,S), let mα be the order of Σ\(Σ × ΘS)α. In other
words, mα is the smallest positive integer such that Σθmα(α) = Σα (hencemα | lα).

For Σα ∈ Ξ̈, let us write (ωΣα,WΣα) for a Heisenberg–Weil representation
of Sp(VΣα) ⋉ H(VΣα) with central character given by ϑ, which is unique up to
isomorphism (see Section A.1). Since the action [η] on V induces an symplec-
tic isomorphism from VΣα to VΣθ(α), an isomorphism from Sp(VΣα) ⋉ H(VΣα) to
Sp(VΣθ(α)) ⋉ H(VΣθ(α)) is induced (for which we write [η]∗). Then the pull back

(ω
η

Σθ(α),WΣθ(α)) of the Heisenberg–Weil representation WΣθ(α) of Sp(VΣθ(α)) ⋉
H(VΣθ(α)) to Sp(VΣα) ⋉ H(VΣα) via [η]∗ is isomorphic to (ωΣα,WΣα). For each

Σα ∈ Ξ̈, we fix an intertwiner

I
η

Σα : ωΣα
∼−→ ω

η

Σθ(α).

Recall that the representation ω = ω(S,ϑ) is a Heisenberg–Weil representation
of Sp(V )⋉H(V ) with central character ϑ. Since we have the decomposition (10),

ω can be realized by tensoring Heisenberg–Weil representations ωΣα for Σα ∈ Ξ̈
(see Section A.1). Furthermore, by tensoring the fixed intertwiners I

η

Σα, we get an

intertwiner between ω and its [η]∗-twist ω
η. Let us write I

η
ω for the intertwiner

obtained in this way:

I
η
ω = I

η
ω(S,ϑ)

: ω(S,ϑ)
∼−→ ω

η

(S,ϑ).

Then we have the following:

Proposition 6.4. For each Σα ∈ Ξ̈, we put

I
η

ΣΘ(α)
:= I

η

Σθmα−1(α) ◦ · · · ◦ I
η

Σα.

Then, for any η′ = sη ∈ S̃, we have

tr
(
ω([s]) ◦ Iηω

)
=

∏
α∈ΘS\Ξ̈

tr
(
ωΣα([η

′]mα ◦ [η]−mα) ◦ IηΣΘ(α)

)
.

Proof. Let us fix a set {α0, . . . , αr} of representatives of ΘS\Ξ̈. Then we can utilize
the results of Section A.1, by taking ι := [η], li := mαi − 1 for each 0 ≤ i ≤ r and

putting V ij := VΣθj(αi). Since the symplectic automorphism [s] preserves each V ij ,

Proposition A.2 implies that the trace of ω([s]) ◦ Iηω is given by∏
α∈ΘS\Ξ̈

tr
(
ωΣα

(
[s] ◦ [η]∗([s]) ◦ · · · ◦ [η]mα−1

∗ ([s])
)
◦ IηΣΘ(α)

)
.

By noting that [η]i∗([s]) = [η]i ◦ [s] ◦ [η]−i, we have

[s] ◦ [η]∗([s]) ◦ · · · ◦ [η]mα−1
∗ ([s]) = ([s] ◦ [η])mα ◦ [η]−mα = [sη]mα ◦ [η]−mα .

Thus we get the desired result. □
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We still have not specified the choice of each I
η

Σα so far. This means that also

I
η
ω still has an ambiguity of a scalar multiple. Now we explain our choice of I

η

Σα.

For any Σα ∈ Ξ̇, note that I
η

ΣΘ(α) is an automorphism of WΣα such that

WΣα

I
η

ΣΘ(α)
//

ωΣα(g,h)

��

WΣα

ωΣα([η]mα
∗ (g,h))

��

WΣα
I
η

ΣΘ(α)

// WΣα

is commutative for any (g, h) ∈ Sp(VΣα)⋉H(VΣα). Note that [η]mα is a symplectic

automorphism of V preserving VΣα. Hence I
η

ΣΘ(α) must be a scalar multiple of the

Heisenberg–Weil action ωΣα([η]
mα). We choose I

η

Σα for Σα ∈ Ξ̇sym so that we have

I
η

ΣΘ(α) = ωΣα([η]
mα).

Corollary 6.5. With the above choice of an intertwiner I
η
ω, for any η′ = sη ∈ S̃

with topological Jordan decomposition η′0η
′
+,

tr
(
ω([s]) ◦ Iηω

)
=

∏
α∈ΘS\Ξ̈

ΘωΣα
([η′0]

mα).

Proof. With the choice of an intertwiner I
η
ω explained as above, we get

tr
(
ω([s]) ◦ Iηω

)
=

∏
α∈ΘS\Ξ̈

ΘωΣα([η
′]mα)

by Proposition 6.4. Noting that the topologically unipotent part η′+ acts on VΓα
and VΣα trivially via conjugation, we get the assertion. □

6.3. Descent of the Heisenberg quotient. Recall that we have fixed an elliptic
regular semisimple element δ ∈ S̃ and written η for δ<r so far. However, to make
the notation lighter, we temporarily (until the end of Section 6.6) let η ∈ S̃ denote
any topologically semisimple element.

Recall that, in Section 3.3, we introduced the notion of a restricted root. Al-
though we discussed it for Φ(G,T) in Section 3.3, the same can be done for Φ(G,S),
i.e., we have the set of restricted roots Φres(G,S) equipped with a natural map

Φ(G,S) ↠ Φ(G,S)/ΘS
1:1−−→ Φres(G,S) : α 7→ αres.

Note that, since Φres(G,S) carries a Galois action induced from that of Φ(G,S),
we can also discuss the symmetry of a restricted root. For any α ∈ Φ(G,S), we
put Γαres

to be the stabilizer in Γ of the restricted root αres (or, equivalently, the
ΘS-orbit ΘSα of α):

Γαres
:= {σ ∈ Γ | σ(αres) = αres} = {σ ∈ Γ | σ(ΘSα) = ΘSα}.

Similarly, we put Γ±αres to be the stabilizer in Γ of the set {±αres}:

Γ±αres
:= {σ ∈ Γ | σ({±αres}) = {±αres}} = {σ ∈ Γ | σ({±ΘSα}) = {±ΘSα}}.
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Let Fαres
and F±αres

denote the subfields of F fixed by Γαres
and Γ±αres

, respectively.

Fαres
⊂ Fα Γαres∩ Γα⊃ ∩

F±αres
⊂

∪
F±α

∪
Γ±αres

Γ±α⊃

As reviewed in Section 3.3, the group Gη is a connected reductive group with
a maximal torus S♮. Furthermore, Φ(Gη,S

♮) is regarded as a subset of the set
Φres(G,S). By Proposition 5.5, the point x can be regarded as a point ofA(S♮, F ) ⊂
B(Gη, F ). We introduce the subgroups Jη (resp. Jη,+) in the same way as J (resp.
J+) by using (Gη,S

♮,x, r, s(+)) instead of (G,S,x, r, s(+)), i.e.,

Jη := (S♮, Gη)x,(r,s) and Jη,+ := (S♮, Gη)x,(r,s+).

By the same discussion as in Section 6.1, if we put

Vη := Lie(Sη,Gη)(E)x,(r,s):(r,s+) and Vη := VΓ
η

then we have Jη/Jη,+ ∼= Vη and a root space decomposition similar to (10):

Vη ∼=
⊕

Σαres∈Ξ̈η

Vη,Σαres ,

where we use the notation defined in the same way as in Section 6.1, e.g.,

Ξη := Ξ(Gη,S
♮) := {αres ∈ Φ(Gη,S

♮) | Vη,αres
6= 0}.

By Proposition 5.6 (4), we have a natural identification

Vη ∼= (S♮, Gη)x,(r,s):(r,s+)
∼= (S,G)ηx,(r,s):(r,s+)

∼= V η,

where (S,G)ηx,(r,s):(r,s+) and V
η denote the set of [η]-fixed points in (S,G)x,(r,s):(r,s+)

and V , respectively. Let us investigate this identification more precisely. The Lie
algebra gη of Gη is naturally identified with the [η]-fixed points gη of the Lie al-

gebra g of G. If αres ∈ Φ(Gη,S
♮) is a restricted root obtained from α ∈ Φ(G,S),

then the root subspace gη,αres
of gη is identified with the [η]-fixed points in the sum⊕

α′∈Θα gα′ of root subspaces of g:

gη,αres
∼=

( ⊕
α′∈Θα

gα

)η
.

This induces an identification

Vη,Σαres
∼=

( ⊕
Σα′∈Σ\(Σ×Θ)α

VΣα′

)η
for any αres ∈ Ξη. Let us put VΣΘ(α) :=

⊕
Σα′∈Σ\(Σ×Θ)α VΣα′ . In particular, by

letting Ξres be the set of restricted roots associated to Ξ, the set Ξη can be thought
of as the set of restricted roots αres ∈ Ξres such that the [η]-action has a nonzero
fixed point in VΣΘ(α).

Φ(G,S) // // Φ(G,S)/ΘS
1:1 // Φ(G,S)res Φ(Gη,S

♮)⊃

Ξ // //

∪
Ξ/ΘS

1:1 //

∪
Ξres

∪
Ξη⊃

∪
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6.4. Twisted characters of Weil representations: asymmetric roots. Let
α ∈ Ξasym. We compute ΘωΣα([η]

mα), which constitutes the right-hand side of
Corollary 6.5. Recall that VΣα = VΓα ⊕ V−Γα

∼= Vα ⊕ V−α, where Vα and V−α
are 1-dimensional kα-vector spaces, which are identified with kα by fixing nonzero
elements Xα ∈ Vα and X−α ∈ V−α (see Section 6.1). As the order of θ is 2, there
are exactly 4 possibilities:

(1) θ(α) = α (thus lα = mα = 1);
(2) θ(α) 6= α and θ(α) /∈ Σα (thus lα = mα = 2);
(3) θ(α) 6= α and θ(α) ∈ Γα (thus lα = 2 and mα = 1);
(4) θ(α) 6= α and θ(α) ∈ −Γα (thus lα = 2 and mα = 1).

Note that the cases (3) and (4) are exclusive to each other since −α /∈ Γα.

6.4.1. The case where θ(α) = α. In this case, we have Fα = F±α = Fαres
= F±αres

.

Fαres
Fα

F±αres F±α

The action of [η] on VΣα preserves VΓα and V−Γα. Moreover, it is kα-linear. We
let ηα (resp. η−α) be the element of k×α such that [η](Xα) = ηαXα (resp. [η](X−α) =
ηαX−α). By noting that [η] preserves the symplectic form described as in Section
6.1, we necessarily have η−α = η−1

α . Then, as an element of Sp(VΣα) ∼= Sp(kα⊕kα),
[η] is given by

x+ + x− 7→ ηαx+ + η−αx−.

Hence, by Corollary A.8, we get

ΘωΣα([η]) = sgnF×
p
(det(ηα | kα)) · |V ηΣα|

1
2 = sgnk×α (ηα) · |V

η
Σα|

1
2 .

6.4.2. The case where θ(α) 6= α and θ(α) /∈ Σα. In this case, we have Fα = F±α =
Fαres

= F±αres
.

Fαres Fα

F±αres
F±α

Since η2 ∈ S, the action of [η]2 = [η2] preserves VΓα and V−Γα and is kα-linear.
Hence the same argument as in the previous case works. If we let η2α be the element
of k×α such that [η2](Xα) = η2αXα, then we get

ΘωΣα
([η]2) = sgnk×α (η

2
α) · |V

η2

Σα|
1
2 = sgnk×α (η

2
α) · |V

η
ΣΘ(α)|

1
2 .

6.4.3. The case where θ(α) 6= α and θ(α) ∈ Γα. In this case, we have Fα = F±α and
[Fα : Fαres ] = 2. Let σα be the unique nontrivial element of Gal(Fα/Fαres), hence
we have σα(α) = θ(α). By noting that [Fαres

: F±αres
] ≤ 2 and [F±α : F±αres

] ≤ 2,
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we see that Fαres
= F±αres

and [F±α : F±αres
] = 2.

Fαres

quad

〈σα〉
Fα

F±αres

quad

〈σα〉
F±α

The action of [η] on VΣα preserves VΓα and V−Γα. Since [η](Xα) belongs to
Vθ(α) = Vσα(α), the induced action of [η] on Vα is σα-linear (note that [η] is kα-
linear on VΓα):

Vα
∼= // VΓα

[η]

��

Xα
� //

∑
σ∈Γ/Γα

σ(Xα)
_

��

Vα VΓα∼=
oo [η] ◦ σα(Xα)

∑
σ∈Γ/Γα

[η] ◦ σ(Xα)
�oo

More explicitly, if we let ηα (resp. η−α) be the element of k×α such that [η]◦σα(Xα) =
ηαXα (resp. [η] ◦ σα(X−α) = η−αX−α), then [η] is given by

x+ + x− 7→ ηασα(x+) + η−ασα(x−)

as an element of Sp(VΣα) ∼= Sp(kα ⊕ kα). Hence, by Corollary A.8, we get

ΘωΣα
([η]) = sgnF×

p
(det(ηα ◦ σα | kα)) · |V ηΣα|

1
2

= sgnF×
p
(det(σα | kα)) · sgnk×α (ηα) · |V

η
Σα|

1
2 .

(1) If Fα/Fαres
is unramified, we have det(σα | kα) = (−1)[kαres :Fp]. By noting

that sgnF×
p
(det(σα | kα)) = sgnF×

p
(−1)[kαres :Fp] = sgnk×αres

(−1), we get

ΘωΣα
([η]) = sgnk×αres

(−1) · sgnk×α (ηα) · |V
η
Σα|

1
2 .

(2) If Fα/Fαres
is ramified, it acts on kα via the identity. Thus we get

ΘωΣα
([η]) = sgnk×α (ηα) · |V

η
Σα|

1
2 .

6.4.4. The case where θ(α) 6= α and θ(α) ∈ −Γα. In this case, we have Fα = F±α
and Fα = Fαres . However, we have [Fαres : F±αres ] = 2 (thus [F±α : F±αres ] =
2). Let σα be the unique nontrivial element of Gal(Fαres/F±αres), hence we have
σα(α) = −θ(α).

Fαres
Fα

F±αres

quad

〈σα〉

quad 〈σα〉

F±α

The action of [η] on VΣα swaps VΓα and V−Γα. Since [η](Xα) belongs to Vθ(α) =
V−σα(α), the isomorphism from Vα to V−α induced by [η] is σα-linear (note that [η]
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is kα-linear on VΓα):

Vα
∼= // VΓα

[η]

��

Xα
� //

∑
σ∈Γ/Γα

σ(Xα)
_

��

V−α V−Γα∼=
oo [η] ◦ σα(Xα)

∑
σ∈Γ/Γα

[η] ◦ σ(Xα)
�oo

More explicitly, if we let η−α (resp. ηα) be the element of k×α such that [η]◦σα(Xα) =
η−αX−α (resp. [η] ◦ σα(X−α) = ηαXα), then [η] is given by

x+ + x− 7→ ηασα(x−) + η−ασα(x+)

as an element of Sp(VΣα) ∼= Sp(kα ⊕ kα). Since this automorphism preserves the
symplectic form (x+ + x−, y+ + y−) 7→ Trkα/Fp

(C · (x+y− − x−y+)) (see Section
6.1), we must have

Trkα/Fp
(C · (x+y− − x−y+)) = Trkα/Fp

(C · ηαη−α · σα(x−y+ − x+y−))

for any x+, x−, y+, y− ∈ kα. In other words, we have ηαη−α = −σα(C) · C−1.
Here we note the following lemma, which can be proved by a straightforward

computation:

Lemma 6.6. Let V = V1 ⊕ V2 be a finite dimensional vector space equipped with
isomorphisms A1 : V1 → V2 and A2 : V2 → V1. If we put A := A1 ⊕ A2, then we
have

det(T · idV −A1 ⊕A2 | V ) = det(T 2 · idV −A2 ◦A1 | V1).

By this lemma, we see that the eigenvalues of [η] ∈ Sp(kα⊕ kα) are given by the
square roots of the eigenvalues of the action of (ηα ◦ σα) ◦ (η−α ◦ σα) on kα. As

(ηα ◦ σα) ◦ (η−α ◦ σα) = ηα · σα(η−α) = −σα(η−αC)/(η−αC),

the multi-set of eigenvalues of (ηα ◦ σα) ◦ (η−α ◦ σα) on kα is given by

{−τ(γα) ∈ kα | τ ∈ Gal(kα/Fp)},

where we put γα := σα(η−αC)/(η−αC) ∈ k×α . Hence that of [η] is given by

{±(−τ(γα))
1
2 ∈ Fp | τ ∈ Gal(kα/Fp)}.(11)

Unramified case: We first consider the case where αres is unramified.

(1) If [η] has a fixed point in VΣα (note that this is equivalent to that γα = −1),
the multi-set (11) is given by {±1, . . . ,±1}, where ±1 is contained [kα : Fp]-
times. We take an Fp-rational maximal torus T of Sp(kα⊕kα) to beG

[kα:Fp]
m .

Then [η] is Sp(kα ⊕ kα)-conjugate to the element

t := (1, . . . , 1︸ ︷︷ ︸
[kαres :Fp]

,−1, . . . ,−1︸ ︷︷ ︸
[kαres :Fp]

) ∈ (F×
p )

[kα:Fp] = T (Fp)

by Lemma A.4. We utilize Proposition A.3 (and Lemma A.5). We have
l(kα ⊕ kα, T ; t) = 2[kαres : Fp]. Since any Ω is asymmetric and qΩ = p, we

have χT (t) = (−1)
1−p
2 ·[kαres :Fp]. By letting qαres be the order of kαres , we

have

(−1)
1−p
2 ·[kαres :Fp] = (−1)

1−qαres
2 = −(−1)

1+qαres
2 = − sgnk1α(γα).
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Recalling that γα := σα(η−αC)/(η−αC), we get

ΘωΣα
([η]) = −|V ηΣα|

1
2 · sgnk×α (η−αC).

(2) If γα = 1 (hence [η] does not have a fixed point in VΣα), the multi-set (11)
is given by {±

√
−1, . . . ,±

√
−1}, where ±

√
−1 is contained [kα : Fp]-times.

(a) When
√
−1 ∈ Fp, or equivalently, p − 1 ≡ 0 (mod 4), we take an Fp-

rational maximal torus T of Sp(kα ⊕ kα) to be G[kα:Fp]
m . Then [η] is

Sp(kα ⊕ kα)-conjugate to the element

t := (
√
−1, . . . ,

√
−1) ∈ (F×

p )
[kα:Fp] = T (Fp)

by Lemma A.4. We utilize Proposition A.3 (and Lemma A.5). We
have l(kα ⊕ kα, T ; t) = 2[kα : Fp]. Since any Ω is asymmetric and

qΩ = p, we have χT (t) =
√
−1

1−p
2 ·[kα:Fp]

. By noting that

√
−1

1−p
2 ·[kα:Fp]

= (
√
−1

1−p
2 )2[kαres :Fp] = 1,

we get

ΘωΣα
([η]) = 1.

(b) When
√
−1 /∈ Fp, or equivalently, p − 1 ≡ 2 (mod 4), we take an Fp-

rational maximal torus T of Sp(kα⊕kα) to be Ker(NrFp2/Fp
: ResFp2/Fp

Gm →
Gm)

[kα : Fp]. Then [η] is Sp(kα ⊕ kα)-conjugate to the element

t := (
√
−1, . . . ,

√
−1) ∈ (F1

p2)
[kα:Fp] = T (Fp)

by Lemma A.4. We utilize Proposition A.3 (and Lemma A.5). We have
l(kα ⊕ kα, T ; t) = [kα : Fp] = 2[kαres : Fp]. Since any Ω is symmetric

and qΩ = p, we have χT (t) =
√
−1

1+p
2 ·[kα:Fp]

. By noting that

√
−1

1+p
2 ·[kα:Fp]

= (
√
−1

1+p
2 )2[kαres :Fp] = 1,

we get

ΘωΣα
([η]) = 1.

Note that, in both cases, ΘωΣα
([η]) can be also thought of as sgnk×α (η−αC)

since sgnk×α (η−αC) = sgnk1α(γα) = 1.

(3) If γα 6= ±1 (hence [η] does not have a fixed point in VΣα), γα does not
belong to kαres

since γα ∈ k1α (otherwise, γα must be ±1). Thus, if we put
kγ := Fp[γα], then kγ is not contained in kαres

, or equivalently, [kα : kγ ]
is odd. We put k◦γ := kαres

∩ kγ . As γα ∈ k1α, we also have γα ∈ k1γ . In

other words, by putting qγ := |kγ | and q◦γ := |k◦γ |, we have γ
q◦γ+1
α = 1. This

implies that (−γα)
qγ−1

2 = (γ
q◦γ+1
α )

q◦γ−1

2 = 1, i.e., −γα belongs to k×2
γ . If

we let δα ∈ k×γ be an element satisfying δ2α = −γα, then the multi-set (11)
is given by {±τ(δα) | τ ∈ Gal(kα/Fp)}. Note that, since Gal(kα/kγ) acts
on δα trivially, this set is the union of [kα : kγ ]-copies of {±τ(δα) | τ ∈
Gal(kγ/Fp)}. We take an Fp-rational maximal torus T of Sp(kα ⊕ kα) to
be

(Ker(Nrkγ/k◦γ : Reskγ/Fp
Gm → Resk◦γ/Fp

Gm)
2)[kα : kγ ]
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(there exists such a torus by Lemma A.5). Then [η] is Sp(kα⊕kα)-conjugate
to the element

t := ((δα,−δα), . . . , (δα,−δα)︸ ︷︷ ︸
[kα:kγ ]

) ∈ (k1γ × k1γ)[kα:kγ ] = T (Fp)

by Lemma A.4. We utilize Proposition A.3 (and Lemma A.5). We have
l(kα ⊕ kα, T ; t) = 2[kαres

: kγ ]. Since any Ω is symmetric and qΩ = q◦γ , we
have

χT (t) = δ
1+q◦γ

2 ·[kα:kγ ]
α · (−δα)

1+q◦γ
2 ·[kα:kγ ] = γ

1+qαres
2

α

(here we used that [kα : kγ ] is odd). By noting that γ
1+qαres

2
α = sgnk1α(γα) =

sgnk×α (η−αC), we get

ΘωΣα([η]) = sgnk×α (η−αC)

Ramified case: We next consider the case where αres is ramified. In this case, by
noting that σα acts on kα trivially, the multi-set (11) is given by {±

√
−1, . . . ,±

√
−1},

where ±
√
−1 is contained [kα : Fp]-times. Hence a similar computation to the case

(2) (b) works. Consequently, we get

ΘωΣα([η]) =


√
−1

1−p
2 ·[kα:Fp]

if
√
−1 ∈ Fp,

(−1)[kα:Fp] ·
√
−1

1+p
2 ·[kα:Fp]

if
√
−1 /∈ Fp.

Let us write ΘωΣα
([η]) =

√
−1Mα

in short.

6.5. Twisted characters of Weil representations: symmetric roots. We
next compute ΘωΣα

([η]mα) in the case where α ∈ Ξsym. Note that α must be
unramified by Lemma 6.2. Recall that VΣα = VΓα ∼= Vα and that Vα is a 1-
dimensional kα-vector spaces, which is identified with kα by fixing nonzero elements
Xα ∈ Vα (see Section 6.1). As the order of θ is 2, there are exactly 3 possibilities:

(1) θ(α) = α (thus lα = mα = 1);
(2) θ(α) 6= α and θ(α) /∈ Γα (= Σα) (thus lα = mα = 2);
(3) θ(α) 6= α and θ(α) ∈ Γα (= Σα) (thus lα = 2 and mα = 1).

6.5.1. The case where θ(α) = α. In this case, we have [Fα : F±α] = 2 and Fα =
Fαres

. Let τα be the unique nontrivial element of Gal(Fα/F±α), hence we have
τα(α) = −α. By noting that [Fαres

: F±αres
] ≤ 2 and [F±α : F±αres

] ≤ 2, we see
that [Fαres

: F±αres
] = 2 and F±α = F±αres

.

Fαres Fα

F±αres

quad 〈τα〉

F±α

quad 〈τα〉

The action of [η] on VΓα preserves VΓα and is kα-linear. We let ηα be the element
of k×α such that [η](Xα) = ηαXα. Then, as an element of Sp(VΓα) ∼= Sp(kα), [η] is
given by x 7→ ηαx. Since [η] preserves the symplectic form described as in Section
6.1, we necessarily have ηατα(ηα) = 1. We take an Fp-rational maximal torus T of
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Sp(kα) to be Ker(Nrkα/kαres
: Reskα/Fp

Gm → Reskαres/Fp
Gm). Then [η] is Sp(kα)-

conjugate to the element t := ηα ∈ k1α by Lemma A.4. Now we utilize Proposition
A.3 (and Lemma A.5). We have

l(kα, T ; t) =

®
1 if V ηΣα = 0,

0 if V ηΣα 6= 0.

Since any Ω is symmetric and qΩ = qαres
:= |kαres

|, we have

χT (t) = η
1+qαres

2
α = sgnk1α(ηα).

Thus we get

ΘωΣα
([η]) = |V ηΣα|

1
2 · sgnk1α(ηα) ·

®
−1 if V ηΣα = 0,

1 if V ηΣα 6= 0.

6.5.2. The case where θ(α) 6= α and θ(α) /∈ Γα. In this case, we have [Fα : F±α] = 2
and Fα = Fαres

. Let τα be the unique nontrivial element of Gal(Fα/F±α), hence
we have τα(α) = −α. By noting that [Fαres

: F±αres
] ≤ 2 and [F±α : F±αres

] ≤ 2,
we see that [Fαres

: F±αres
] = 2 and F±α = F±αres

.

Fαres Fα

F±αres

quad 〈τα〉

F±α

quad 〈τα〉

Since η2 ∈ S, the action of [η]2 = [η2] preserves VΓα and is kα-linear. Hence the
same argument as in the previous case works. If we let η2α be the element of k×α
such that [η2](Xα) = η2αXα, then we get

ΘωΣα
([η]2) = sgnk1α(η

2
α) · |V

η2

Σα|
1
2 ·
®
−1 if V η

2

α = 0,

1 if V η
2

α 6= 0.

= sgnk1α(η
2
α) · |V

η
ΣΘ(α)|

1
2 ·
®
−1 if V η

2

α = 0,

1 if V η
2

α 6= 0.
.

6.5.3. The case where θ(α) 6= α and θ(α) ∈ Γα. In this case, we have [Fα : F±α] =
[Fα : Fαres

] = 2. Let τα be the unique nontrivial element of Gal(Fα/F±α), hence we
have τα(α) = −α. Let σα be the unique nontrivial element of Gal(Fα/Fαres), hence
we have σα(α) = θ(α). Note that, as we have θ(α) 6= −α (recall that θS preserves
a Borel subgroup containing S), we must have σα 6= τα.

Fαres

quad

〈σα〉
Fα

F±αres

quad

〈σα〉

quad 〈τα〉

F±α

quad 〈τα〉
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The action of [η] on VΓα preserves VΓα. Since [η](Xα) belongs to Vθ(α) = Vσα(α),
the induced action of [η] on Vα is σα-linear (note that [η] is kα-linear on VΓα):

Vα
∼= // VΓα

[η]

��

Xα
� //

∑
σ∈Γ/Γα

σ(Xα)
_

��

Vα VΓα∼=
oo [η] ◦ σα(Xα)

∑
σ∈Γ/Γα

[η] ◦ σ(Xα)
�oo

More explicitly, if we let ηα be the element of k×α such that [η] ◦ σα(Xα) = ηαXα,
then [η] is given by x 7→ ηασα(x) as an element of Sp(VΓα) ∼= Sp(kα). Since [η]
preserves the symplectic form as described in Section 6.1, we must have

Trkα/Fp
(C · ηασα(x)τα(ηασα(y))) = Trkα/Fp

(C · xτα(y))(12)

for any x, y ∈ kα.
Unramified case: We first consider the case where αres is unramified. In this
case, σα acts on kα trivially. Hence we must have ηατα(ηα) = 1 by (12). The
multi-set of eigenvalues of [η] on kα is given by {τ(ηα) | τ ∈ Gal(kα/Fp)}. We take
an Fp-rational maximal torus T of Sp(kα) to be

Ker(Nrkα/kαres
: Reskα/Fp

Gm → Reskαres/Fp
Gm).

Then [η] is Sp(kα)-conjugate to the element t := ηα ∈ k1α by Lemma A.4. We utilize
Proposition A.3 (and Lemma A.5). We have

l(kα, T ; t) =

®
1 if V ηΣα = 0,

0 if V ηΣα 6= 0.

Since any Ω is symmetric and qΩ = qαres
:= |kαres

|, we have χT (t) = (ηα)
1+qαres

2 =
sgnk1α(ηα). Hence we get

ΘωΣα
([η]) = |V ηα |

1
2 · sgnk1α(ηα) ·

®
−1 if V ηΣα = 0,

1 if V ηΣα 6= 0.

Ramified case: We next consider the case where αres is ramified. As σα and τα
induce the same (nontrivial) action on kα, we must have ηατα(ηα) = C/τα(C) =
−1 by (12). Note that ηα and σα act on kα ⊗Fp

Fp ∼=
∏
τ∈Gal(kα/Fp)

Fp via

(τ(ηα))τ -multiplication and swapping the Gal(kαres
/Fp)-part and Gal(kα/Fp) ∖

Gal(kαres
/Fp)-part, respectively. Thus the eigenvalues of [η] on kα is given by

the square roots of the eigenvalues of (ηα ◦ σα)2 = ηασα(ηα) on kαres . Hence, by
a similar consideration to the case where α ∈ Ξasym and Fα/Fαres is ramified in
Section 6.4.4, we get

ΘωΣα
([η]) =


√
−1

1−p
2 [kαres :Fp]

if
√
−1 ∈ Fp,

(−1)[kαres :Fp]
√
−1

1+p
2 [kαres :Fp]

if
√
−1 /∈ Fp.

Let us write ΘωΓα
([η]) =

√
−1Mα

in short.
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6.6. Twisted characters of Weil representations: summary. Now let us
summarize the computation presented in Sections 6.4 and 6.5.

By recalling that we have fixed a base point η, we write η = sη with s ∈ S. Then
we have ηα = α(s)η

α
and η−α = α(s)−1η−α. Similarly, as η2 = sθS(s)η

2, we also

have η2α = α(s)θ(α)(s)η2
α
. Noting this, we introduce a sign Cα,η for each α ∈ Ξ as

follows. For α ∈ Ξasym, we put

Cα,η :=



sgnk×α (ηα) if θ(α) = α,

sgnk×α (η
2
α
) if θ(α) 6= α, θ(α) /∈ Σα,

sgnk×α (ηα) · sgnk×αres
(−1) if θ(α) 6= α, θ(α) ∈ Γα, Fα/Fαres

: ur,

sgnk×α (ηα) if θ(α) 6= α, θ(α) ∈ Γα, Fα/Fαres : ram,

sgnk×α (η−αC) if θ(α) 6= α, θ(α) ∈ −Γα, αres: ur,
√
−1Mα

if θ(α) 6= α, θ(α) ∈ −Γα, αres: ram.

For α ∈ Ξsym, we put

Cα,η :=


− sgnk1α(ηα) if θ(α) = α,

− sgnk1α(η
2
α
) if θ(α) 6= α, θ(α) /∈ Γα,

− sgnk1α(ηα) if θ(α) 6= α, θ(α) ∈ Γα, αres: ur,√
−1Mα

if θ(α) 6= α, θ(α) ∈ Γα, αres: ram.

We also note that, for α ∈ Ξasym, its restricted root αres is
asym if θ(α) = α,

asym if θ(α) 6= α, θ(α) /∈ Σα,

asym if θ(α) 6= α, θ(α) ∈ Γα,

ur or ram if θ(α) 6= α, θ(α) ∈ −Γα,
and that, for α ∈ Ξsym, its restricted root αres is

ur if θ(α) = α,

ur if θ(α) 6= α, θ(α) /∈ Γα,

ur or ram if θ(α) 6= α, θ(α) ∈ Γα.

We introduce characters εα : S → C× for α ∈ Φ(G,S) as follows:

εα(s) :=

®
sgnk×α (α(s)) if α ∈ Φasym(G,S),

sgnk1α(α(s)) if α ∈ Φur(G,S).

Then, the computation in Sections 6.4 and 6.5 are summarized as follows:

ΘωΣα
([η]mα) = (−1)• · Cα,η · |V ηΣΘ(α)|

1
2 ·
®∏mα−1

i=0 εθi(α)(s) if αres is asym or ur,

1 if αres is ram,

where • = 1 if αres ∈ Ξη,ur and • = 0 otherwise.

Therefore, by defining a constant Cη to be the product of Cα,η over α ∈ ΘS\Ξ̈,
we get the following (recall the description of Vη in Section 6.3):

Proposition 6.7. We have∏
α∈ΘS\Ξ̈

ΘωΣα([η]
mα) = (−1)|Ξ̈η,ur| · Cη · |Vη|

1
2 ·

∏
α∈Ξ̈

αres: asym/ur

εα(s).
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6.7. Twisted character formula of the final form. Now let us go back to the
twisted character formula for toral supercuspidal representations. From now on, η
again denotes δ<r for a fixed elliptic regular semisimple element δ ∈ S̃. Recall that
η = η0η+ is the fixed topological Jordan decomposition.

For s ∈ S, we put

ε̃Ξ(s) :=
∏
α∈Ξ̈

αres: asym/ur

εα(s).

Proposition 6.8. If we write η = sη with an element s ∈ S, then we have

Θρ̃(η) = ϑ(s) · (−1)|Ξ̈η0,ur| · Cη · |Vη0 |
1
2 · ε̃Ξ(s).

Proof. By the definition of ρ̃ and its twisted character (see Sections 4.2 and 5.2),

Θρ̃(η) = tr
(
ρ(s) ◦ Iηρ

)
= tr

(
ω([s]) ◦ Iηω

)
· ϑ(s).

By Corollary 6.5 and Proposition 6.7, we have

tr
(
ω([s]) ◦ Iηω

)
=

∏
α∈ΘS\Ξ̈

ΘωΣα
([η0]

mα) = (−1)|Ξ̈η0,ur| · Cη · |Vη0 |
1
2 · ε̃Ξ(s′),

where s′ ∈ S is the element satisfying η0 = s′η. Since η0 commutes with η+, we
have that η+s

′η equals sη, hence η+s
′ = s. This implies that εα(s) = εα(s

′) for

any α ∈ Ξ̈ such that αres is asymmetric or symmetric unramified. Thus we get the
desired identity. □

Lemma 6.9. We have

|Vη0 |
1
2 · |G̃Gη0

(ϑ, η+)| = |gη,x,0:0+|−
1
2 · |s♮0:0+|

1
2 · |Dred

Gη
(X∗)| 12 · |Dred

Gη0
(η+)|−

1
2 ,

where Dred is as in [DS18, Definition 2.11].

Proof. We utilize [AS09, Proposition 5.2.12] with (G,G′, φ, γ) = (Gη0 ,S
♮, ϑ, η+).

As we have [[η+;x, r(+)]]S♮ = S♮0+, C
(0+)

S♮ (η+) = S♮, and C
(0+)
Gη0

(η+) = Gη0 , we get

|(S♮, Gη0)x,(r,s):(r,s+)|
1
2 · |G̃Gη0

(ϑ, η+)|

=
[
[[η+;x, r]]Gη0

: S♮0+Gη0,x,s
] 1

2 ·
[
[[η+;x, r+]]Gη0

: S♮0+Gη0,x,s+
] 1

2 .

By [DS18, Corollary 4.13], the right-hand side equals

|gη,x,0:0+|−
1
2 · |s♮0:0+|

1
2 · |Dred

Gη
(X∗)| 12 · |Dred

Gη0
(η+)|−

1
2 .

Since Vη0 = (S♮, Gη0)x,(r,s):(r,s+) (see Section 6.3), we get the assertion. □

Now recall that the Fourier transform of the orbital integral depends on the

choice of Haar measures. We let µ̂
Gη

Wal,X∗ denote the Fourier transform of the orbital
integral with respect to X∗ normalized via the canonical measure of Waldspurger
(see [DS18, Definition 4.6]). Then, by (the proof of) [DS18, Proposition 4.26],

µ̂
Gη

Wal,X∗ = |(s♮, gη)x,(0,0):(0,0+)|−
1
2 · µ̂Gη

X∗ = |gη,x,0:0+|−
1
2 · |s♮0:0+|

1
2 · µ̂Gη

X∗ .

Following [Kal19b, Section 4.2], we put

ι̂
Gη

X∗ (−) := |Dred
Gη

(X∗)| 12 · |Dred
Gη

(−)| 12 · µ̂Gη

Wal,X∗(−).
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We put Φπ̃(δ) := ∆G̃
IV(δ) ·Θπ̃(δ), where ∆G̃

IV(δ) is the fourth absolute transfer for

G̃ in the sense of Kottwitz–Shelstad (see [KS99, Section 4.5]; this will be reviewed
in Section 13.4).

Theorem 6.10. If we write gη = sg · η ∈ S̃ for any g ∈ G satisfying gη ∈ S̃, then
we have

Φπ̃(δ) = Cη · (−1)|Ξ̈η0,ur| ·
∑

g∈S\G/Gη
gη∈S̃

ϑ(sg) · ε̃Ξ(sg) ·GGgη0
(ϑ, gη+) · ι̂

Ggη

X∗ (log(gδ≥r)).

Proof. By Theorem 5.16, we have

Θπ̃(δ) =
∑

g∈S\G/Gη
gη∈S̃

Θρ̃(
gη) · |G̃Ggη0

(ϑ, gη+)| ·GGgη0
(ϑ, gη+) · µ̂

Ggη

X∗ (log(gδ≥r)).

Let us compute each summand by fixing g ∈ S\G/Gη satisfying gη ∈ S̃. By
Proposition 6.8, we have

Θρ̃(
gη) = ϑ(sg) · (−1)|Ξ̈gη0,ur| · Cη · |Vgη0 |

1
2 · ε̃Ξ(sg).

Hence, with the above modification of the Fourier transform of the orbital integral,
we see that the corresponding summand equals

∆G̃
IV(δ)

−1 · ϑ(sg) · (−1)|Ξ̈gη0,ur| · Cη · ε̃Ξ(sg) ·GGgη0
(ϑ, gη+) · ι̂

Ggη

X∗ (log(gδ≥r)).

by using Lemmas 6.9 and 13.9, which will be proved later. By finally noting that
|Ξ̈gη0,ur| = |Ξ̈η0,ur| for any g ∈ G satisfying gη ∈ S̃, we get the desired formula. □

By using the notion of a-data and χ-data, which will be introduced later, we can
rewrite the above formula in the following way.

Proposition 6.11. With the notation as in Theorem 6.10, we have

Φπ̃(δ) = Cη · (−1)|Ξ̈η0,ur| · e(Gη0) · e(Gη) · ε(TG∗
η0
) · ε(TG∗

η
)−1∑

g∈S\G/Gη
gη∈S̃

ϑ(sg) · ε̃Ξ(sg) ·∆
Ggη0

II [a♮ϑ, χ
♮
ϑ](

gη+) · ι̂
Ggη

X∗ (log(gδ≥r)),

where e(−) denotes the Kottwitz sign and a♮ϑ and χ♮ϑ are the sets of a-data and

χ-data associated to the tame elliptic toral pair (S♮, ϑ|S♮) of Ggη0 as in Section 7.1.

Proof. We investigate the summands of the right-hand side of Theorem 6.10. By
the proof of [DS18, Proposition 4.21], GGη0

(ϑ, η+) is given by

εGη0
(ϑ, η+)

−1 · εGη0
,ram(π

′, η+) · εramGη0
(π′, η+) · ẽ(π′, η+)

with the notation as in loc. cit. Since the depth-zero part of η+ is trivial, we
have εGη0

(ϑ, η+) = 1 (see [AS09, Proposition 3.8]) and εramGη0
(π′, η+) = 1 (see

[DS18, Notation 4.14]). On the other hand, recall that (S♮, ϑ|S♮) is a tame el-
liptic toral pair of Gη0 by Lemma 5.4. Thus, by [Kal19b, Corollary 4.7.6], the
product εGη0

,ram(π
′, η+) · ẽ(π′, η+) equals

εS♮,ram(η+) · e(Gη0) · e(Gη) · ε(TG∗
η0
) · ε(TG∗

η
)−1 ·∆Gη0

II [a♮ϑ, χ
♮
ϑ](η+).
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Note that εS♮,ram(η+) is trivial as η+ has no depth zero part. The same discussion
can be applied to any gη. Moreover, since any g ∈ G does not change e(Gη0) ·
e(Gη) · ε(TG∗

η0
) · ε(TG∗

η
) by conjugating η, we get the desired formula. □

7. Kaletha’s LLC for regular supercuspidal representations

In this section, we review Kaletha’s construction of the local Langlands corre-
spondence for regular supercuspidal representations, mainly focusing on the case of
toral supercuspidal representations.

Let Ĝ be the Langlands dual group of G. More precisely, Ĝ is a connected
reductive group over C equipped with

• a Γ-action on Ĝ,
• a Γ-stable splitting splĜ = (B̂, T̂, {Xα∨}α∨) of Ĝ, and

• a Γ-equivariant isomorphism between the based root data Ψ(Ĝ) of Ĝ and
the dual Ψ(G)∨ of that of G.

We put LG := Ĝ⋊WF .

7.1. Kaletha’s a-data and χ-data. We first recall the notion of a set of a-data.

Definition 7.1. Let S be an F -rational maximal torus ofG. A family {aα}α∈Φ(G,S)

of elements aα ∈ F×
α is called a set of a-data (with respect to S) if the following

conditions are satisfied:

• a−α = a−1
α for any α ∈ Φ(G,S), and

• aσ(α) = σ(aα) for any α ∈ Φ(G,S) and σ ∈ Γ.

Following [Kal19b, Section 4.7], for a tame elliptic toral pair (S, ϑ) of G, we
define a set aϑ = {aϑ,α}α∈Φ(G,S) of a-data by the following (note that aϑ is simply
denoted by a in [Kal19b, Section 4.7]):

aϑ,α = 〈Hα, X
∗〉,

where

• Hα := dα∨(1) ∈ s(Fα), and
• X∗ ∈ s∗−r is an element associated to ϑ (see Section 4.2).

We next recall the notion of a set of (minimally) χ-data.

Definition 7.2. Let S be an F -rational maximal torus ofG. A family {χα}α∈Φ(G,S)

of characters χα : F
×
α → C× is called a set of χ-data (with respect to S) if the fol-

lowing conditions are satisfied:

• χ−α = χ−1
α for any α ∈ Φ(G,S),

• χσ(α) = χα ◦ σ−1 for any α ∈ Φ(G,S) and σ ∈ Γ, and
• χα|F×

±α
equals the quadratic character κα corresponding to the quadratic

extension Fα/F±α for any α ∈ Φ(G,S)sym.

Definition 7.3 ([Kal19b, Definition 4.6.1]). Let S be an F -rational maximal torus
of G. A set {χα}α∈Φ(G,S) of χ-data with respect to S is said to be minimally
ramified if the following conditions are satisfied:

• χα = 1 for any α ∈ Φ(G,S)asym,
• χα is unramified for any α ∈ Φ(G,S)ur, and
• χα is tamely ramified for any α ∈ Φ(G,S)ram.
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Following [Kal19b, Section 4.7], for a tame elliptic toral pair (S, ϑ) of G, we
define a set χϑ = {χϑ,α}α∈Φ(G,S) of minimally ramified χ-data as follows (note
that χϑ is denoted by χ′ in [Kal19b, Section 4.7]):

• For α ∈ Φ(G,S)asym, let χϑ,α be the trivial character of F×
α .

• For α ∈ Φ(G,S)ur, let χϑ,α be the unique unramified nontrivial quadratic
character of F×

α .
• For α ∈ Φ(G,S)ram, let χϑ,α be the unique tamely ramified character of
F×
α characterized by the following properties:

χϑ,α|F×
±α

= κα and χϑ,α(2aϑ,α) = λα.

Remark 7.4. For a general tame elliptic regular pair (S, ϑ), Kaletha’s sets of a-data
aϑ and χ-data χϑ are defined by noting the inductive structure of Φ(G,S) given

by the tame twisted Levi subgroups ~G determined by (S, ϑ). See [Kal19b, Section
4.7] (and also [OT21, Section 6]) for the details.

Definition 7.5. Let S be an F -rational maximal torus of G. Let a = {aα}α be a
set of a-data and χ = {χα}α a set of χ-data with respect to S. We define a function
∆G,II[a, χ] : S → C× by

∆G,II[a, χ](s) :=
∏

α∈Φ̇(G,S)
α(s)6=1

χα

Å
α(s)− 1

aα

ã
.

7.2. DeBacker–Spice sign and Kaletha’s toral invariant. In this section, we
recall two invariants which play a key role in Kaletha’s construction of the local
Langlands correspondence. Let (S, ϑ) be a tame elliptic toral pair of G.

The first invariant is DeBacker–Spice’s sign character introduced in [DS18, Sec-
tion 4.3]. Recall that, in Section 6.6, we introduced a character εα of S for each
α ∈ Φ(G,S)asym and each α ∈ Φ(G,S)ur. We define characters εϑ,asym and εϑ,ur of

S by taking their product over Ξ̈:

εϑ,asym(s) :=
∏

α∈Ξ̈asym

εα(s) and εϑ,ur(s) :=
∏
α∈Ξ̈ur

εα(s).

Here note that, in [DS18, Section 4.3], the products are taken over the roots satis-
fying the condition “ r2 ∈ ordx(α)”, where r is the depth of ϑ and ordx(α) is the set
defined in [DS18, Definition 3.6]. This condition is equivalent to that α ∈ Ξ (see
the proof of [OT21, Proposition 5.12]).

The second invariant is the character εS,ram of S defined in [Kal19b, Definition
4.7.3]. As explained in [Kal19b, Lemma 4.7.4], this can be expressed as the product
of toral invariants f(G,S)(α) for symmetric ramified roots α, which are introduced
in [Kal15, Section 4.1]. We recall that the toral invariant f(G,S)(α) for Φ(G,S)sym
(not necessarily ramified) is defined as follows. We fix an element τα ∈ Γ±α ∖ Γα
(i.e., τα ∈ Γ±α is an element satisfying τα(α) = −α). If we take an Fα-rational root
vector Xα ∈ gα(Fα), then τα(Xα) belongs to g−α(Fα) and the ratio of [Xα, τα(Xα)]

to Hα := dα∨(1) ∈ s(Fα) lies in F
×
±α. By noting that [Xα,τα(Xα)]

Hα
is well-defined up

to NrFα/F±α
(F×
α )-multiplication, we put

f(G,S)(α) := κα

Å
[Xα, τα(Xα)]

Hα

ã
∈ {±1}.
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Then we have
εS,ram(s) =

∏
α∈Φ̇(G,S)ram

α(s) 6=1
valF (α(s)−1)=0

f(G,S)(α).

Remark 7.6. Similarly to the definition of aϑ and χϑ, for a general tame elliptic
regular pair (S, ϑ), the characters εϑ,asym and εϑ,ur are defined by noting the induc-

tive structure of Φ(G,S) given by the tame twisted Levi subgroups ~G determined
by (S, ϑ). See [Kal19b, Section 4.3] (and also [OT21, Section 6]) for the details.
We also note that, in [Kal19b], the product εϑ,asym · εϑ,ur (resp. εS,ram) is denoted
by εram (resp. εram).

7.3. Review of Kaletha’s construction.

7.3.1. Regular supercuspidal L-packet data. We recall the definition of a regular
supercuspidal L-packet datum. For this, we need to review several basic facts
about embeddings of tori based on [Kal19b, Section 5.1].

Suppose that

• an F -rational tame torus S having the same rank as G and
• an embedding ̂ : Ŝ ↪→ Ĝ whose Ĝ-conjugacy class is Γ-stable

are given. Here, by noting that ̂(Ŝ) is a maximal torus of Ĝ, we assume that ̂(Ŝ)

itself equals T̂ by replacing ̂ with its conjugate.

Definition 7.7. Let j : S ↪→ G be an embedding of S into G. Since its image
Sj := j(S) is a maximal torus of G by the rank condition, there exists an element
g ∈ G such that [g](Sj) = T. We say that j is ̂-admissible if the inverse of the

dual to the isomorphism [g] ◦ j : S→ T is Ĝ-conjugate to ̂ : Ŝ
∼−→ T̂.

We write JG
F

for the G-conjugacy class of ̂-admissible embeddings of S into G.

Then, since the Ĝ-conjugacy class of ̂ is Γ-stable, so is JG
F

(see [Kal19b, Section

5.1]). Thus, by Kottwitz’s result on the rational conjugacy ([Kot82, Corollary 2.2]),
the quasi-splitness of G implies that JG

F
has an F -rational point. In other words,

there exists an F -rational ̂-admissible embedding of S into G. We let JG denotes
the set of F -rational points of JG

F
. For each j ∈ JG, we get

• an F -rational embedding ZG ↪→ Sj ,
• a Γ-stable subset Φ(G,Sj) of X

∗(Sj), and
• a Γ-stable subgroup ΩG(Sj) of Aut(Sj).

Since j : S
∼−→ Sj is an F -rational isomorphism, by pulling back these via j, we get

• an F -rational embedding ZG ↪→ S,
• a Γ-stable subset j∗Φ(G,Sj) of X

∗(S), and
• a Γ-stable subgroup j∗ΩG(Sj) of Aut(S).

By noting that all of these are independent of the choice of j ∈ JG, we write
Φ(G,Sȷ̂) := j∗Φ(G,Sj) and ΩG(Sȷ̂) := j∗ΩG(Sj).

Definition 7.8 ([Kal19b, Definition 5.2.4]). A regular supercuspidal L-packet da-
tum of G is a tuple (S, ̂, χ, ϑ) consisting of

(1) an F -rational tame torus S having the same rank as G,

(2) an embedding ̂ : Ŝ ↪→ Ĝ whose Ĝ-conjugacy class is Γ-stable,
(3) a set χ of minimally ramified χ-data for Φ(G,Sȷ̂), and
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(4) a character ϑ : S → C×

satisfying the following conditions:

(i) S is elliptic in G (i.e., S/ZG is anisotropic),
(ii) χ is ΩG0(Sȷ̂)(F )-invariant, and
(iii) (S, ϑ) is a tame elliptic extra regular pair of G.

We give a few more comments about the precise meanings of the conditions (ii)
and (iii) in Definition 7.8 (see [Kal19b, Sections 5.1 and 5.2] for the details). Note
that the condition (i) implies that Sj is a tame elliptic maximal torus of G for any
j ∈ JG. The condition (iii) means that (Sj , ϑj) is an F -rational tame elliptic extra
regular pair of G for any j ∈ JG, where ϑj := ϑ ◦ j−1 (this is equivalent to that
(Sj , ϑj) is a tame elliptic extra regular pair of G for “some” j ∈ JG). We define a
subset Φ(G0,Sȷ̂) of Φ(G,Sȷ̂) by

Φ(G0,Sȷ̂) := {α ∈ Φ(G,Sȷ̂) | ϑ ◦NrE/F ◦α∨(E×
r ) = 1},

where E is a tame finite extension of F splitting S. Then Φ(G0,Sȷ̂) is a Levi subsys-
tem of Φ(G,Sȷ̂) and associates a Γ-stable subgroup ΩG0(Sȷ̂) of ΩG(Sȷ̂) canonically.

7.3.2. Construction of regular supercuspidal L-parameters. We next recall the con-
struction of regular supercuspidal L-parameters following [Kal19b, Proof of Propo-
sition 5.2.7].

We take a regular supercuspidal L-packet datum (S, ̂, χ, ϑ) of G. By applying
the local Langlands correspondence for S to ϑ, we get an L-parameter φϑ of S,
which is a homomorphism from WF to LS. On the other hand, by the Langlands–
Shelstad construction ([LS87, Section 2.6]), we can extend ̂ to an L-embedding
Ljχ from LS to LG by using the set χ of χ-data. Thus, by composing these two
homomorphisms, we get an L-parameter φ of G:

φ : WF
ϕϑ−−→ LS

Ljχ−−→ LG.

7.3.3. Construction of regular supercuspidal L-packets. We finally recall the con-
struction of regular supercuspidal L-packets following [Kal19b, Section 5.3].

For this, we need the notion of a regular supercuspidal datum:

Definition 7.9 ([Kal19b, Definition 5.3.2]). Let (S, ̂, χ, ϑ) be a regular supercus-
pidal L-packet datum of G. Let JG be the G-conjugacy classes of F -rational
̂-admissible embeddings of S into G (see Section 7.3.1). Then a regular supercus-
pidal datum (over the regular supercuspidal L-packet datum (S, ̂, χ, ϑ)) is a tuple
(S, ̂, χ, ϑ, j) where j is an element of JG.

Remark 7.10. In the original definition given in [Kal19b, Definition 5.3.2], a regular
supercuspidal datum is a tuple (S, ̂, χ, ϑ, (G′, ψ, z), j) which furthermore contains a
rigid inner twist (G′, ψ, z) ofG (in the sense of [Kal16]). In fact, Kaletha’s L-packet
constructed in [Kal19b] consist not only of representations of G but also those of
all rigid inner forms of G. In this paper, since we focus only on the quasi-split case,
we always take a rigid inner twist (G′, ψ, z) in a regular supercuspidal datum to be
the trivial twist (G, id, 1), and omit it from the notation.

Definition 7.11 ([Kal19b, Definition 4.6.4]). Let S be an F -rational maximal torus
of G. A family {ζα}α∈Φ(G,S) of characters ζα : F

×
α → C× is called a set of ζ-data

for Φ(G,S) if the following conditions are satisfied:
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• ζ−α = ζ−1
α for any α ∈ Φ(G,S),

• ζσ(α) = ζα ◦ σ−1 for any α ∈ Φ(G,S) and σ ∈ Γ, and
• ζα|F×

±α
= 1 for any α ∈ Φ(G,S)sym.

For a set ζ = {ζα} of ζ-data for Φ(G,S), we define a character ζS : S → C× by

ζS :=
∏

Σα∈Φ̈(G,S)

ζΣα,

where

• we put ζΣα := ζα ◦ α if Σα ∈ Φ̈(G,S)asym and

• we put ζΣα to be the composition S
α−→ F 1

α
∼= F×

α /F
×
±α

ζα−→ C× if Σα ∈
Φ̈(G,S)ur (here, F

1
α denotes the kernel of the norm map NrFα/F±α

and the
middle isomorphism is Hilbert 90th theorem)

(see [Kal19b, Definition 4.6.5]).

Remark 7.12. When we have two sets of χ-data χ = {χα}α∈Φ(G,S) and χ′ =
{χ′

α}α∈Φ(G,S), we can produce a set of ζ-data by taking the ratio of {χ′
α}α∈Φ(G,S)

to {χα}α∈Φ(G,S). We let ζχ′/χ denote the ζ-data defined in this way:

ζχ′/χ = {ζχ′/χ,α}α∈Φ(G,S), ζχ′/χ,α := χ′
α · χ−1

α .

Definition 7.13 ([Kal19b, Definition 5.2.5]). An isomorphism between two regular
supercuspidal L-packet data is a tuple

(ι, g, ζ) : (S, ̂, χ, ϑ)→ (S′, ̂′, χ′, ϑ′)

consisting of

(1) an F -rational isomorphism ι : S→ S′ of tori,

(2) an element g of Ĝ satisfying ̂ ◦ ι̂ = [g] ◦ ̂′, and
(3) a set ζ = (ζα′)α′∈Φ(G,S′

ȷ̂′ )
of ζ-data for Φ(G,S′

ȷ̂′) given by χα′◦ι = χ′
α′ · ζα′

satisfying the equality

(ζ−1
S′ · ϑ′) ◦ ι = ϑ.

Remark 7.14. We give a remark on the condition (3) of Definition 7.13. Thanks to
the condition (2), for any F -rational ̂′-admissible embedding j′ : S′ ↪→ G, we can
check that j′◦ι : S ↪→ G is an F -rational ̂-admissible embedding. This implies that
we have an identification Φ(G,S′

ȷ̂′)
∼= Φ(G,S′

j′)
∼= Φ(G,Sj′◦ι) ∼= Φ(G,S′

ȷ̂) given by

α′ 7→ α′ ◦ ι. If we transport the set of χ-data χ from Φ(G,Sȷ̂) to Φ(G,S′
ȷ̂′) via this

identification and write ι∗(χ) for it, then the set of ζ-data ζ in the condition (3) is
nothing but ζι∗(χ)/χ′ with the notation as in Remark 7.12.

Definition 7.15 ([Kal19b, Definition 5.3.3]). An isomorphism between two regular
supercuspidal data is a tuple

(ι, g, ζ, f) : (S, ̂, χ, ϑ, j)→ (S′, ̂′, χ′, ϑ′, j′)

consisting of

(1) an isomorphism of regular supercuspidal L-packet data

(ι, g, ζ) : (S, ̂, χ, ϑ)→ (S′, ̂′, χ′, ϑ′), and

(2) an automorphism f of G given by a G-conjugation satisfying j′ ◦ ι = f ◦ j.
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Remark 7.16. In the original definition of an isomorphism of regular supercuspidal
data given in [Kal19b, Definitions 5.3.3], the fourth parameter f of a tuple (ι, g, ζ, f)
is taken to be an isomorphism of rigid inner twists. As explained in Remark 7.10,
in this paper we always take every rigid inner twist to be trivial. Then, since any
automorphism of a rigid inner twist is given by a rational conjugation ([Kal16, Fact
5.1]), we may suppose that f is as in Definition 7.15.

Let us investigate the isomorphism classes of regular supercuspidal data over a
fixed regular supercuspidal L-packet datum. Let (S, ̂, χ, ϑ) be a regular supercusp-
idal L-packet datum. If (ι, g, ζ, f) : (S, ̂, χ, ϑ, j)→ (S, ̂, χ, ϑ, j′) is an isomorphism
of regular supercuspidal data (j, j′ ∈ JG), then ι is necessarily the identity map
by [Kal19b, Lemma 5.2.6]. In particular, the equality j′ ◦ ι = f ◦ j in Definition
7.15 implies that j and j′ are G-conjugate. Conversely, whenever j and j′ are
G-conjugate, two regular supercuspidal data (S, ̂, χ, ϑ, j) and (S, ̂, χ, ϑ, j′) are iso-
morphic. Hence, the isomorphism classes of regular supercuspidal data with a fixed
regular supercuspidal L-packet datum (S, ̂, χ, ϑ) are parametrized by the set

JG
G := JG/∼G = {̂-admissible F -rational embeddings S ↪→ G}/∼G,

where ∼G denotes the equivalence relation given by the G-conjugacy. In the fol-
lowing, we often regard JG

G as a subset of JG by fixing a set of representatives as
long as there is no risk of confusion.

Now we explain Kaletha’s construction of regular supercuspidal L-packets ([Kal19b,
1153-1154 pages]). Let (S, ̂, χ, ϑ, j) be a regular supercuspidal datum with j ∈ JG

G .
Then (Sj , ϑj) := (j(S), ϑ ◦ j−1) is a tame elliptic extra regular pair of G by the
definition of a regular supercuspidal datum. We define a character εϑj

of Sj by

εϑj
:= εϑj ,asym · εϑj ,ur · εSj ,ram.

As in the manner of Section 7.1, we get a set χϑj
of χ-data for Φ(G,Sj). Via the

identification Φ(G,Sj) ∼= Φ(G,Sȷ̂), this induces a set χϑȷ̂
of χ-data for Φ(G,Sȷ̂),

which is independent of the choice of j. By comparing χϑȷ̂
with the set of χ-data

χ contained in (S, ̂, χ, ϑ), we get a set of ζ-data ζχϑȷ̂
/χ (Remark 7.12). We define

a tame elliptic regular pair (Sj , ϑ
′
j) of G by putting the character ϑ′j : Sj → C× to

be
ϑ′j := εϑj

· (ϑ · ζ−1
χϑȷ̂

/χ,S) ◦ j
−1.

Then we get the regular supercuspidal representation π(Sj ,ϑ′
j)

of G associated

with the tame elliptic regular pair (Sj , ϑ
′
j) (see Section 4.1). Note that the G-

conjugacy class of (Sj , ϑ
′
j) is independent of the choice of a representative of j,

hence so is the isomorphism class of π(Sj ,ϑ′
j)
. We put

ΠG
ϕ := {π(Sj ,ϑ′

j)
| j ∈ JG

G }.

7.4. Regularity and torality on the Galois side. In fact, the L-parameters of
G obtained from regular supercuspidal L-packet data can be characterized in the
purely Galois-theoretic language.

Definition 7.17 ([Kal19b, Definition 5.2.3]). We say that an L-parameter φ : WF⋊
SL2(C)→ LG is regular supercuspidal if it satisfies the following:

(0) φ|SL2(C) is trivial and φ is discrete, i.e., S◦
ϕ := ZĜ(φ(WF ))

◦ ⊂ ZĜ,

(1) φ(PF ) is contained in a torus of Ĝ (note that thenM := ZĜ(φ(PF ))
◦ is a

Levi subgroup of Ĝ).
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(2) C := ZĜ(φ(IF ))
◦ is a torus (note that then T := ZM(C) is a maximal torus

ofM. We put Ŝ to be the Γ-module T with the Γ-action given by [φ(−)]).
(3) If n ∈ NM(T ) maps to a nontrivial element of ΩM(Ŝ)Γ, then n /∈ ZĜ(φ(IF )).

Proposition 7.18 ([Kal19b, Proposition 5.2.7]). Kaletha’s construction gives a
bijective correspondence between the isomorphism classes of regular supercuspidal L-
packet data of G and the equivalence classes of regular supercuspidal L-parameters
of G.

Moreover, the torality of the regular supercuspidal representations can be also
interpreted on the Galois side.

Definition 7.19 ([Kal19b, Definition 6.1.1]). We say that an L-parameter φ : WF⋊
SL2(C)→ LG is toral supercuspidal (of depth r > 0) if it satisfies the following:

(0) φ|SL2(C) is trivial and φ is discrete, i.e., S◦
ϕ := ZĜ(φ(WF ))

◦ ⊂ ZĜ,

(1) ZĜ(φ(IrF )) is a maximal torus of Ĝ containing φ(PF ), and

(2) φ is trivial on Ir+F , that is, φ(σ) = 1⋊ σ for any σ ∈ Ir+F .

Proposition 7.20 ([Kal19b, Proposition 6.1.2]). Kaletha’s construction gives a
bijective correspondence between the isomorphism classes of regular supercuspidal
L-packet data of G giving rise to toral supercuspidal representations and the equiv-
alence classes of toral supercuspidal L-parameters of G.

8. Framework of twisted endoscopy

8.1. Endoscopic data treated in this paper. We introduce a structure of a
twisted space on the L-group LG following [KS99, Section 1.2] and [Wal08, Section

1.3]. The automorphism θ and the fixed splitting splĜ define an automorphism θ̂ of

Ĝ; namely, θ̂ is the unique splĜ-preserving automorphism of Ĝ which is compatible

with θ under the isomorphism Ψ(Ĝ) ∼= Ψ(G)∨. Since θ̂ commutes with the action of

Γ on Ĝ, we can extend it to an automorphism Lθ of LG by Lθ(x,w) := (θ̂(x), w) for

(x,w) ∈ LG = Ĝ⋊WF . We define a twisted space on the dual side by LG̃ := LGLθ.
We next review the notion of endoscopic data following [KS99, Section 2.1] and

[Wal08, Section 1.3]. We call a quadruple (H,H, s, ξ̂) endoscopic data for the triple
(G, θ,1) if

• H is a quasi-split connected reductive group over F ,
• H is a split extension 1 → Ĥ → H → WF → 1 such that the induced
action of WF on Ĥ coincides with the action of WF on Ĥ induced from the
F -rational structure of H up to inner automorphisms of Ĥ,

• s ∈ Ĝ such that the automorphism [s] ◦ θ̂ is quasi-semisimple, and

• ξ̂ : H ↪→ LG is an L-homomorphism (i.e., continuous and commuting with
projections to WF ) satisfying the following conditions:

– [s] ◦ Lθ ◦ ξ̂ = ξ̂,

– ξ̂|Ĥ : Ĥ
∼−→ ĜsLθ = ZĜ(sLθ)◦.

When a set of endoscopic data (H,H, s, ξ̂) is given, by replacing it with an
equivalent data (see [KS99, Section 3.1] for the definition of the equivalence relation
on endoscopic data), we may suppose that

• s belongs to T̂ which is the torus contained in splĜ, and

• (B̂H, T̂H) := ξ̂−1(B̂, T̂) is a Γ-stable Borel pair of Ĥ.
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In this paper, we assume that

H in the endoscopic data (H,H, s, ξ̂) is equal to LH.

Let us fix such an endoscopic data (H, LH, s, ξ̂) in the following.
We note that, the absolute Weyl group ΩH ofH can be identified with a subgroup

of that ΩG of G (see Section 8.2). In particular, our assumption that p ∤ |ΩG|
implies that p ∤ |ΩH|.

8.2. Norm correspondence in twisted endoscopy. Let us briefly review the
notion of a norm in twisted endoscopy. (See [KS99, Section 3] for details.)

We fix a Borel pair (BH,TH) of H defined over F so that the Langlands dual

group Ĥ of H is equipped with an isomorphism Ψ(Ĥ) ∼= Ψ(H)∨. In particular,

we have isomorphisms X∗(TH) ∼= X∗(T̂H) and X∗(TH) ∼= X∗(T̂H). Since the

restriction of ξ̂ to T̂H induces

ξ̂|T̂H
: T̂H

∼−→ T̂♮ (:= T̂θ̂,◦),

by taking the dual of ξ̂|T̂H
, we get an F -rational isomorphism

ξ : Tθ
∼−→ TH.

By abuse of notation, we often write ξ also for the homomorphism T ↠ Tθ
ξ−→ TH.

In the following, as long as there is no risk of confusion, we simply write ΩG and
ΩH for the Weyl groups ΩG(T) and ΩH(TH), respectively. Via the isomorphism
ξ, ΩH is identified with a subgroup of ΩθG (see [KS99, Section 1.1]). Therefore ξ−1

induces a surjective map

TH/ΩH ↠ Tθ/Ω
θ
G.(13)

Note that TH/ΩH and Tθ/Ω
θ
G parametrize the semisimple conjugacy classes of H

and G̃, respectively. Moreover, the map (13) is Γ-equivariant.

We let G̃ss (resp. Hss) denote the subset of semisimple elements of G̃ (resp.

semisimple elements of H). For γ ∈ Hss and δ ∈ G̃ss, we say that γ and δ
correspond if the conjugacy classes of γ and δ correspond under the map (13).

We say that γ ∈ Hss is G̃-strongly regular if it corresponds to a strongly regular
semisimple conjugacy class in G̃. Note that if γ ∈ Hss is G̃-strongly regular, then it
is strongly regular. We let G̃srs (resp. HG̃-srs) denote the subset of strongly regular

semisimple elements of G̃ (resp. G̃-strongly regular semisimple elements of H).

For two F -rational elements δ and δ′ of G̃srs (resp. γ and γ′ of HG̃-srs), we say
that they are stably conjugate if they are conjugate by an element of G (resp. H).

When an F -rational element γ ∈ HG̃-srs corresponds to an F -rational element

δ ∈ G̃srs, we say that γ is a norm of δ. We define D to be the subset of HG̃-srs×G̃srs

consisting of pairs (γ, δ) such that γ is a norm of δ.

8.3. Transfer factor. We have a function

∆H,G̃ : HG-srs × G̃srs → C

called the (geometric) absolute transfer factor of Langlands–Kottwitz–Shelstad (in-

troduced in [LS87, KS99, KS12]). When the groups H and G̃ are obvious from
the context, we often omit the subscript from the notation and simply write ∆
for ∆H,G̃. Instead of reviewing its precise definition, we give several comments on
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the basic properties in the following; we refer the readers to [KS99, Sections 4, 5],
[Wal08, Chapitre 7], and [KS12] for the details.

(1) For any (γ, δ), ∆(γ, δ) 6= 0 if and only if (γ, δ) ∈ D, i.e., γ is a norm of δ.
(2) The transfer factor ∆(γ, δ) depends on the choice of a θ-stable Whittaker

datum of G. In this paper, we choose a θ-stable Whittaker datum w of G
determined by the fixed θ-stable splitting splG of G (see [KS99, Section
5.3] for how to produce w from splG).

(3) The transfer factor ∆(γ, δ) is defined to be the product of the ratio of root
numbers ε(T♮) · ε(TH)−1 and four factors ∆I(γ, δ), ∆II(γ, δ), ∆III(γ, δ),
and ∆IV(γ, δ). Among these factors, ∆I(γ, δ), ∆II(γ, δ), and ∆III(γ, δ)
depend on the choice of a-data and χ-data for the restricted root system
of T♦ := ZG(ZG(δ)) (this is an F -rational maximal torus in G) although
the whole product does not. For this reason, we write ∆•[a, χ](γ, δ) when
we want to emphasize the dependence on a and χ (• ∈ {I, II, III}).

(4) Following [Kal19b], we let ∆̊ denote the transfer factor ∆ without the fourth
factor ∆IV.

(5) The ratio of absolute transfer factors

∆(γ, δ; γ′, δ′) := ∆(γ, δ)/∆(γ′, δ′)

is called the relative transfer factor. We also define the relative versions of
∆• for • ∈ {I, II, III, IV} in the same way.

(6) The definition of the transfer factor given in [KS99] must be modified as
announced in [KS12] (see also [Wal09, Section 2] or [Kal21b, Appendix]).
We adopt the modified version “∆′” which is compatible with the classical
normalization of the local class field theory (hence consistent with, espe-
cially, [LS87],[MW16],[Kal19b]). More precisely, the factor ∆′ is the defined

to be the product of ∆new,−1
I , ∆KS

II , ∆KS,−1
III , and ∆KS

IV (and also the epsilon
factors), where ∆new

I is the factor defined in [KS12, Section 3.4] and ∆KS
II ,

∆KS
III and ∆KS

IV are the factors defined in [KS99]. We note that ∆new
I equals

the factor ∆KS
I defined in [KS99] when there is no restricted roots of type

2 or 3. in this paper, we let ∆I, ∆II, ∆III, and ∆IV denote ∆new,−1
I , ∆KS

II ,

∆KS,−1
III , and ∆KS

IV , respectively.

9. Analysis of θ-stable regular supercuspidal L-packets

9.1. θ-twist of regular supercuspidal L-packets and L-parameters. Let
(S, ̂, χ, ϑ) be a regular supercuspidal L-packet datum of G. Let φ be the L-
parameter of G associated to (S, ̂, χ, ϑ), i.e., φ := Ljχ ◦ φϑ.

We put  : T → S to be the dual isomorphism of ̂. Recall that JG :=
{̂-admissible F -rational embeddings S ↪→ G}. Let us investigate the ̂-admissibility
condition. By definition, an embedding j : S ↪→ G is ̂-admissible if and only if there
exists an element g ∈ G such that [g]◦j(S) = T and the inverse of the dual of [g]◦j
is Ĝ-conjugate to ̂. Since the image of ̂ is assumed to be T̂, this is equivalent to
that there exists an element ŵ ∈ ΩĜ

:= ΩĜ(T̂) such that [g] ◦ j and [ŵ] ◦ ̂ are
dual to each other. By letting w ∈ ΩG be the element corresponding to ŵ ∈ ΩĜ,
this condition is equivalent to that [g] ◦ j = [w]−1 ◦ −1. Therefore, we see that the
̂-admissibility condition simply says that j and −1 are G-conjugate.

The following lemma follows from this observation.
64



Lemma 9.1. If we put θ−1 ◦ JG := {θ−1 ◦ j | j ∈ JG}, then we have

θ−1 ◦ JG = {θ̂ ◦ ̂-admissible F -rational embeddings S ↪→ G}.
Recall that χ = {χα}α is a set of χ-data for Φ(G,Sȷ̂) ∼= Φ(G,Sj) (for any

j ∈ JG
G ). As we have Φ(G,Sj)

∼−→ Φ(G,Sθ−1◦j), we can transport χ to a set of χ-
data for Φ(G,Sθ−1◦j), for which we write θ(χ). Then we get a regular supercuspidal

L-packet datum (S, θ̂ ◦ ̂, θ(χ), ϑ).
The following lemma can be also found in [Zha20, Lemma 4.9].

Lemma 9.2. The L-parameter Lθ ◦ φ corresponds to the regular supercuspidal L-

packet datum (S, θ̂ ◦ ̂, θ(χ), ϑ).
Proof. By tracking the Langlands–Shelstad construction ([LS87, Section 2.6]) of
the L-embedding Ljχ :

LS ↪→ LG, we can check that Lθ ◦ Ljχ is nothing but the
L-embedding obtained by applying the Langlands–Shelstad construction to the

embedding θ̂ ◦ ̂ : Ŝ ↪→ Ĝ with the χ-data θ(χ). In other words, the L-parameter
Lθ ◦ Ljχ ◦ φϑ is associated to the regular supercuspidal L-packet datum (S, θ̂ ◦
̂, θ(χ), ϑ). □
Lemma 9.3. The L-packet ΠG

Lθ◦ϕ consists of regular supercuspidal representations

whose regular supercuspidal data are given by (S, θ̂ ◦ ̂, θ(χ), ϑ, θ−1 ◦ j) for j ∈ JG
G .

Proof. This simply follows from that the equality of Lemma 9.1

θ−1 ◦ JG = {θ̂ ◦ ̂-admissible F -rational embeddings S ↪→ G}
induces an identification

θ−1 ◦ JG
G
∼= {θ̂ ◦ ̂-admissible F -rational embeddings S ↪→ G}/∼G.

□
Lemma 9.4. Let π ∈ ΠG

ϕ be a regular supercuspidal representation whose regular

supercuspidal datum is (S, ̂, χ, ϑ, j). Then its θ-twist πθ := π ◦ θ arises from the

regular supercuspidal datum (S, θ̂ ◦ ̂, θ(χ), ϑ, θ−1 ◦ j).
Proof. We first note that, for any tame elliptic regular pair (S0, ϑ0) ofG, the θ-twist
πθ(S0,ϑ0)

of the associated regular supercuspidal representation π(S0,ϑ0) is equivalent

to π(θ−1(S0),ϑ0◦θ). (This can be easily checked in the same way as in Section 5.2,
where the toral case is treated.) Thus we have

πθ = πθ(Sj ,ϑ′
j)
∼= π(θ−1(Sj),ϑ′

j◦θ).

Here recall that ϑ′j is a character of Sj = j(S) given by

ϑ′j := εϑj
· (ϑ · ζ−1

χϑȷ̂
/χ,S) ◦ j

−1.

On the other hand, the regular supercuspidal representation associated to the

datum (S, θ̂ ◦ ̂, θ(χ), ϑ, θ−1 ◦ j) is given by π(θ−1(Sj),ϑ′
θ−1◦j

), where

ϑ′θ−1◦j = εϑθ−1◦j
· (ϑ · ζ−1

χϑ
θ̂◦ȷ̂

/θ(χ),S) ◦ (θ
−1 ◦ j)−1.

By the definition of the character ε, we easily see that εϑj
◦θ = εϑj◦θ. Moreover, it

can be also easily checked that ζχϑȷ̂
/χ,S equals ζχϑ

θ̂◦ȷ̂
/θ(χ),S . Hence we conclude that

the characters ϑ′j ◦θ and ϑ′θ−1◦j are equal, which implies that πθ ∼= π(θ−1(Sj),ϑ′
θ−1◦j

).

□
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Lemmas 9.3 and 9.4 imply the following:

Proposition 9.5. We have ΠG
ϕ ◦ θ = ΠG

Lθ◦ϕ.

9.2. Structure of θ-stable L-packets. Let us keep the notation as in Section
9.1. Thus φ denotes the L-parameter attached to a regular supercuspidal L-packet
datum (S, ̂, χ, ϑ), i.e., φ = Ljχ ◦ φϑ. In the following, we suppose that φ factors

through the L-embedding ξ̂ : LH ↪→ LG. As we have [s]◦Lθ◦ ξ̂ = ξ̂, this assumption
implies that we have [s] ◦ Lθ ◦ φ = φ. In particular, the L-parameters Lθ ◦ φ and

φ are Ĝ-conjugate and the conjugation is given by s. Thus, by Lemma 9.3 and
Proposition 7.18, there exists an isomorphism between the regular supercuspidal

L-packet data (S, ̂, χ, ϑ) and (S, θ̂ ◦ ̂, θ(χ), ϑ). Let us investigate how such an
isomorphism can be constructed explicitly.

In the following, we put φ′ := Lθ ◦ φ, ̂′ := θ̂ ◦ ̂, and χ′ := θ(χ). We may and do

assume that the image of ̂ is given by T̂. We define an automorphism Ŝ of Ŝ by

θ̂S := ̂−1 ◦ ̂′ = ̂−1 ◦ θ̂ ◦ ̂. Let θS be the automorphism of S which is dual to θ̂S.

Note that θ̂S and θS are involutive.

Lemma 9.6. The automorphism θ̂S of Ŝ is Γ-equivariant, hence θS is F -rational.

Proof. As the Γ-actions on Ŝ and T̂ factor through a finite quotient, we may discuss
the equivariance for WF instead of Γ. Recall that we have φ = Ljχ ◦ φϑ. As

φϑ : WF → LS = Ŝ⋊WF is an L-parameter of S, the WF -action on Ŝ is described
by σ(t) = [φϑ(σ)](t) for any σ ∈ WF and t ∈ Ŝ. By noting that Ljχ :

LS ↪→ LG is

an L-embedding extending ̂ : Ŝ
∼−→ T̂, this implies that ̂ ◦ σ(t) = [φ(σ)] ◦ ̂(t) for

any σ ∈ WF and t ∈ Ŝ. Similarly, we also have ̂′ ◦ σ(t) = [φ′(σ)] ◦ ̂′(t) for any

σ ∈WF and t ∈ Ŝ. Hence, by noting that [s] ◦ φ′ = φ and that [s]|T̂ = idT̂, we get

θ̂S ◦ σ = ̂−1 ◦ [s] ◦ ̂′ ◦ σ = ̂−1 ◦ [s] ◦ [φ′(σ)] ◦ ̂′

= ̂−1 ◦ [φ(σ)] ◦ [s] ◦ ̂′ = σ ◦ ̂−1 ◦ [s] ◦ ̂′ = σ ◦ θ̂S.

This completes the proof. □

We define a set ζ = (ζα)α∈Φ(G,S) of ζ-data for Φ(G,S) by ζ := ζθS,∗(χ)/χ′ (see
Definition 7.13 and also Remark 7.14).

Proposition 9.7. The tuple (θS, 1, ζ) gives an isomorphism of regular supercuspi-
dal L-packet data:

(θS, 1, ζ) : (S, ̂, χ, ϑ)
∼−→ (S, ̂′, χ′, ϑ).

To show this proposition, we recall the following property of a set of ζ-data, which
is essentially discussed in [Kal19a], especially in the proof of [Kal19a, Theorem 3.16]:

Lemma 9.8. Let χ1 and χ2 be sets of χ-data for Φ(G,Sȷ̂). Let cχ1/χ2
: WF → Ŝ

be the L-parameter of the character ζχ1/χ2,S : S → C×, which is regarded as a

1-cocycle. Then we have Ljχ1
= (̂ ◦ cχ1/χ2

) · Ljχ2
.

Proof of Proposition 9.7. Our task is to check that the condition (3) of Definition
7.13 is satisfied, i.e., the equality (ζ−1

S · ϑ) ◦ θS = ϑ holds. With the notation as

in Lemma 9.8, the L-parameter of ζ−1
S · ϑ is given by cχ′/θS,∗(χ) · φϑ. Thus, by

the functoriality of the local Langlands correspondence for tori, the L-parameter
of (ζ−1

S · ϑ) ◦ θS is given by LθS ◦ (cχ′/θS,∗(χ) · φϑ). We have to show that this is
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equivalent to φϑ as L-parameters of S, or equivalently, cχ′/θS,∗(χ) · φϑ and LθS ◦ φϑ
are equivalent. By putting s′ := ̂−1(s), let us check that [s′] ◦ (cχ′/θS,∗(χ) · φϑ) is

equal to LθS ◦ φϑ.
Since Lj′θS,∗(χ)

is injective, it suffices to show the equality after composing them

with Lj′θS,∗(χ)
. By using Lemma 9.8, we have

Lj′θS,∗(χ)
◦ [s′] ◦ (cχ′/θS,∗(χ) · φϑ) = [s] ◦ Lj′θS,∗(χ)

◦ (cχ′/θS,∗(χ) · φϑ)

= [s] ◦ Lj′χ′ ◦ φϑ = [s] ◦ φ′.

On the other hand, by noting that jχ = Lj′θS,∗(χ)
◦ LθS (this is essentially the same

identity as Lj′χ′ = Lθ ◦ Ljχ, which was used in the proof of Lemma 9.2), we have

Lj′θS,∗(χ)
◦ LθS ◦ φϑ = Ljχ ◦ φϑ = φ.

As we have [s] ◦ φ′ = φ, we get the assertion. □
Since we have Lθ ◦ φ ∼= φ, Proposition 9.5 implies that ΠG

ϕ ◦ θ = ΠG
ϕ . The effect

of θ-twist on ΠG
ϕ can be described more explicitly as follows.

Proposition 9.9. Let π be the member of ΠG
ϕ labeled by (S, ̂, χ, ϑ, j) for j ∈ JG

G .

Then its θ-twist πθ is labeled by (S, ̂, χ, ϑ, θ−1 ◦ j ◦ θS).

Proof. When π arises from (S, ̂, χ, ϑ, j) for j ∈ JG
G , by Lemma 9.4, πθ arises from

the datum (S, θ̂ ◦ ̂, θ(χ), ϑ, θ−1 ◦ j). On the other hand, the isomorphism of regular
supercuspidal L-packet data (θS, 1, ζ) introduced above induces an isomorphism of
regular supercuspidal data

(θS, 1, ζ, 1) : (S, ̂, χ, ϑ, j
′)

∼−→ (S, θ̂ ◦ ̂, θ(χ), ϑ, j′ ◦ θ−1
S )

for each j′ ∈ JG
G . Thus the datum (S, θ̂ ◦ ̂, θ(χ), ϑ, θ−1 ◦ j) is isomorphic to

(S, ̂, χ, ϑ, θ−1 ◦ j ◦ θS). □
Corollary 9.10. Let π be the member of ΠG

ϕ labeled by (S, ̂, χ, ϑ, j) for j ∈ JG
G .

Then the following are equivalent:

(1) π is θ-stable, i.e., π ∼= πθ,
(2) j equals θ−1 ◦ j ◦ θS in JG

G , i.e., θ−1 ◦ j ◦ θS and j are G-conjugate.

9.3. Embeddings of twisted tori. We introduce several notions related to twisted
maximal tori of G̃. Suppose that (S, S̃) is a twisted space over F whose S is a torus.

Let θS be the automorphism of S given by S̃, i.e., for any s ∈ S and η ∈ S̃, we have
θS(s) = [η](s).

Definition 9.11. We say that an embedding j : S ↪→ G is an F -rational embedding
of a maximal torus if j is F -rational and Sj := j(S) is a maximal torus of G.

Definition 9.12. Let (j, j̃) : (S, S̃) ↪→ (G, G̃) be an embedding of a twisted space,

i.e., j : S ↪→ G and j̃ : S̃ ↪→ G̃ are embeddings such that, for any s1, s2 ∈ S
and t ∈ S̃, we have j̃(s1ts2) = j(s1)j̃(t)j(s2). We say that (j, j̃) is an F -rational
embedding of a twisted maximal torus if the following conditions are satisfied:

• j is an F -rational embedding of a maximal torus and j̃ is F -rational;
• (Sj , S̃j) := (j(S), j̃(S̃)) is an F -rational twisted maximal torus of G̃.

We often simply write “(j, j̃) : S̃ ↪→ G̃ is an F -rational embedding of a twisted
maximal torus”.
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Remark 9.13. Let (j, j̃) : S̃ ↪→ G̃ be an F -rational embedding of a twisted maximal

torus. For any η ∈ S̃, as we have θS = [η], we have j−1 ◦ [j̃(η)] ◦ j = θS.

Note that if (j, j̃) : S̃ ↪→ G̃ is an F -rational embedding of a twisted maximal

torus, then (j, j̃s) : S̃ ↪→ G̃ is again an F -rational embedding of a twisted maximal

torus for any s ∈ S, where j̃s is defined by j̃s(η) := j(s)j̃(η) for η ∈ S̃. The following
lemma says that the converse of this fact is also true:

Lemma 9.14. Let (S, S̃) be a twisted space defined over F . Let j : S ↪→ G be
an F -rational embedding of a maximal torus. If (j, j̃1) and (j, j̃2) are F -rational

embeddings of a twisted maximal torus S̃ ↪→ G̃, then there exists an element s ∈ S
satisfying j̃2(η) = j(s)j̃1(η) for any η ∈ S̃.

Proof. If we fix an element η′ ∈ S̃, then we have

j−1 ◦ [j̃1(η′)] ◦ j = θS = j−1 ◦ [j̃2(η′)] ◦ j
by Remark 9.13. This implies that j̃2(η

′)−1 · j̃1(η′) belongs to Sj , hence there exists
an s ∈ S such that j̃2(η

′) = j(s)j̃1(η
′). From this, we can see that j̃2(η) = j(s)j̃1(η)

for any η ∈ S̃. □

For two F -rational embeddings (j1, j̃1) and (j2, j̃2) of a twisted maximal torus

S̃ ↪→ G̃, we write (j1, j̃1) ∼ (j2, j̃2) when j1 = j2 (this gives an equivalence relation
on the set of F -rational embeddings of a twisted maximal torus). Note that, by

Lemma 9.14, the image S̃j of j̃ depends only on the equivalence class of (j, j̃).

When (j, j̃) is an F -rational embedding of a twisted maximal torus, we often let j
denote the equivalence classes of (j, j̃) by abuse of notation. Also, if we simply say

“j : S̃ ↪→ G̃ is an F -rational embedding of a twisted maximal torus”, then it means
that we have an F -rational embedding of a twisted maximal torus (j, j̃) and j is its
equivalence class.

As in the untwisted case, we define the stable/rational conjugacy for F -rational
embeddings of a twisted maximal torus as follows:

Definition 9.15. Let (j, j̃) and (j′, j̃′) be F -rational embeddings of a twisted

maximal torus S̃ ↪→ G̃. We say that (j, j̃) and (j′, j̃′) are G-conjugate (resp. G-
conjugate) if there exists an element x ∈ G (resp. x ∈ G) satisfying j′ = [x] ◦ j.
In this case, we write (j, j̃) ∼G (j′, j̃′) (resp. (j, j̃) ∼G (j′, j̃′)). When j and j′

are equivalence classes of F -rational embeddings of a twisted maximal torus, we
say j and j′ are G-conjugate (resp. G-conjugate) if some (or, equivalently, any)
representatives (j, j̃) and (j′, j̃′) are G-conjugate (resp. G-conjugate). In this case,
we write j ∼G j′ (resp. j ∼G j′).

9.4. Parametrization of θ-stable members of a θ-stable packet. Let us go
back to the setting of Sections 9.1 and 9.2. Recall that (S, ̂, χ, ϑ) is a regular
supercuspidal L-packet datum whose L-parameter satisfies [s] ◦ Lθ ◦ φ = φ. In
Section 9.2, we introduced an F -rational involutive automorphism θS of S. We
consider the twisted space S̃ := SθS associated to the pair (S, θS).

Proposition 9.16. Let πj be the member of ΠG
ϕ labeled by (S, ̂, χ, ϑ, j) for j ∈ JG

G .
Then the following are equivalent:

(1) πj is θ-stable, i.e., πj ∼= πθj ,

(2) j extends to an F -rational embedding of a twisted maximal torus S̃ ↪→ G̃.
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Proof. We first show that (2) implies (1). Suppose that j extends to an embedding

(j, j̃) : S̃ ↪→ G̃ of an F -rational twisted maximal torus. Then, putting η := j̃(θS) ∈
G̃, we get [η] ◦ j = j ◦ θS. In other words, if we write η = η◦θ with η◦ ∈ G, then
we have [η◦] ◦ θ ◦ j = j ◦ θS. In particular, θ−1 ◦ j ◦ θS and j are G-conjugate. This
implies that πj is θ-stable by Corollary 9.10.

We next show that (1) implies (2). Again by Corollary 9.10, we may suppose
that we have an element x ∈ G satisfying θ−1 ◦ j ◦ θS = [x] ◦ j. Then, by putting

j̃(θS) := θ(x)θ ∈ G̃, the argument in the previous paragraph shows that (j, j̃)

defines an embedding of a twisted space (S, S̃) into (G, G̃), which is defined over

F . Hence our task is to show that the image (Sj , S̃j) is an F -rational twisted

maximal torus of (G, G̃). In other words, we have to find a Borel subgroup which
contains Sj and is preserved by [j̃(θS)] = [θ(x)] ◦ θ (see Lemma 3.6).

Recall that we put  : T
∼−→ S to be the dual of ̂ : Ŝ

∼−→ T̂ and that θS is defined

to be the dual of ̂−1 ◦ θ̂ ◦ ̂. Hence we have θS =  ◦ θ ◦ −1. The embedding j
is given by [y] ◦ −1 for some y ∈ G by the ̂-admissibility (see the beginning of
Section 9.1). Thus we get

j ◦ θS = [y] ◦ −1 ◦  ◦ θ ◦ −1 = [yθ(y)−1] ◦ θ ◦ [y] ◦ −1 = [yθ(y)−1] ◦ θ ◦ j.
As we also have θ−1 ◦ j ◦ θS = [x] ◦ j, or equivalently, j ◦ θS = [θ(x)] ◦ θ ◦ j, we get
[yθ(y)−1] ◦ θ ◦ j = [θ(x)] ◦ θ ◦ j. This implies that θ(x)−1yθ(y)−1 ∈ θ(Sj). Let us
write θ(x)−1yθ(y)−1 = t with t ∈ θ(Sj).

Since we have Sj =
yT, the Borel subgroup yB contains Sj . Let us check that

yB satisfies the desired condition, i.e., [θ(x)] ◦ θ(yB) = yB. By noting that B is
stable under θ and that t ∈ θ(Sj) ⊂ θ(yB), we have

[θ(x)] ◦ θ(yB) = θ(x)θ(yB) = yθ(y)−1t−1

θ(yB) = yθ(y)−1

θ(yB) = yθ(B) = yB.

□

Now let us recall that

JG
G = {j : S ↪→ G | j is F -rational and j ∼G −1}/∼G

(see the discussion at the beginning of Section 9.1). We put

J̃G
G := {j : S̃ ↪→ G̃ | j is F -rational and j ∼G −1}/∼G,

namely, J̃G
G is the set of G-conjugacy classes of equivalence classes of F -rational

embeddings of a twisted maximal torus which areG-conjugate to −1. Note that the
canonical forgetful map J̃G

G ↪→ JG
G : (j, j̃) 7→ j is injective. Thus, in the following,

we regard J̃G
G as a subset of JG

G . By Proposition 9.16, the set J̃G
G parametrizes the

θ-stable representations in ΠG
ϕ . More precisely, for each j ∈ JG

G , the corresponding

member πj is θ-stable if and only if j belongs to J̃G
G .

Remark 9.17. Recall that Shahidi’s generic packet conjecture predicts that every
tempered L-packet contains a unique w-generic member. If ΠG

ϕ satisfies the generic

packet conjecture, then the unique w-generic member of ΠG
ϕ (say πw) is θ-stable.

Indeed, the θ-twist πθw is again w-generic since w is θ-stable. As we have ΠG
ϕ ◦ θ =

ΠG
ϕ , both πw and πθw belong to ΠG

ϕ . Hence the uniqueness part of the generic packet

conjecture implies that πw and πθw are isomorphic. (We note that the generic packet
conjecture is proved in [Kal19b, Lemma 6.2.2] for toral regular supercuspidal L-
packets, on which we will eventually focus in this paper.)

69



9.5. Descended regular supercuspidal L-packet. We keep the notation as in

the previous subsections. Recall that φ : WF → G factors through ξ̂ : LH ↪→ LG.

Let φH be the L-parameter of H such that φ = ξ̂ ◦ φH.

Proposition 9.18. The L-parameter φH is regular supercuspidal.

Proof. Let us check that the four conditions of Definition 7.17 for H are satisfied.
We first consider (0). Obviously φ|SL2(C) is trivial, hence so is φH|SL2(C). Since

ZĤ(φ(WF ))
◦ is contained in ZĜ(φ(WF ))

◦, we have ZĤ(φ(WF ))
◦ ⊂ ZĜ ∩ Ĥ ⊂ ZĤ.

We next consider (1). Since φ = Ljχ ◦ φϑ and S is tamely ramified, a torus of Ĝ

containing φ(PF ) can be taken to be T̂. Thus φH is contained in ξ̂−1(T̂) = T̂H.

We consider (2). Since we have ZĤ(φ(IF ))
◦ ⊂ ZĜ(φ(IF ))

◦ ∩ Ĥ and ZĜ(φ(IF ))
◦

is a torus, ZĤ(φ(IF ))
◦ is also a torus.

We finally consider (3). We put MH := ZĤ(φ(PF ))
◦, CH := ZĤ(φ(IF ))

◦,
and TH := ZMH

(CH). Then we have NMH
(TH) ⊂ NM(T ) and this inclusion

induces a Γ-equivariant inclusion of Weyl groups ΩMH
(ŜH) ↪→ ΩM(Ŝ). Thus,

if n ∈ NMH
(TH) maps to a nontrivial element of ΩMH

(ŜH)Γ, then we have
n /∈ ZĜ(φ(IF )). This implies that n /∈ ZĤ(φ(IF )).

□
Proposition 9.19. If φ is toral supercuspidal, then so is φH.

Proof. Let us check that the three conditions of Definition 7.19 for H are satisfied.
The condition (0) is already checked in the proof of Proposition 9.18. The condition
(2) for φH is clearly deduced from the condition (2) for φ. Thus let us consider (1).

By the torality of φ, ZĜ(φ(IrF )) is a maximal torus of Ĝ containing φ(PF ) . Since

we have φ(IrF ) ⊂ T̂ (by the construction of φ), we have ZĜ(φ(IrF )) ⊃ ZĜ(T̂) = T̂.

Thus we get ZĜ(φ(IrF )) = T̂. This implies that TH := ZĤ(φ(IrF )) is equal to

Ĥ ∩ T̂ = T̂H, which is a maximal torus of Ĥ and contains φ(PF ). □
By applying Proposition 7.18 to the descended L-parameter φH, we obtain a

regular supercuspidal L-packet datum (SH, ̂H, χH, ϑH) of H and hence a regular
supercuspidal L-packet ΠH

ϕH
of H. In particular, we may and do assume φH =

LjχH
◦ φϑH

, where LjχH
denotes the Langlands–Shelstad extension of ̂H to an L-

embedding via the set of χ-data χH:

WF
ϕϑ //

ϕϑH $$I
II

II
II

II
Ŝ⋊WF

� �
Ljχ

// Ĝ⋊WF

ŜH ⋊WF
� �

LjχH // Ĥ⋊WF

?�
ξ̂

OO
(14)

Let us investigate the relationship between (S, ̂, χ, ϑ) and (SH, ̂H, χH, ϑH).

As we saw in the proof of Proposition 9.19, the image of ̂H is given by ̂H(ŜH) =

ZĤ(φ(IrF )) = Ĥ ∩ T̂ = T̂H. Recall that ̂ ◦ θ̂S = θ̂ ◦ ̂. This implies that the

embedding ̂ induces an isomorphism Ŝθ̂S,◦ ∼= T̂θ̂,◦ = ξ̂(T̂H). Thus, by combining

it with ξ̂ and ̂H, we get an identification of ŜH with Ŝθ̂S,◦:

̂−1 ◦ ξ̂ ◦ ̂H : ŜH
∼−→ Ŝθ̂S,◦.

As discussed in the proof of Lemma 9.6, we have ̂ ◦ σ(t) = [φ(σ)] ◦ ̂(t) for any

σ ∈WF and t ∈ Ŝ. Similarly, we also have ̂H◦σ(t) = [φH(σ)]◦̂H(t) for any σ ∈WF
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and t ∈ ŜH. Therefore, since we have φ = ξ̂ ◦ φH, the isomorphism ̂−1 ◦ ξ ◦ ̂H is
Γ-equivariant. Thus, by taking dual, we get an F -rational isomorphism

SH
∼= SθS .

Proposition 9.20. The restriction ϑ|S0+
of ϑ to S0+ coincide with a pullback of

the restriction ϑH|SH,0+
of ϑH to SH,0+ through the map S0+ → SθS,0+

∼= SH,0+.

Proof. By abuse of notation, we again write ϑH for the pullback of ϑH along the
canonical map S → SθS

∼= SH. Then our task is to show that the depth of the
character ϑ−1 · ϑH of S is zero. Since the local Langlands correspondence for tame
tori is multiplicative and preserves the depth (see, e.g., [Yu09]), the depth of ϑ−1·ϑH
equals that of φ−1

ϑ · φϑH
. Here φ−1

ϑ · φϑH
denotes the product as 1-cocycles.

We note that the following diagram is commutative since every object is tamely
ramified (more precisely, Γ-actions on Ŝ, ŜH, Ĝ, and Ĥ are trivial on I0+F and the
set of χ-data χ and χH are minimally ramified):

Ŝ⋊ I0+F
� �

Ljχ
// Ĝ⋊ I0+F

ŜH ⋊ I0+F

?�

OO

� �
LjχH // Ĥ⋊ I0+F

?�
ξ̂

OO

Thus, by taking into account the commutativity of the diagram (14), we see that
the following diagram commutes:

I0+F

ϕϑ|I0+
F //

ϕϑH
|
I
0+
F ##H

HH
HH

HH
HH

Ŝ⋊ I0+F

ŜH ⋊ I0+F

?�

OO

This implies that depth of the L-parameter φ−1
ϑ · φϑH

is zero. □
Now let us suppose that φ is toral of depth r > 0. Recall that, as proved in

the proof of Lemma 9.8, we have (ζ−1
S · ϑ) ◦ θS = ϑ. As ζS is tamely ramified, this

implies that ϑ|S0+
◦θS = ϑ|S0+

. This implies that we can take a θS-invariant element
X∗ ∈ s∗−r realizing ϑ|Ss+:r+

(see Lemma 5.3). By Proposition 9.20, we furthermore
have the following (note that s∗θS is identified with the θS-fixed subspace of s∗):

Corollary 9.21. We can take elements X∗ ∈ s∗−r and Y
∗ ∈ s∗H,−r realizing ϑ|Ss+:r+

and ϑH|SH,s+:r+
, respectively, so that Y ∗ maps to X∗ under the natural map s∗H

∼=
s∗θS ↪→ s∗.

Remark 9.22. We caution that the diagram

Ŝ⋊WF
� �

Ljχ
// Ĝ⋊WF

ŜH ⋊WF

?�

OO

� �
LjχH // Ĥ⋊WF

?�
ξ̂

OO

is not commutative in general although it is commutative at the positive depth level
as observed in the proof of Proposition 9.20. The non-commutativity of this diagram
is crucially related to the computation of the transfer factor (Section 14.2.6).
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10. Twisted version of Kaletha’s descent lemma

10.1. Waldspurger’s diagram. We recall the notion of a “diagram”. This was
introduced by Waldspurger in [Wal08, Section 3.2] first . Then, a slightly modified
definition was introduced in [MW16, I.1.10]. Here we follow the latter version.

Definition 10.1. For (ε, η) ∈ Hss×G̃ss, a diagram associated to (ε, η) is a quadruple
D = (B♭,T♭,B♦,T♦) satisfying the following:

• T♭ is an F -rational maximal torus of H,
• (B♭,T♭) is a Borel pair of H which is [ε]-stable,
• T♦ is an F -rational maximal torus of G,
• (B♦,T♦) is a Borel pair of G which is [η]-stable,

• The Borel pairs (B♭,T♭) and (BH,TH) induce a unique isomorphism ξ♭ : T
♭ ∼−→

TH given by H-conjugation. Similarly, (B♦,T♦) and (B,T) induce a

unique isomorphism ξ♦ : T♦ ∼−→ T given by G-conjugation. Then the com-
position ξ−1

♭ ◦ ξ ◦ ξ♦ is defined over F . (We write ξD for this composition.)

• If we let g ∈ G be an element such that [g] = ξ♦, then η belongs to [g]
−1(T̃).

(We put T̃♦ := T♦η and write ξ̃♦ for the map [g] : T̃♦ → T̃.)
• Let νD ∈ T be an element such that [g](η) = νDθ. Then we have ξ(νD) =
ξ♭(ε). (We write µD for this element.) In other words, if we define a map

ξ̃D : T̃♦ → T♭ by ξ̃D := ξ−1
♭ ◦ ξ ◦ ((−) · θ

−1) ◦ ξ̃♦, then we have ξ̃D(η) = ε.

T♭

ξ♭

��

T♦

ξ♢

��

ξDoooo T̃♦ = T♦η

ξ̃♢
��

ε_

ξ♭

��

η_

ξ̃♢

��

�ξ̃Doo

TH
oo
ξ

∼=
Tθ Toooo T̃ = Tθ

(−)·θ−1

oo µD νD
�oo νDθ

�oo

For (ε, η) ∈ Hss× G̃ss, let D(ε, η) denote the set of diagrams associated to (ε, η).

Remark 10.2. (1) We often simply write ν and µ for νD and µD, respectively.
(2) The condition that (B♭,T♭) is [ε]-stable is equivalent to that ε ∈ T♭, which

is furthermore equivalent to that T♭ ⊂ Hϵ.
(3) Let D = (B♭,T♭,B♦,T♦) ∈ D(ε, η). Then (T♦, T̃♦) is an F -rational

twisted maximal torus of (G, G̃) by Lemma 3.6. In particular, T♮ := Tη,◦

is a maximal torus of Gη and T♦ is recovered from T♮ by T♦ = ZG(T♮)
(see Proposition 3.3).

(4) If the set D(ε, η) is not empty, then the stable conjugacy classes of ε and η
correspond in the sense of twisted endoscopy (see Section 8.2).

(5) In general, even if the stable conjugacy classes of ε and η correspond, the
set D(ε, η) might be empty. See [MW16, I.1.10].

(6) When ε is strongly G̃-regular semisimple and η is strongly regular semisim-
ple, the set D(ε, η) is not empty if and only if ε is a norm of η by [MW16,
I.1.10, Lemme]. Furthermore, a diagram associated to (ε, η) is essentially
unique. We will investigate these facts later (Lemma 10.7) in detail.

Remark 10.3. Recall that the map ξ : T ↠ Tθ
∼−→ TH induces an identification

of the Weyl group ΩH(TH) of TH in H with a subgroup of ΩG(T)θ. For any
diagram D = (B♭,T♭,B♦,T♦) ∈ D(ε, η), the maps ξ♦ and ξ♭ induce isomor-

phisms ΩH(T♭)
∼−→ ΩH(TH) and ΩG(T♦)

∼−→ ΩG(T), respectively. The image of
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ΩHϵ
(T♭) ⊂ ΩH(T♭) is contained in the image of ΩGη

(T♮) ⊂ ΩG(T♦), hence we get

an identification ΩHϵ(T
♭) ↪→ ΩGη (T

♮). Since ξD is F -rational, this identification
is F -rational.

Lemma 10.4. Let D ∈ D(ε, η). Then the map ξ̃D is F -rational.

Proof. Any element of T̃♦ can be written as tη with t ∈ T♦. Then the image of tη
under ξ̃D is given by ξD(t)ε. In other words, the map ξ̃D equals the composition

((−) · ε) ◦ ξD ◦ ((−) · η−1). Since η, ε, and ξD are F -rational, so is ξ̃D. □

10.2. Equivalence relation on diagrams. Let (ε, η) ∈ Hss × G̃ss. We introduce
an equivalence relation on D(ε, η) as follows:

Definition 10.5. We define ∼ to be the equivalence relation on D(ε, η) gener-
ated by the following two equivalence relations: Let D = (B♭,T♭,B♦,T♦), D̄ =
(B̄♭, T̄♭, B̄♦, T̄♦) ∈ D(ε, η).

(i) (Hϵ,Gη)-conjugacy: We say that D and D̄ are (Hϵ,Gη)-conjugate if
there exists elements h ∈ Hϵ and g ∈ Gη such that

D̄ = (hB♭, hT♭, gB♦, gT♦).

(ii) ΩH-conjugacy: We say that D and D̄ are ΩH(T♭)-conjugate if there
exists elements w ∈ ΩH(T♭) such that

D̄ = (wB♭,T♭,wB♦,T♦).

Here, w is also regarded as an element of ΩG(T♦) (see Remark 10.3).

We write D(ε, η) for the set D(ε, η)/∼ of equivalence classes of diagrams associ-
ated to (ε, η).

Remark 10.6. When G is untwisted (θ is trivial) and Hϵ is quasi-split, the set
D(ε, η) is nothing but the set Ξ(Hϵ,Gη) used in the proof of [Kal19b, Theorem
6.3.4].

Lemma 10.7. If (ε, η) ∈ D, then the set D(ε, η) is a singleton, i.e., any two

diagrams associated to (ε, η) are equivalent. Moreover, the maps ξD and ξ̃D are
independent of a diagram D ∈ D(ε, η).

Proof. The non-emptiness of D(ε, η) follows from [KS99, Lemma 3.3.B] (with the
argument in the final paragraph in 29 page of [KS99]). See also [MW16, I.1.10,
Lemme].

We show that any two diagrams associated to (ε, η) are equivalent. Let D =
(B♭,T♭,B♦,T♦), D̄ = (B̄♭, T̄♭, B̄♦, T̄♦) ∈ D(ε, η). Since ε is strongly regular
semisimple, we have T♭ = Hϵ = T̄♭. Similarly we have T♮ = Gη = T̄♮ (recall
that both T♮ and T̄♮ are maximal tori of Gη and that Gη is a torus by the strong
regularity of η). As we have T♦ = ZG(T♮) and T̄♦ = ZG(T̄♮), we get T♦ = T̄♦.

Since both B♭ and B̄♭ are Borel subgroups of H containing T♭, there exists
an element w ∈ ΩH(T♭) such that wB♭ = B̄♭. Hence, by replacing D with its
ΩH(T♭)-conjugate diagram (wB♭,T♭,wB♦,T♦), we may suppose that B♭ = B̄♭.

Let g ∈ G be an element satisfying (gB♦, gT♦) = (B,T). Similarly, let ḡ ∈ G

be an element satisfying (ḡB̄♦, ḡT♦) = (B,T). Since ξ̃D(η) = ε = ξ̃D̄(η), we get

ξ−1
♭ ◦ ξ(

gη · θ−1) = ξ−1
♭ ◦ ξ(

ḡη · θ−1).
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In other words, gη · θ−1, ḡη · θ−1 ∈ T map to the same element of Tθ under the
natural quotient map T ↠ Tθ. Hence we can find an element t ∈ T such that
ḡη ·θ−1 = t · (gη ·θ−1) ·θ(t)−1, equivalently, ḡη = t · (gη) · t−1. Thus ḡ−1tg belongs to
the (full) centralizer Gη of η in G. By [Wal08, Section 3.1], the strong regularity
of η implies Gη = ZηGGη = ZηGT♮. In particular, we can take an element z ∈ ZηG
such that zḡ−1tg belongs to Gη. If we put g′ := zḡ−1tg ∈ Gη, then we have

(g
′
B♦, g

′
T♦) = (B̄♦, T̄♦). Hence D and D̄ are (Hϵ,Gη)-conjugate.

Finally, noting thatHϵ andGη are tori, we see that (Hϵ,Gη)-conjugacy does not

change the maps ξD and ξ̃D. We also see that ΩH(T♭)-conjugacy does not change

ξD and ξ̃D. Hence ξD and ξ̃D are independent of the choice of D ∈ D(ε, η). □

Lemma 10.8. Let D = (B♭,T♭,B♦,T♦) ∈ D(ε, η). For any F -rational elliptic
maximal torus T̄♭ of Hϵ, there exists a diagram (B̄♭, T̄♭, B̄♦, T̄♦) ∈ D(ε, η) which
is equivalent to D.

Proof. Let g ∈ G be an element satisfying (gB♦, gT♦) = (B,T) (i.e., ξ♦ = [g]).
Similarly, let h ∈ H be an element satisfying (hB♭, hT♭) = (BH,TH) (i.e., ξ♭ = [h]).

Since both T♭ and T̄♭ are maximal tori of Hϵ, there exists an element h′ ∈ Hϵ

satisfying h′
T♭ = T̄♭. We put h̄ := hh′−1 (hence h̄T̄♭ = TH). We define a Borel

subgroup B̄♭ containing T̄♭ by B̄♭ := h̄−1

BH (hence h̄B̄♭ = BH).
Let us construct T̄♦. For this, we first take a quasi-split inner form G∗

η of Gη

and an inner twist ψη : Gη → G∗
η. Since G

∗
η is quasi-split, the maximal torus T♮ of

Gη transfers to an F -rational maximal torus T♮∗ of G∗
η (see, e.g., [Kal19b, Lemma

3.2.2]). More precisely, by composing a G∗
η-conjugation with ψη if necessary, we

may assume that ψη|T♮ : T♮ → T♮∗ := ψη(T
♮) is an F -rational isomorphism. Then

the inner twist ψη induces a Γ-equivariant isomorphism ΩGη (T
♮) ∼= ΩG∗

η
(T♮∗).

Since we have h
′
T♭ = T̄♭ and h′ ∈ Hϵ, the map σ 7→ [σ(h′)−1h′] gives a 1-cocycle

of Γ valued in ΩHϵ
(T♭). Then, by the Γ-equivariant identifications of Weyl groups

ΩHϵ
(T♭) ∼= ΩGη

(T♮) (see Remark 10.3) and ΩGη
(T♮) ∼= ΩG∗

η
(T♮∗), we may regard

σ 7→ [σ(h′)−1h′] as a 1-cocycle of Γ valued in ΩG∗
η
(T♮∗). By applying [Kot82,

Lemma 2.1] to (T♮∗,G∗
η), we take an element g∗ ∈ G∗

η such that [σ(g∗)−1g∗] =

[σ(h′)−1h′] (note that the quasi-splitness is necessary for this fact). We put T̄♮∗ :=
g∗T♮∗. Then the map

T̄♮∗ [g∗]−1

−−−−→ T♮∗ ψ−1
η−−−→ T♮ ⊂ T♦ ξD−−→ T♭ [h′]−−→ T̄♭

is defined over F .
Note that the maximal torus T̄♮∗ is elliptic in G∗

η. Indeed, the above homomor-

phism T̄♮∗ → T̄♭ is locally isomorphic (isomorphic at the Lie algebra level) since
T♮ is the identity component of the [η]-invariant of T♦ and the map T♦ → T♭

induces an isomorphism between the [η]-coinvariant of T♦ and T♭. Thus, since
T̄♭ is elliptic in H and the center of H is smaller than that of G∗

η, T̄
♮∗ is ellip-

tic in G∗
η (later, we will review a description of the relation between these cen-

ters; see Section 11.2). Therefore T̄♮∗ transfers to Gη (see [Kot86, Section 10] or
[Kal19b, Lemma 3.2.1]). In other words, there exists an element g∗′ ∈ G∗

η such

that ψ−1
η ◦ [g∗′] : T̄♮∗ → T̄♮ := ψ−1

η ◦ [g∗′](T̄♮∗) is an F -rational isomorphism. Note

that then, by putting g′ := ψ−1
η (g∗′g∗) ∈ Gη, we have T̄♮ = g′T♮.
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We define T̄♦ by T̄♦ := ZG(T̄♮) = g′T♦. We put B̄♦ = g′B♦. Let D̄ :=
(B̄♭, T̄♭, B̄♦, T̄♦). By construction, it can be easily seen that the map ξD̄ deter-
mined by D̄, which is given by [h′] ◦ ξD ◦ [g′]−1, is F -rational.

T♮

[g′]

��

T♮∗
ψ−1

η
oo

[g∗]

��

T♭

[h′]

��

T♦

[g′]

��

ξDoo

T̄♮ T̄♮∗
ψ−1

η ◦[g∗′]
oo T̄♭ T̄♦

ξD̄

oo

Moreover, since h′ ∈ Hϵ and g
′ ∈ Gη, we have ξ̃D̄(η) = ε. Thus D̄ is a diagram

associated to (ε, η) and (Hϵ,Gη)-conjugate to D. □
10.3. Kaletha’s descent lemma. Suppose that we are in the situation of Section
9. In particular, we have the sets J̃G

G and JH
H parametrizing the (θ-stable) members

of our L-packets ΠG
ϕ and ΠH

ϕH
.

Let  : T→ S and H : TH → SH be the duals to ̂ : Ŝ→ T̂ and ̂H : ŜH → T̂H,
respectively. Since both T and S are F -rational, for any σ ∈ Γ, the map aȷ,σ :=
σ()−1◦ is an automorphism of T. Hence we get a 1-cocycle aȷ : Γ→ Aut(T) : σ 7→
aȷ,σ. We define a 1-cocycle aȷH : Γ→ Aut(TH) in a similar way.

Recall that any j ∈ J̃G
G can be written as j = [g] ◦ −1 for some g ∈ G. If we

define a 1-cocycle aj : Γ→ ΩG by σ 7→ aj,σ := [σ(g)−1g], then this does not depend
on the choice of g ∈ G. Similarly, for any jH ∈ JH

H , we can define a 1-cocycle
ajH : Γ→ ΩH

Lemma 10.9. For any jH ∈ JH
H and j ∈ J̃G

G , we have aj = aȷ = aȷH = ajH .
Here, we naturally identify ΩH, ΩG, and Aut(TH) as a subset of Aut(T) so that
the equalities make sense.

Proof. Let g ∈ G be an element satisfying j = [g] ◦ −1. As j is defined over F ,
for any σ ∈ Γ, we have σ([g] ◦ −1) = [g] ◦ −1, which implies that aȷ,σ = aj,σ,
hence aȷ = aj . Similarly, we also have aȷH = ajH . Thus it is enough to show
that aȷ = aȷH . By construction, the map S ↠ SθS

∼= SH (say ξS) is the dual to

̂−1 ◦ ξ̂ ◦ ̂H, hence given by H ◦ ξ ◦ −1. Since ξS is F -rational, for any σ ∈ Γ, we
have σ(H ◦ ξ ◦ −1) = H ◦ ξ ◦ −1, which implies the desired assertion (recall that
the identification ΩH ⊂ ΩθG is given through ξ). □

For a semisimple element η ∈ G̃ss, we define J̃G
Gη

to be the set

J̃G
Gη

:= {j : S̃ ↪→ G̃ | j is F -rational, j ∼G −1, and η ∈ S̃j}/∼Gη
,

i.e., the set of Gη-conjugacy classes of F -rational ̂-admissible embeddings j of a

twisted maximal torus satisfying η ∈ S̃j .
Similarly, for a semisimple element ε ∈ Hss, we define JH

Hϵ
to be the set

JH
Hϵ

:= {jH : SH ↪→ H | jH is F -rational, jH ∼H −1
H , and ε ∈ SjH}/∼Hϵ

,

i.e., the set of Hϵ-conjugacy classes of F -rational ̂H-admissible embeddings of SH

into H satisfying ε ∈ SjH (or equivalently, SjH is contained in Hϵ). Here, to make
the notation lighter, we write SjH := SH,jH = jH(SH).

In the following, we fix a semisimple element η ∈ G̃ss. Let Hη ⊂ Hss be a
set of representatives for the stable conjugacy classes of semisimple elements of H
corresponding to η such that Hy is quasi-split for any y ∈ Hη.
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Now we define a map

tran :
⊔
y∈Hη

D(y, η)× JH
Hy
→ J̃G

Gη

in the following manner. Let D = (B♭,T♭,B♦,T♦) ∈ D(y, η) for y ∈ Hη and

jH = [h] ◦ −1
H ∈ JH

Hy
(h ∈ H). Since the torus SjH is elliptic in H, we may assume

that T♭ = SjH by replacing D with its equivalent diagram by Lemma 10.8. We take

an element h♭ ∈ H and g♦ ∈ G such that ξ♭ = [h♭] and ξ♦ = [g♦], respectively.
Then nH := h♭h ∈ H belongs to NH(TH). We take an element n ∈ Gθ,◦ such that
[n] ∈ ΩθG is equal to [nH] ∈ ΩH ⊂ ΩθG (we can take n from Gθ,◦; see [KS99, Section

1.1]). We define an element tran(D, jH) of J̃G
Gη

to be the following embedding (j, j̃)

of (S, S̃) into (G, G̃):

j := [g♦]−1 ◦ [n] ◦ −1, j̃ := [g♦]−1 ◦ [n] ◦ ̃−1,

where ̃−1 : S̃→ T̃ is given by sθS 7→ −1(s)θ for any s ∈ S.

S
ȷ−1

//

ξS

��

T

ξ

��

[g♢]−1◦[n]
// T♦

ξD

��

[g♢]
// T

ξ

��

SH
ȷ−1
H

// TH
[h]

// T♭

[h♭]

// TH

Proposition 10.10. The above procedure gives a well-defined map. In other words,

(1) (j, j̃) is an F -rational embedding of a twisted maximal torus,
(2) j and −1 are G-conjugate,

(3) η ∈ S̃j, and
(4) the Gη-conjugacy class of j is independent of the choices of auxiliary data.

Proof. The assertion (2) is obvious by construction.
Let us check that j is F -rational. For any σ ∈ Γ, we have σ(j) = j if and only

if [σ(g♦)]−1 ◦ [σ(n)] ◦ σ()−1 = [g♦]−1 ◦ [n] ◦ −1, or equivalently,

σ()−1 ◦  = [σ(n)]−1 ◦ [σ(g♦)] ◦ [g♦]−1 ◦ [n].(15)

If we put j′H := [nH] ◦ −1
H = [h♭] ◦ jH, then we have

σ(j′H) ◦ j′−1
H = [σ(nH)] ◦ σ(H)−1 ◦ H ◦ [nH]−1 = [σ(h♭)]−1 ◦ [h♭],

hence σ(H)−1 ◦ H = [σ(nH)]−1 ◦ [σ(h♭)]−1 ◦ [h♭] ◦ [nH]. Since we have

• σ()−1 ◦  = aȷ,σ = aȷH,σ = σ(H)−1 ◦ H (Lemma 10.9),
• [n]−1 = [nH]−1 and [σ(n)]−1 = [σ(nH)]−1, and
• [σ(g♦)] ◦ [g♦]−1 = [σ(h♭)] ◦ [h♭]−1 (by the F -rationality of ξD),

(all the equalities are considered in ΩH ⊂ ΩθG), we get the equality (15).
By noting that n is θ-invariant and D is a diagram associated to (y, η), we see

that S̃j = j̃(S̃) contains η ∈ G̃. Combined with the F -rationality of j, this shows

that S̃j is F -rational and (Sj , S̃j) is an F -rational twisted maximal torus of (G, G̃).
Hence we get the assertions (1) and also (3).

We consider (4). As long as D and jH are fixed, the embedding (j, j̃) is obviously
independent of the choices of nH, n, h♭, and g♦. Moreover, it is also easy to see
that (j, j̃) does not change even if we replace D with a ΩH(T♭)-equivalent diagram.
Thus our task is to show that, if we take
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• another embedding j̄H ∈ JH
Hy

which is Hy-conjugate to jH and

• another diagram D̄ = (B̄♭, T̄♭, B̄♦, T̄♦) ∈ D(y, η) which is (Hy,Gη)-

conjugate to D and satisfies T̄♭ = Sj̄H ,

then j and j̄ (which is constructed from D̄ and j̄H) are Gη-conjugate.

We take hy ∈ Hy such that j̄H = [hy]◦jH (hence j̄H = [h̄]◦−1
H , where h̄ = hyh).

Let h′ ∈ Hy and g′ ∈ Gη be elements such that

(h
′
B̄♭, h

′
T̄♭, g

′
B̄♦, g

′
T̄♦) = (B♭,T♭,B♦,T♦).

Then the element h̄♭ := h♭h′ ∈ H satisfies ξ̄♭ = [h̄♭]. Similarly, the element ḡ♦ :=
g♦g′ ∈ G satisfies ξ̄♦ = [ḡ♦]. We take an element n̄ ∈ Gθ,◦ such that [n̄] ∈ ΩθG is

equal to [n̄H] ∈ ΩH ⊂ ΩθG, where n̄H := h̄♭h̄ ∈ NH(TH). Then, by construction, j̄
is given by [ḡ♦−1] ◦ [n̄] ◦ −1.

In the following, we simply write ν and µ for νD and µD associated to D,
respectively (see Definition 10.1). As we have ḡ♦ := g♦g′ and g′ ∈ Gη, j̄ is Gη-
conjugate to [g♦]−1 ◦ [n̄] ◦ −1. Since j = [g♦]−1 ◦ [n] ◦ −1, it suffices to show
that [g♦]−1 ◦ [n̄] ◦ [n]−1 ◦ [g♦] ∈ Aut(T♦) is realized by an element of ΩGη (T

♮) ⊂
ΩG(T♦). Since ξ♦ = [g♦] induces an identification ΩGη

(T♮) ∼= ΩGνθ
(Tθ,◦), it

is equivalent to showing that [n̄] ◦ [n]−1 ∈ Aut(T) is realized by an element of
ΩGνθ

(Tθ,◦) ⊂ ΩG(T). By noting that ΩHµ(TH) is identified with a subgroup of

ΩGνθ
(Tθ,◦) (both regarded as subgroups of ΩG(T)), let us show a slightly stronger

statement that [n̄] ◦ [n]−1 ∈ Aut(T) is realized by an element of ΩHµ(TH). By

construction, we have [n] = [nH] = [h♭h] and [n̄] = [n̄H] = [h̄♭h̄] = [h♭h′hyh]. Thus

we get [n̄] ◦ [n]−1 = [h♭] ◦ [h′hy] ◦ [h♭]−1. Since ξ♭ = [h♭] induces an identification

ΩHy (T
♭) ∼= ΩHµ(TH) and [h′hy] belongs to ΩHy (T

♭), we get the assertion. □
The following is the twisted version of Kaletha’s “descent lemma” [Kal15, Lemma

6.5]:

Proposition 10.11. For each y ∈ Hη, the restriction of tran to D(y, η)×JH
Hy

is a

π0(H
y)(F )-torsor onto its image. Furthermore, tran induces a bijective map

tran :
⊔
y∈Hη

(
D(y, η)× JH

Hy

)
/π0(H

y)(F )→ J̃G
Gη
.

Proof. We first show the surjectivity. Suppose that an element j = [g]◦−1 of J̃G
Gη

is

given, where g ∈ G. We take an(y) element jH = [h]◦−1
H of JH

H , where h ∈ H. We

put T♦ := Sj =
gT and B♦ := gB. Then, by putting [g]−1(η) = νθ ∈ T̃, µ := ξ(ν),

and ε := [h](µ), we can check that ε ∈ Hss and that D′ := (hBH,
hTH,B

♦,T♦) is
a diagram associated to (ε, η) (note that SjH = hTH and use Lemma 10.9 to check
the F -rationality of ξD′). By the definition of the set Hη, there exists a unique
element y ∈ Hη which is stably H-conjugate to ε. Since Hy is the quasi-split inner
form of Hϵ, the maximal torus hTH of Hϵ transfers to Hy (see, e.g., [Kal19b,
Lemma 3.2.2]). More precisely, we can find an element h′ ∈ H such that [h′](ε) = y

and [h′] gives an F -rational isomorphism from hTH to h′hTH. Hence, by putting

T♭ := h′hTH and B♭ := h′hBH, we get a diagram D := (B♭,T♭,B♦,T♦) associated
to (y, η). If we put j′H := [h′] ◦ jH, then j′H belongs to JH

Hy
. Furthermore, by going

back to the construction of the map tran, we can easily check that tran(D, j′H) = j.
We next investigate the fibers of tran. For this, let us take two diagrams D =

(B♭,T♭,B♦,T♦) ∈ D(y, η), D̄ = (B̄♭, T̄♭, B̄♦, T̄♦) ∈ D(ȳ, η) for y, ȳ ∈ Hη and two
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embeddings jH ∈ JH
Hy

, j̄H ∈ JH
Hȳ

satisfying tran(D, jH) = tran(D̄, j̄H). We may

suppose that T♭ = SjH and T̄♭ = Sj̄H by Lemma 10.8. Let h ∈ H and h̄ ∈ H be

elements satisfying jH = [h] ◦ −1
H and j̄H = [h̄] ◦ −1

H , respectively. By replacing
D̄ with its Gη-equivalent diagram if necessary, we may suppose that (D, jH) and
(D̄, j̄H) produce exactly the same embedding j. (Note that then T♦ = Sj = T̄♦.)

We take h♭ ∈ H, g♦ ∈ G, and n ∈ Gθ,◦ (which corresponds to nH := h♭h) for D as
in the definition of tran. Similarly, for D̄, we take h̄♭ ∈ H, ḡ♦ ∈ G, and n̄ ∈ Gθ,◦

(which corresponds to n̄H := h̄♭h̄) for D̄ as in the definition of tran. Then we have
[g♦]−1 ◦ [n] ◦ −1 = [ḡ♦]−1 ◦ [n̄] ◦ −1.

Thus we have [nn̄−1] = [g♦ḡ♦−1], which is an equality as elements of the Weyl
group ΩH ⊂ ΩG. We write w for this element. Recall that [h̄♭] and [ḡ♦] induce
an identifications ΩH(T̄♭) ∼= ΩH and ΩG(T̄♦) ∼= ΩG. If we put w♭ ∈ ΩH(T̄♭) and
w♦ ∈ ΩG(T̄♦) to be the images of w ∈ ΩH under these identifications, respectively,
then w♭ and w♦ are identified through ξD̄ (see Remark 10.3). By replacing the

diagram D̄ with its ΩH(T̄♭)-equivalent diagram (w
♭

B̄♭, T̄♭,w
♢
B̄♦, T̄♦), we may

assume that (B̄♦, T̄♦) = (B♦,T♦). Note that then we have g♦ = ḡ♦ and [n] = [n̄].
Recall that νD ∈ T (resp. νD̄ ∈ T) is the element such that [g♦](η) = νDθ (resp.

[ḡ♦](η) = νD̄θ), hence we have νD̄ = νD. This implies that µD̄ = µD. As we have
[h♭](y) = µD and [h̄♭](ȳ) = µD̄, we get [h♭−1h̄♭](ȳ) = y. Note that the equality
[n] = [n̄] is equivalent to the equality [h♭−1h̄♭] = [hh̄−1]. Since [hh̄−1] = jH ◦ j̄−1

H

gives an F -rational isomorphism from T̄♭ to T♭ (i.e., stable conjugacy between T̄♭

and T♭), this implies that y and ȳ are stably conjugate. Thus the definition of the
set Hη implies that y = ȳ. We also get hh̄−1 ∈ Hy. Therefore, by putting hy :=

hh̄−1 ∈ Hy, we get (B♭,T♭,B♦,T♦) = (hyB̄♭, hyT̄♭, B̄♦, T̄♦) and jH = [hy] ◦ j̄H.
Thus the remaining task is to show that, by replacing D̄ with its Hy-equivalent

one if necessary, we can take hy to be F -rational. This follows from [Kal15, Lemma
6.3] (cf. the proof of the descent lemma in the untwisted case; [Kal15, Lemma
6.5]). □

Remark 10.12. Note that JH
Hy

is not empty for any y ∈ Hη. Hence, in particular,

Proposition 10.11 implies the following: J̃G
Gη

is empty if and only if D(y, η) is empty

for any y ∈ Hη.

11. Waldspurger’s descent theorems on twisted endoscopy

In this section, we review a part of Waldspurger’s framework “l’endoscopie tordue
n’est pas si tordue”.

Note that, in the following of this paper, we need to require that our exponential
map is invariant under conjugation. However, this property might not be satisfied
by a mock exponential map in the sense of [AS09, Appendix A]. So, from now on,
we furthermore assume that

p ≥ (2 + eF )n,

where eF is the ramification index of F/Qp and n is the minimum dimension of a
faithful representation of G. It is known that the “traditional” exponential map
converges on the topologically nilpotent loci under this assumption, thus we can
choose it as our exponential map (see [DR09, Appendix B] and also [Wal08, Ap-
pendice B]).
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11.1. Non-standard endoscopy. Let us start with recalling the formalism of
non-standard endoscopy following [Wal08, Sections 1.7, 1.8].

Let G1 and G2 be quasi-split semisimple simply-connected groups over F . For
each Gi, we fix a Borel pair (Bi,Ti) defined over F . Let Ωi denote the Weyl group
of Ti in Gi. We write Φi and Φ∨

i for the set of roots and coroots of Ti in Gi,

respectively. Suppose that we have an isomorphism j∗ : X∗(T1)Q
∼−→ X∗(T2)Q. Let

j∗ : X∗(T2)Q
∼−→ X∗(T1)Q denote the dual to j∗.

Then the triple (G1,G2, j∗) is called a non-standard endoscopic triple if the
following conditions are satisfied:

(1) There exist bijections τ∨ : Φ∨
1

∼−→ Φ∨
2 and τ : Φ2

∼−→ Φ1 and functions
b∨ : Φ∨

1 → Q>0 and b : Φ2 → Q>0 such that
(a) α∨

2 = τ∨(τ(α2)
∨) for any α2 ∈ Φ2;

(b) we have j∗(α
∨
1 ) = b∨(α∨

1 ) · τ∨(α∨
1 ) for any α∨

1 ∈ Φ∨
1 and j∗(α2) =

b(α2) · τ(α2) for any α2 ∈ Φ2.
(2) The isomorphisms j∗ and j∗ are Γ-equivariant.

For a non-standard endoscopic triple (G1,G2, j
∗), the isomorphism j∗ induces

an isomorphism between the Lie algebras t1 := LieT1 and t2 := LieT2:

t1 ∼= X∗(T1)⊗F
j∗−→ X∗(T2)⊗F ∼= t2,

which induces a bijection

(t1/Ω1)
Γ ∼= (t2/Ω2)

Γ.

Thus, through this bijection, we can define a bijective correspondence between the
sets of stable conjugacy classes of semisimple elements of g1 and g2, which preserves
the regular semisimplicity.

11.2. Decomposition of twisted endoscopy. We next briefly reviewWaldspurger’s
decomposition result on twisted endoscopy established in [Wal08, Section 3].

Let (y, η) ∈ Hss × G̃ss. In the following, we assume that

• the connected centralizer Hy of y in H is quasi-split, and
• the set D(y, η) of diagrams associated to (y, η) is not empty.

We fix a diagram D = (B♭,T♭,B♦,T♦) ∈ D(y, η). In [Wal08, Sections 3.5 and
3.6], Waldspurger constructed a quasi-split connected reductive group H̄ over F
equipped with

• standard endoscopic data (H̄, H̄, s̄, ˆ̄ξ) of Gη,sc, and
• a non-standard endoscopic triple (Hy,sc, H̄sc, j∗),

where the subscript “sc” denotes the simply-connected cover of the derived sub-
group. Here we emphasize that the construction of these objects depends on the
choice of D ∈ D(y, η).

G̃

twisted endoscopy

descent ///o/o/o/o/o/o/o Gη Gη,sc
oo

standard endoscopy

H̄ H̄sc
oo

non-standard endoscopy

H
descent

///o/o/o/o/o/o/o Hy Hy,sc
oo
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Let us review how the stable conjugacy classes correspond under this picture
([Wal08, Section 3.8]). We first consider the decompositions of the Lie algebras

gη = gη,sc ⊕ zGη
= LieGη,sc ⊕ LieZGη

,

h̄ = h̄sc ⊕ zH̄ = Lie H̄sc ⊕ LieZH̄,

hy = hy,sc ⊕ zHy
= LieHy,sc ⊕ LieZHy .

For any X ∈ gη, Ȳ ∈ h̄, and Y ∈ hy, we write X = Xsc + XZ , Ȳ = Ȳsc + ȲZ ,
and Y = Ysc + YZ for their decompositions according to the above direct sum
decompositions, respectively. We note that we have an F -rational isomorphism
zHy
∼= zH̄ ⊕ zGη

(see [Wal08, Section 3.8]).
For our convenience, let us introduce the following terminology:

Definition 11.1. . We say that (Y,X) ∈ hy,0+ × gη,0+ is a D-norm pair if

• η exp(X) ∈ G̃ is strongly regular semisimple,

• y exp(Y ) ∈ H is strongly G̃-regular semisimple,

and there exists an element Ȳ ∈ h̄ satisfying the following:

• Ȳ ∈ h̄ is a norm of Xsc ∈ gη,sc in the sense of standard endoscopy,
• the stable conjugacy classes of Ȳsc ∈ h̄sc and Ysc ∈ hy,sc correspond in the
sense of non-standard endoscopy (see Section 11.1),
• YZ ∈ zHy

corresponds to ȲZ + XZ ∈ zH̄ ⊕ zGη
under the identification

zHy
∼= zH̄ ⊕ zGη

.

The following is a part of [Wal08, Section 3.8, Lemme]:

Proposition 11.2. For any D-norm pair (Y,X), (y exp(Y ), η exp(X)) ∈ D.

11.3. Descent of transfer factor. We write ∆D for the (absolute or relative) Lie
algebra transfer factor for the pair (H̄,Gη,sc). Note that we put the symbol D
on the exponent in order to emphasize that the endoscopic structure of (H̄,Gη,sc)
depends on the choice of a diagram D ∈ D(y, η).

Theorem 11.3 ([Wal08, Section 3.9, Théorème]). There exists a neighborhood V
of 0 in hy,0+ such that, for any D-norm pairs (Y,X), (Y ,X) ∈ V× gη,0+, we have

∆
(
y exp(Y ), η exp(X); y exp(Y ), η exp(X)

)
= ∆D(Ȳ ,Xsc; Ȳ ,Xsc),

where Ȳ and Ȳ are the elements of h̄ associated to (Y,X) and (Y ,X) as in Defini-
tion 11.1, respectively.

Corollary 11.4. The absolute Lie algebra transfer factor ∆D(−,−) can be normal-
ized so that there exists a neighborhood V of 0 in hy,0+ such that, for any D-norm
pair (Y,X) ∈ V× gη,0+, we have

∆
(
y exp(Y ), η exp(X)

)
= ∆D(Ȳ ,Xsc).

11.4. Transfer of Fourier transforms of orbital integrals. In this section, we
summarize the results on the transfer of the Fourier transforms of orbital integrals
on Lie algebras, which were established by Waldspurger and Ngô.

For any connected reductive group J over F equipped with an invariant sym-
metric non-degenerate bilinear form Bj on j = LieJ(F ), we let γ(j) denote the Weil
constant of (j, Bj) with respect to the fixed non-trivial additive character ψF of F
(see [Wal97, Section 3.1]). We note that hence γ(j) depends on the choices of Bj and
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ψF although the notation does not contain these symbols. For regular semisimple
elements X ∈ j and X∗ ∈ j, we put

DJ
X∗(X) := γ(j) · ι̂JX∗(X).

Here, ι̂JX∗(X) is the normalized Fourier transform of the orbital integral of X∗ (see
Section 6.7; note that X∗ is regarded as an element of j∗ via Bj). We also put

DJ,st
X∗ (X) :=

∑
X∗′∼JX∗/∼J

DJ
X∗′(X),

where the index set is over the J-conjugacy classes within the stable conjugacy class
of X∗ in j.

11.4.1. The case of standard endoscopy. Let J be a connected reductive group over
F and J′ a standard endoscopic group of J. We fix an invariant symmetric non-
degenerate bilinear form Bj on j. Then Bj induces an invariant symmetric non-
degenerate bilinear form on j′ (see [Wal95, Section VIII.6]). Let us write Bj′ for
this bilinear form. We remark that these bilinear forms satisfy the following con-
sistency property on the maximal tori. Let TJ and TJ′ be maximal tori of J and
J′ belonging to the (implicitly fixed) pinnings of J and J′, respectively. Then the
endoscopic structure of J′ in J gives an isomorphism ξJ : TJ

∼= TJ′ , which induces
an isomorphism ξJ : tJ ∼= tJ′ on the Lie algebras. With these notation, for any
X,X ′ ∈ tJ, we have Bj(X,X

′) = Bj′(ξJ(X), ξJ(X
′)).

For a strongly J-regular semisimple element Y ∗ ∈ j′ and a strongly regular
semisimple element X ∈ j, we put

DJ′,J(Y
∗, X) :=

∑
X∗↔Y ∗/∼J

∆̊J′,J(Y
∗, X∗)DJ

X∗(X),

where the index set is over the J-conjugacy classes of strongly regular semisimple
elements of j which correspond to Y ∗, and ∆̊J′,J(Y

∗, X∗) denotes the Lie algebra
transfer factor without the fourth factor. We also put

D̃J′,J(Y
∗, X) :=

∑
Y ′↔X/∼J′

∆̊J′,J(Y
′, X)DJ′,st

Y ∗ (Y ′),

where the index set is over the stable conjugacy classes of the elements of j′ which
correspond to X.

With these notation, the following holds:

Theorem 11.5 ([Wal97, 1.2. Conjecture]; [Wal06],[Ngô10]). We have

D̃J′,J(Y
∗, X) = DJ′,J(Y

∗, X).

11.4.2. The case of non-standard endoscopy. Let (G1,G2, j
∗) be a non-standard

endoscopic triple. We fix an invariant symmetric non-degenerate bilinear form
Bi on gi for each i such that we have B1(X,X

′) = B2

(
j∗(X), j∗(X

′)
)
for any

X,X ′ ∈ t1.

Theorem 11.6 ([Wal08, Proposition 1.8]). For any regular semisimple elements
Y1 ∈ g1 and Y2 ∈ g2 which correspond (resp. X∗

1 ∈ g1 and X2 ∈ g2 which corre-
spond), we have

DG1,st
X∗

1
(Y1) = DG2,st

X∗
2

(Y2).
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11.4.3. The case of isogeny. Let J be a connected reductive group over F . We
fix a J-invariant symmetric non-degenerate bilinear form Bj on j. Then we get an
identification j ∼= j∗ which also induces identifications jsc ∼= j∗sc and zJ ∼= z∗J.

Lemma 11.7. For a strongly regular semisimple element X ∈ j with decomposition
X = Xsc + XZ ∈ jsc ⊕ zJ and a strongly regular semisimple element X∗ ∈ j with
decomposition X∗ = X∗

sc +X∗
Z ∈ jsc ⊕ zJ, we have

DJ,st
X∗ (X) = γ(zJ) · ψF (Bj(X

∗
Z , XZ)) ·DJsc,st

X∗
sc

(Xsc).

Proof. According to [Wal97, 4.4 (1)], we have

ι̂JX∗(X) = ψF (Bj(X
∗
Z , XZ)) · ι̂Jsc

X∗
sc
(Xsc).

In general, for the orthogonal sum V1⊕V2 of any finite-dimensional quadratic spaces
V1 and V2, we have γ(V1 ⊕ V2) = γ(V1) · γ(V2). Hence we have γ(j) = γ(jsc) · γ(zJ).
This implies that

DJ
X∗(X) = γ(zJ) · ψF (Bj(X

∗
Z , XZ)) ·DJsc

X∗
sc
(Xsc).

For any X ′∗ ∈ j with decomposition X ′∗
sc +X ′∗

Z ∈ jsc⊕ zJ, X
′∗ is stably J-conjugate

(resp. J-conjugate) toX∗ if and only ifX ′∗
sc is stably J-conjugate (resp. J-conjugate)

to X∗
sc and X ′∗

Z = X∗
Z . Thus we get the assertion. □

11.4.4. Combined form. Now let us go back to our situation; H is a twisted endo-
scopic group of G̃. Suppose that we have (y, η) ∈ G̃ss ×Hss satisfying y ∈ Hη (see
Section 10.3) and that we have a diagram D ∈ D(y, η). Then we get the associated
group H̄ as in Section 11.2. We fix invariant symmetric non-degenerate bilinear
forms Bgη on gη, Bh̄ on h̄, and Bhy on gη such that the restriction of Bgη to zHy is
identified with the orthogonal sum of the restrictions of Bgη

to zGη
and Bh̄ to zH̄

through the isomorphism zHy
∼= zGη

⊕ zH̄.
We take

• a strongly regular semisimple element Y ∗ ∈ hy,0+ with decomposition Y ∗ =
Y ∗
sc + Y ∗

Z ∈ hy,sc ⊕ zHy
,

• a strongly regular semisimple element Ȳ ∗
sc ∈ h̄sc,0+ whose stable conjugacy

class corresponds to that of Y ∗
sc, and

• a strongly regular semisimple element X ∈ gη,0+ with decomposition X =
Xsc +XZ ∈ gη,sc ⊕ zGη

.

Let Y ∗
Z = Ȳ ∗

Z +X∗
Z ∈ zH̄ ⊕ zGη be the decomposition of the center part Y ∗

Z ∈ zHy .

We put Ȳ ∗ := Ȳ ∗
sc + Ȳ ∗

Z .

Proposition 11.8. With the above notation, we have∑
Y

D↔X/∼Hy

∆̊D(Ȳ ,Xsc)D
Hy,st
Y ∗ (Y ) =

∑
X∗ D↔Y ∗/∼Gη

∆̊D(Ȳ ∗, X∗
sc)D

Gη

X∗ (X),

where

• the left sum is over the stable conjugacy classes of strongly regular semisim-
ple elements Y of hy,0+ such that (Y,X) is a D-norm pair (Ȳ is the element
associated to (Y,X) as in Definition 11.1), and
• the right sum is over the Gη-conjugacy classes of strongly regular semisimple
elements X∗ of gη,0+ such that (Y ∗, X∗) is a D-norm pair.
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Proof. Let Y ∈ hy,0+ be a strongly regular semisimple element with decomposition
Ysc + YZ ∈ hy,sc ⊕ zHy . Suppose that Ysc corresponds to the stable conjugacy class

of a strongly regular semisimple element Ȳsc ∈ h̄sc. Also suppose that YZ equals
ȲZ +X ′

Z under the isomorphism zHy
∼= zH̄ ⊕ zGη . Then, by definition, (Y,X) is a

D-norm pair if and only if Ȳ := Ȳsc + ȲZ is a norm of Xsc and X ′
Z = XZ . Hence,

by noting that two strongly regular semisimple elements Y1, Y2 ∈ hy are stably
conjugate if and only if Y1,sc, Y2,sc ∈ hy,sc are stably conjugate and Y1,Z = Y2,Z , we
see that the left-hand side of the desired identity equals∑

ȲZ∈zH̄

γ(zHy
) · ψF (Bhy

(Y ∗
Z , YZ))

∑
Ysc↔Xsc/∼Hy,sc

∆̊D(Ȳ ,Xsc)D
Hy,sc,st
Y ∗
sc

(Ysc)(16)

by Lemma 11.7 (transfer for isogeny) for Hy. Here, the second sum is over the
stable conjugacy classes of strongly regular semisimple elements of hy,sc such that
Ȳsc+ȲZ is a norm of Xsc, where Ȳsc ∈ h̄sc is an element whose stable conjugacy class
corresponds to Ysc. Note that the index set {ȲZ ∈ zH̄} of the first sum is infinite,
but only finite of them have a nontrivial contribution because of the second sum.

By Theorem 11.6 (transfer for non-standard endoscopy), (16) equals∑
ȲZ∈zH̄

γ(zHy
) · ψF (Bhy

(Y ∗
Z , YZ))

∑
Ȳsc↔Xsc/∼H̄sc

∆̊D(Ȳ ,Xsc)D
H̄sc,st

Ȳ ∗
sc

(Ȳsc),(17)

where the second sum is over the stable conjugacy classes of strongly regular
semisimple elements Ȳsc ∈ h̄sc such that Ȳsc + ȲZ is a norm of Xsc ∈ gη,sc. By
rearranging the sums, we see that (17) equals∑

Ȳ↔Xsc/∼H̄

γ(zHy
) · ψF (Bhy

(Y ∗
Z , YZ)) · ∆̊D(Ȳ ,Xsc)D

H̄sc,st

Ȳ ∗
sc

(Ȳsc),(18)

where the sum is over the set of stable conjugacy classes of strongly regular semisim-
ple elements of h̄ which are norms of Xsc ∈ gη,sc. By noting that γ(zHy

) =

γ(zGη
) · γ(zH̄) and that ψF (Bhy

(Y ∗
Z , YZ)) = ψF (Bh̄(Ȳ

∗
Z , ȲZ)) · ψF (Bgη

(X∗
Z , XZ)),

Lemma 11.7 (transfer for isogeny) for H̄ implies that (18) equals

γ(zGη
) · ψF (Bgη

(X∗
Z , XZ))

∑
Ȳ↔Xsc/∼H̄

∆̊D(Ȳ ,Xsc)D
H̄,st
Ȳ ∗ (Ȳ ).(19)

Finally, by Theorem 11.5 (transfer for standard endoscopy), (19) equals

γ(zGη
) · ψF (Bgη

(X∗
Z , XZ))

∑
X∗

sc↔Ȳ ∗/∼Gη,sc

∆̊D(Ȳ ∗, X∗
sc)D

Gη,sc

X∗
sc

(Xsc),(20)

where the index set is over theGη,sc-conjugacy classes of strongly regular semisimple
elements of gη,sc which correspond to Ȳ ∗. Then the same argument as in the proof
of Lemma 11.7 implies that (20) equals∑

X∗
sc↔Ȳ ∗/∼Gη

∆̊D(Ȳ ∗, X∗
sc)D

Gη

X∗ (X).(21)

We recall that (Y ∗, X∗) is a D-norm pair if and only if X∗
sc corresponds to Ȳ ∗ and

the center part of X∗ is given by X∗
Z , which determined by Y ∗. Thus we see that

the index set of the sum in (21) is nothing but that of the sum on the right-hand
side of the desired identity. □
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12. Toral invariants for restricted roots

12.1. Root systems. Let η ∈ G̃ss and y ∈ Hη (see Section 10.3) such that D(y, η)
is not empty. Note that y and η correspond in the sense of twisted endoscopy.
Let us recall how Φ(Gη,T

♮) and Φ(Hy,T
♭) are described in terms of the re-

stricted roots following [Wal08, Section 3.3]. In the following, we fix a diagram
D = (B♭,T♭,B♦,T♦) ∈ D(y, η) and simply write ν for νD (resp. µ for µD).

Recall that, with the notation as in Section 3.3, we have

Φ(Gνθ,T
♮) = {p∗(α) | α ∈ Φ(G,T);N(α)(ν) = 1} ⊂ Φres(G,T),

Φ∨(Gνθ,T
♮) = {N(α∨) | α∨ ∈ Φ∨(G,T);N(α)(ν) = 1} ⊂ Φ∨

res(G,T)

(note that now we assume that Φres(G,T) does not contain any restricted root of
type 2 or 3). The sets Φ(Hµ,TH) and Φ∨(Hµ,TH) are given as follows:

Φ(Hµ,TH) = {N(α) | α ∈ Φ(G,T);N(α∨)(s) = 1, N(α)(ν) = 1} ⊂ X∗(T)θ ∼= X∗(TH),

Φ∨(Hµ,TH) = {p∗(α∨) | α∨ ∈ Φ∨(G,T);N(α∨)(s) = 1, N(α)(ν) = 1} ⊂ Y∗(T) ∼= X∗(TH).

We define an injective map i∨ : Φ∨(Hµ,TH) → Φ∨(Gνθ,T
♮) by i∨(p∗(α

∨)) :=
N(α∨). Then we can regard Φ∨(Hµ,TH) as a subset of Φ∨(Gνθ,T

♮) via i∨.
Now we transfer this discussion to Φ(G,T♦) by using the fixed diagram D. Via

the map ξ♦, Φ
(∨)
res (G,T♦) is identified with Φ

(∨)
res (G,T). Moreover, Φ(∨)(Gη,T

♮)

is mapped to Φ(∨)(Gνθ,T
♮) by this identification. Similarly, via the map ξ♭,

Φ(∨)(H,T♭) is identified with Φ(∨)(H,TH), and Φ(∨)(Hy,T
♭) is mapped to Φ(∨)(Hµ,TH).

By combining these bijective maps with the previous injective map i∨, we may iden-
tify Φ∨(Hy,T

♭) as a subset of Φ∨(Gη,T
♮). Accordingly, we may also may identify

Φ(Hy,T
♭) as a subset of Φ(Gη,T

♮).
Let (Y,X) ∈ hy,0+ × gη,0+ be a D-norm pair. Let us fix bilinear forms Bgη

on

gη, Bh̄ on h̄, and Bhy on hy as in Section 11.4. Then X ∈ gη (resp. Y ∈ hy) can be
identified with an element X∗ ∈ g∗η (resp. Y ∗ ∈ h∗y).

Lemma 12.1. Let α∨
y be an element of Φ∨(Hy,T

♭) which is identified with an

element α∨
η of Φ∨(Gη,T

♮). Let α∨ ∈ Φ∨(G,T♦) be the coroot satisfying α∨
y =

p∗(α
∨) ∈ X∗(T

♭) and α∨
η = N(α∨) ∈ X∗(T

♮). Then we have

lα · 〈dα∨
y (1), Y

∗〉 = 〈dα∨
η (1), X

∗〉.

Proof. Since (Y,X) is a norm pair with respect to D = (B♭,T♭,B♦,T♦), we may
suppose that X ∈ t♮ and Y ∈ t♭ and ξD : t♦ ↠ t♭ maps X to Y (cf. the argu-
ment in the proof of Lemma 10.8). Hence, by our choice of bilinear forms, X∗

is identified with Y ∗ under the dual isomorphism t♮∗ ∼= t♭∗ to t♮ ∼= t♭. Thus
we can see that, under the identification ξD : t♮ ∼= t♭, we have 〈dα∨

η (1), X
∗〉 =∑lα

i=0〈d[η]i(α)∨(1), X∗〉 = lα〈dα∨(1), X∗〉 = lα〈dα∨
y (1), Y

∗〉. □

12.2. Analysis of ramified restricted roots. Let us next suppose that we have
an F -rational twisted maximal torus T̃♦ of G̃ and topologically semisimple elements
η, η′ ∈ T̃♦. We investigate the relation between the ramified roots of Φ(Gη,T

♮)
and those of Φ(Gη′ ,T

♮). For convenience, let us introduce the following notation:

Φres(G,T
♦)

(⋆)
• := {αres ∈ Φres(G,T

♦)• | α ∈ Φ(G,T♦)⋆},
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where •, ? ∈ {asym,ur, ram}. By fixing a Borel subgroup B♦ containing T♦ and

stabilized by the action of T̃♦, we take an element g♦ ∈ G satisfying [g♦](B♦,T♦) =
(B,T). Let ν := [g♦](η) and ν′ := [g♦](η′). We simply write θ♦ for the involution
θT♢ of T♦ determined by its twisted structure.

Lemma 12.2. For any αres ∈ Φres(G,T
♦)

(asym)
ram , we have αres ∈ Φ(Gη,T

♮) if and
only if αres ∈ Φ(Gη′ ,T

♮).

Proof. For any αres ∈ Φres(G,T
♦)

(asym)
ram , the following hold:

• Fα = F±α and Fα = Fαres
,

• Fαres
/F±αres

and F±α/F±αres
are quadratic ramified, and

• θ♦(α) ∈ −Γα; let τα ∈ Γ be an element satisfying τα(α) = −θ♦(α).
Fαres

Fα

F±αres

quad

ram

quad ram

F±α

By the description explained in Section 12.1, it suffices to show that N(α)(ν) =
N(α)(ν′), which is equivalent to α(η2) = α(η′2). (Here, in the first equality, we
regard α as a root of T and again write α for it.) Since both α(η2) and α(η′2) are
of finite prime-to-p order, it is enough to show that α(η2) ≡ α(η′2) (mod pF ).

Let t ∈ T♦ be an element satisfying η′ = tη. Then we have η′2 = (tη)2 =
t · θ♦(t) · η2. Since t is F -rational and τα(α) = −θ♦(α), we have

α(t · θ♦(t)) = α(t) · θ♦(α)(t) = α(t) · τα(α(t))−1.

By noting that Fαres
/F±αres

is ramified, we have α(t)·τα(α(t))−1 ≡ 1 (mod pF ). □

Lemma 12.3. For any αres ∈ Φres(G,T
♦)

(ur)
ram, we have αres ∈ Φ(Gη,T

♮) if and
only if αres ∈ Φ(Gη′ ,T

♮).

Proof. For any αres ∈ Φres(G,T
♦)

(ur)
ram, the following hold:

• Fα/F±α and Fα/Fαres are quadratic unramified, and
• Fαres/F±αres and F±α/F±αres are quadratic ramified.

Fαres

quad

ur
Fα

F±αres

quad

ram

quad ram

F±α

quad ur

We let σα, τα ∈ Γ be elements satisfying σα(α) = θ♦(α) and τα(α) = −α, respec-
tively. With the same notation and arguments as in the proof of Lemma 12.2,
it suffices to show that α(t) · θ♦(α)(t) ≡ 1 (mod pF ) for any t ∈ T♦. Since t is
F -rational and τα(α) = −α, we have

NrFα/F±α
(α(t)) = α(t) · τα(α(t)) = α(t) · α(t)−1 = 1.

Similarly, we have

NrFα/Fαres
(α(t)) = α(t) · σα(α(t)) = α(t) · θ♦(α)(t).

Since both Fα/Fαres and Fα/F±α are unramified quadratic extensions, we get

α(t) · θ♦(α)(t) = NrFα/Fαres
(α(t)) ≡ NrFα/F±α

(α(t)) = 1 (mod pF ).
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□

Lemma 12.4. For any αres ∈ Φres(G,T
♦)

(ram)
ram with lα = 2, we have αres ∈

Φ(Gη,T
♮) if and only if αres ∈ Φ(Gη′ ,T

♮).

Proof. Suppose that α ∈ Φ(G,T♦) is a symmetric ramified root with lα = 2. In
this case, the following hold:

• Fα/F±α and Fαres
/F±αres

are quadratic ramified, and
• Fα/Fαres

and Fαres
/F±αres

are quadratic unramified.

Fαres

quad

ur
Fα

F±αres quad

ur

quad ram

F±α

quadram

(Indeed, since θ♦(α) 6= −α, we cannot have Fαres = F±α. If F±α/F±αres is a
quadratic ramified extension different from Fαres , then Fα must contain a quadratic
unramified extension of F±αres

, hence we get a contradiction. Thus F±α/F±αres

must be quadratic unramified.) Let τα ∈ Γ be an element satisfying τα(α) = −α.
Then τα restricts to the nontrivial element of Gal(Fαres

/F±αres
). Let σα ∈ Γ be an

element satisfying σα(α) = θ♦(α).
With the same notation and arguments as in the proof of Lemma 12.2, it suffices

to show that α(t) · θ♦(α)(t) ≡ 1 (mod pF ). Since t is F -rational and τα(α) = −α,

NrFα/F±α
(α(t)) = α(t) · τα(α(t)) = α(t) · α(t)−1 = 1.

As Fα/F±α is ramified, this implies that α(t) ≡ ±1 (mod pF ). Thus we get

α(t)·θ♦(α)(t) = α(t)·σα(α(t)) = NrFα/Fαres
(α(t)) ≡ NrFα/Fαres

(±1) = 1 (mod pF ).

□

12.3. Descent of toral invariants. Let us keep the notation as in Section 12.2.
We next investigate the relation between the toral invariants for (Gη,T

♮) and those
for (Gη′ ,T

♮). Before we start our discussion, we note that the roots in the Θ-orbits
Θα of α ∈ Φ(G,T) are orthogonal to each other and that, for any root vector
Xα ∈ gα, we have θlα(Xα) = Xα (these are true since we are assuming that there
is no restricted root of type 2 or 3; see [KS99, (1.3.5-1.3.7)]).

Let t ∈ T♦ be the element satisfying η′ = tη.

Proposition 12.5. Let αres ∈ Φres(G,T
♦)

(asym)
ram . Suppose that αres ∈ Φ(Gη,T

♮),
which is equivalent to αres ∈ Φ(Gη′ ,T

♮) by Lemma 12.2. Then we have

f(Gη,T♮)(αres) = f(Gη′ ,T♮)(αres) · εα(t).

Proof. We use the notation as in the proof of Lemma 12.2. We take an element
Xα of gα(Fα). Then Xαres,η := Xα + [η](Xα) belongs to gη,αres

(Fαres) (note that
Fαres = Fα). Thus, by the definition of the toral invariant (see Section 7.2),

f(Gη,T♮)(αres) = καres

Å
[Xαres,η, τα(Xαres,η)]

Hαres

ã
= καres

Å
[Xα, [η](τα(Xα))] + [[η](Xα), τα(Xα)]

Hαres

ã
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(note that τα(α) = −θ♦(α)). Since we have [η]([Xα, [η](τα(Xα))]) = [[η](Xα), τα(Xα)]
and Hαres = Hα + [η](Hα), we get

f(Gη,T♮)(αres) = καres

Å
[Xα, [η](τα(Xα))]

Hα

ã
.

By the same computation, we get

f(Gη′ ,T♮)(αres) = καres

Å
[Xα, [η

′](τα(Xα))]

Hα

ã
.

Hence, we get

f(Gη′ ,T♮)(αres) = f(Gη,T♮)(αres) · καres
(τα(α(t))).

Since καres is the quadratic character of F±αres corresponding to the extension
Fαres

/F±αres
, by noting that α(t) belongs to O×

F±αres
, we conclude that

καres(τα(α(t))) = sgnk×α (α(t)) = εα(t).

□

Proposition 12.6. Let αres ∈ Φres(G,T
♦)

(ur)
ram. Suppose that αres ∈ Φ(Gη,T

♮),
which is equivalent to αres ∈ Φ(Gη′ ,T

♮) by Lemma 12.3. Then we have

f(Gη,T♮)(αres) = f(Gη′ ,T♮)(αres) · εα(t).

Proof. We use the notation as in the proof of Lemma 12.3. We take an element Xα

of gα(Fα). Then Xαres,η := Xα + [η](Xα) belongs to gη,αres
(Fα). To compute the

toral invariant f(Gη,T♮)(αres), let us scale Xαres,η so that it is Fαres -rational. Let

Cη ∈ F×
α be the constant determined by σα(Xα) = Cη · [η](Xα). Note that then

σα([η](Xα)) = Cη ·Xα. Indeed, since η is F -rational, we have

σα([η](Xα)) = [η](σα(Xα)) = [η](Cη · [η](Xα)) = Cη · α(η2) ·Xα = Cη ·Xα.

Thus we have

σ2
α(Xα) = σα(Cη · [η](Xα)) = σα(Cη) · Cη ·Xα = NrFα/Fαres

(Cη) ·Xα.

On the other hand, since σ2
α belongs to Γα, σ

2
α fixes Xα. This implies that

NrFα/Fαres
(Cη) = 1. Hence, by the Hilbert 90th theorem, we can find an ele-

ment xη ∈ F×
α satisfying Cη = xη/σα(xη). By putting X̃αres,η := xη · Xαres,η, we

get an Fαres
-rational root vector X̃αres,η ∈ gη,αres

(Fαres
).

Now let us compute the toral invariant using X̃αres,η:

f(Gη,T♮)(αres) = καres

Å
[X̃αres,η, τα(X̃αres,η)]

Hαres

ã
= καres

Å
[xηXα, τα(xηXα)] + [xη[η](Xα), τα(xη[η](Xα))]

Hαres

ã
.

By the same argument as in the proof of Proposition 12.5, this equals

καres

Å
[xηXα, τα(xηXα)]

Hα

ã
.

By the same computation, putting Cη′ ∈ F×
α and xη′ ∈ F×

α in the same manner,

f(Gη′ ,T♮)(αres) = καres

Å
[xη′Xα, τα(xη′Xα)]

Hα

ã
.
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Thus we get

f(Gη′ ,T♮)(αres) = f(Gη,T♮)(αres) · καres

(
(xη′x

−1
η ) · τα(xη′x−1

η )
)
.

We put y := xη′x
−1
η ∈ F×

α , hence καres
((xη′x

−1
η ) · τα(xη′x−1

η )) = καres(y · τα(y)). As

Cη · [η](Xα) = σα(Xα) = Cη′ · [η′](Xα), we have Cη′ = α(t)−1Cη. Hence we have
y/σα(y) = α(t)−1. Here we note that, since Fα/Fαres

is unramified, we can choose
xη and xη′ to be elements of O×

Fα
, hence y ∈ O×

Fα
. We note that the composition

k1α
∼=←− k×α /k×±α

Nrkα/k±α−−−−−−→ k×±α/k
×2
±α
∼= µ2 : y/σα(y) 7→ y 7→ y · τα(y)

defines the unique nontrivial quadratic character of k1α. Hence we get

καres(y · τα(y)) = sgnk1α(α(t))
−1 = εα(t).

□

Proposition 12.7. Let αres ∈ Φres(G,T
♦)

(ram)
ram . Suppose that αres ∈ Φ(Gη,T

♮)
and αres ∈ Φ(Gη′ ,T

♮). Then we have

f(Gη,T♮)(αres) =

®
f(Gη′ ,T♮)(αres) if Fα = Fαres ,

f(Gη′ ,T♮)(αres) · α(t) if Fα 6= Fαres
.

Here, in the latter case, we have α(t) = ±1, hence regard α(t) ∈ {±1} ⊂ C×.

Proof. We first consider the case where Fα = Fαres
. In this case,

• Fα/F±α and Fαres
/F±αres

are quadratic unramified, and
• F±α = F±αres

.

Fαres
Fα

F±αres

quad ram

F±α

quadram

Let τα ∈ Γ be an element satisfying τα(α) = −α. Then τα restricts to the nontrivial
element of Gal(Fαres

/F±αres
).

When θ♦(α) = α, we get f(Gη,T♮)(αres) = f(G,T♢)(α) simply because we can

use the same root vector Xα both for computing f(Gη,T♮)(αres) and f(G,T♢)(α).

When θ♦(α) 6= α, by taking Xα and Xαres,η in the same way and applying the

same argument as in the case where αres ∈ Φ(G,S)
(ur)
res,ram, we have

f(Gη,T♮)(αres) = καres

Å
[Xαres,η, τα(Xαres,η)]

Hαres

ã
= καres

Å
[Xα, τα(Xα)] + [[η](Xα), τα([η](Xα))]

Hαres

ã
= κα

Å
[Xα, τα(Xα)]

Hα

ã
= f(G,T♢)(α).

Hence we get f(Gη,T♮)(αres) = f(G,T♢)(α) regardless of whether θ♦(α) = α or not.

Since f(Gη′ ,T♮)(αres) = f(G,T♢)(α) for the same reason, we get f(Gη,T♮)(αres) =

f(Gη′ ,T♮)(αres).
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We next consider the case where Fα/Fαres
is quadratic. We use the same notation

as in the proof of Lemma 12.4. By the same usage of notation and arguments as

in the case where α ∈ Φ(G,S)
(ur)
res,ram, we get

f(Gη′ ,T♮)(αres) = f(Gη,T♮)(αres) · καres
(y · τα(y)).

Recall that y ∈ OF×
α

is an element such that y/σα(y) = α(t)−1. In the present

case (where Fα/F±α is ramified), since α(t) ∈ Ker(NrFα/F±α
), we have α(t) ≡ ±1

(mod pF ). Then we can check that καres
(y · τα(y)) equals +1 or −1 according to

α(t) ≡ +1 or α(t) ≡ −1. Hence we get

f(Gη′ ,T♮)(αres) = f(Gη,T♮)(αres) · α(t).

□

13. Some computation of transfer factors

In this section, we establish some formulas on transfer factors which will be
needed in our proof of the twisted endoscopic character relation.

Let (γ, δ) ∈ D and we fix D = (B♭,T♭,B♦,T♦) ∈ D(γ, δ), which is unique up to

equivalence by Lemma 10.7. Note that, in particular, we have γ ∈ T ♭ and δ ∈ T̃♦.
We also fix a set a = {aαres}αres of a-data and a set χ = {χαres}αres of minimally
ramified χ-data for Φres(G,T

♦) (in the sense of Kaletha; Definition 7.3).

Let us suppose that δ ∈ T̃♦ is elliptic strongly regular semisimple with a normal
r-approximation δ = δ0δ

+
<rδ≥r (recall Definition 3.15). Then, by using the maps

ξ̃D and ξD, we can associate a decomposition γ = γ0γ
+
<rγ≥r to γ by transferring

the decomposition δ = δ0δ
+
<rδ≥r.

Lemma 13.1. The decomposition γ = γ0γ
+
<rγ≥r gives a normal r-approximation.

Proof. This follows from that Φ(H,T♭) is identified with a subset of Φres(G,T
♦)

(Section 12.1) and that p 6= 2. □

We put ν0 := ξ̃♦(δ0) · θ−1 and ν+ := ξ♦(δ+). We also put ν+<r := ξ♦(δ
+
<r) and

ν≥r := ξ♦(δ≥r). Thus we have νθ = (ν0θ) · ν+<r · ν≥r.

13.1. First factor ∆I.

Lemma 13.2. For any (γ̄, δ̄) ∈ D satisfying γ̄ ∈ T ♭ and δ̄ ∈ T̃♦, we have

∆I[a, χ](γ, δ) = ∆I[a, χ](γ̄, δ̄).

Proof. By definition (see [KS99, Section 4.2]), the first factor ∆I(γ̄, δ̄) depends

only on the F -rational (twisted) maximal tori of H and G̃ containing γ̄ and δ̄,
respectively. Thus we get the assertion. □

13.2. Second factor ∆II. For any element δ′ ∈ T̃♦, we put

∆G̃
II [a, χ](δ

′) :=
∏

αres∈Φ̇res(G,T
♢)

N(α)(ν′)6=1

χαres

Å
N(α)(ν′)− 1

aαres

ã
,

where ν′ ∈ T is the element such that ξ̃♦(δ
′) = ν′θ.

The following is the twisted version of [Kal19b, Lemma 4.6.7].
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Lemma 13.3. If we put

χ(δ0) :=
∏

αres∈Φ̇(Gδ0
,T♮)

χαres
(lα),

then we have

∆G̃
II [a, χ](δ) = ∆G̃

II [a, χ](δ0) ·∆
Gδ0

II [a, χ](δ+) · χ(δ0).

Proof. By definition, we have

∆G̃
II [a, χ](δ0) :=

∏
αres∈Φ̇res(G,T

♢)
N(α)(ν0)6=1

χαres

Å
N(α)(ν0)− 1

aαres

ã
,

and

∆
Gδ0

II [a, χ](δ+) =
∏

αres∈Φ̇(Gδ0
,T♮)

αres(ν+)6=1

χαres

Å
αres(ν+)− 1

aαres

ã
.

Let αres ∈ Φres(G,T
♦). Note that we have

N(α)(ν0)
2
lα =

Ålα−1∏
i=0

θi(α)(ν0)

ã 2
lα

=

1∏
i=0

θi(α)(ν0) = α
(
(ν0θ)

2
)
.

As ν0θ is of finite prime-to-p order modulo the center and p 6= 2, we see that
N(α)(ν0) is a root of unity of prime-to-p-order in F . Since we have

N(α)(ν) = N(α)(ν0) ·N(α)(ν+) = N(α)(ν0) · α(ν+)lα ,
and ν+ is pro-unipotent, N(α)(ν) 6= 1 holds if and only if exactly one of the
following holds:

• N(α)(ν0) 6= 1, or
• N(α)(ν0) = 1 and α(ν+)

lα 6= 1 (the latter condition is furthermore equiva-
lent to α(ν+) 6= 1 as lα is prime to p).

When N(α)(ν0) 6= 1, by noting that χαres
is tamely ramified, we get

χαres

Å
N(α)(ν)− 1

aαres

ã
= χαres

Å
N(α)(ν0)− 1

aαres

ã
.

When N(α)(ν0) = 1 and α(ν+) 6= 1, we have

χαres

Å
N(α)(ν)− 1

aαres

ã
= χαres

Å
N(α)(ν+)− 1

aαres

ã
.

As we have N(α)(ν+) = α(ν+)
lα and lα is prime to p, we have

N(α)(ν+)− 1 =
(
α(ν+)− 1

)(
α(ν+)

lα−1 + · · ·+ 1
)
∈
(
α(ν+)− 1

)
· lα · (1 + pFα).

Hence again the tamely-ramifiedness of χαres
implies that

χαres

Å
N(α)(ν+)− 1

aαres

ã
= χαres

Å
α(ν+)− 1

aαres

ã
· χαres

(lα).

Recall that Φ(Gδ0 ,T
♮) is identified with the subset of Φres(G,T

♦) consisting of
restricted roots αres satisfying N(α)(ν0) = 1 (see Section 3.3). Thus, by noting that
δ is strongly regular semisimple, hence no root α ∈ Φ(Gδ0 ,T

♮) satisfies α(ν+) = 1,
we get the assertion (see Lemma 3.16). □
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The following will be a crucially important ingredient in our proof of the twisted
endoscopic character relation.

Lemma 13.4. The constant χ(δ0) in Lemma 13.3 does not depend on δ0 ∈ T̃♦.

Proof. Recall that χ(δ0) is defined to be the product of χαres(lα) over the set αres ∈
Φ̇(Gδ0 ,T

♮). Since χ is minimally ramified, χαres
(lα) can be nontrivial only when

αres is ramified and lα 6= 1. However, the set of such restricted roots does not
depend on δ0 by Lemmas 12.2, 12.3, and 12.4. □

Lemma 13.5. For any sufficiently large positive integer m ∈ Z>0, we have

∆II[a, χ](γ<r · γp
2m

≥r , δ<r · δ
p2m

≥r ) = ∆II[a, χ](γ<r · γ≥r, δ<r · δ≥r).

Proof. By Lemma 13.3, we have

∆G̃
II [a, χ](δ<r · δ≥r) = ∆G̃

II [a, χ](δ0) ·∆
Gδ0

II [a, χ](δ+<r · δ≥r) · χ(δ0),

∆G̃
II [a, χ](δ<r · δ

p2m

≥r ) = ∆G̃
II [a, χ](δ0) ·∆

Gδ0

II [a, χ](δ+<r · δ
p2m

≥r ) · χ(δ0).

According to the proof of [Kal19b, Lemma 6.3.3], we have

∆
Gδ0

II [a, χ](δ+<r · δ≥r) = ∆
Gδ0

II [a, χ](δ+<r · δ
p2m

≥r )

for any sufficiently large positive integer m ∈ Z>0, hence get ∆G̃
II [a, χ](δ<r · δ≥r) =

∆G̃
II [a, χ](δ<r · δ

p2m

≥r ). Similarly, we have ∆H
II [a, χ](γ<r ·γ≥r) = ∆H

II [a, χ](γ<r ·γ
p2m

≥r ).

Since the second factor ∆II[a, χ](γ, δ) is defined to be the ratio of ∆G̃
II [a, χ](δ) to

∆H
II [a, χ](γ), we get the assertion. □

13.3. Third factor ∆III. Since we assume that G is quasi-split (and also fix a
θ-stable splitting of G), we have the absolute third factor ∆III[a, χ](γ, δ) given
according to the manner of [KS99, Section 5.3], which satisfies

∆III[a, χ](γ, δ; γ̄, δ̄) = ∆III[a, χ](γ, δ)/∆III[a, χ](γ̄, δ̄)

for any (γ̄, δ̄) ∈ D. We review the construction of ∆III[a, χ](γ, δ; γ̄, δ̄) following
[KS99, Section 4.4]. We fix a diagram D̄ = (B̄♭, T̄♭, B̄♦, T̄♦) ∈ D(γ̄, δ̄).

The relative third factor is given by using the following Take–Nakayama pairing
for hyper-cohomology of tori (see [KS99, Appendix A]):

〈−,−〉TN : H1(F,U0
1−θ−−→ S0)×H1(WF , Ŝ0

1−θ̂−−→ Û0)→ C×.(22)

Let us recall the definitions of the tori U0 and S0.
We first note the following lemma, which is a rephrase of [KS99, Lemma 3.3.B]:

Lemma 13.6. There exists a θ-stable F -rational maximal torus T0 and a θ-stable
Borel subgroup B0 containing T0 such that the isomorphism T♦ → T0 given by the
Borel pairs (B♦,T♦) and (B0,T0) is F -rational.

In the following, we fix (B0,T0) and (B̄0, T̄0) as in this lemma for (B♦,T♦)

and (B̄♦, T̄♦). We then get canonical isomorphisms T̂0
∼= T̂ and ˆ̄T0

∼= T̂ (not

necessarily Γ-equivariant). We identify T̂0 and ˆ̄T0 with T̂ via these isomorphisms

but keep using the symbols T̂0 and ˆ̄T0 in order to emphasize that their Galois
actions are not the one coming from the Γ-action on T̂ ⊂ Ĝ. We take g1 ∈ Gsc such
that [g1](B

♦,T♦) = (B0,T0), i.e., [g1] : T
♦ → T0 is the F -rational isomorphism
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as in Lemma 13.6. Similarly, also for (B̄♦, T̄♦), we take ḡ1 ∈ Gsc realizing the
F -rational isomorphism [ḡ1] : T̄

♦ → T̄0.
In the following, the subscript “sc” denotes the preimage in the simply-connected

cover Gsc of the derived group of G and the subscript “ad” denotes the image in
the adjoint group Gad of G. We use a similar notation also for Ĝ. We define
F -rational tori S0 and U0 by

S0 = (T0 × T̄0)/∆−ZG
∼= T0 × T̄0,ad : (t, t̄) 7→ (tt̄, t̄ad)(23)

U0 = (T0,sc × T̄0,sc)/∆−ZGsc
∼= T0,sc × T̄0,ad : (t, t̄) 7→ (tt̄, t̄ad).(24)

Here, ∆−ZG(sc)
:= {(z, z−1) | z ∈ ZG(sc)

}. Thus the dual tori are given by

Ŝ0
∼= T̂0 × ˆ̄T0,sc and Û0

∼= T̂0,ad × ˆ̄T0,sc.

We consider the homomorphism 1− θ : T0 → T0 : t 7→ t/θ(t) and also its lift to
T0,sc. We define homomorphisms of S0 and U0, for which we again write 1− θ, to
be the one induced by (t, t̄) 7→ ((1− θ)(t), (1− θ)(t̄)). Then we get homomorphisms

1− θ̂ on Ŝ0 and Û0. Accordingly, the hyper-cohomology and the Tate–Nakayama
pairing as in (22) makes sense. The relative third factor is defined by

∆III[a, χ](γ, δ; γ̄, δ̄) := 〈inv(γ, δ; γ̄, δ̄),A〉−1
TN.

(Note that the right-hand side is inverted according to [KS12].) Thus let us next
explain the constructions of inv(γ, δ; γ̄, δ̄) and A.

We first consider inv(γ, δ; γ̄, δ̄). By putting vσ := g1 · σ(g1)−1 and v̄σ := ḡ1 ·
σ(ḡ1)

−1, we get a 1-cocycle V : Γ → S0 which maps σ to the image of (v−1
σ , v̄σ) ∈

T0×T̄0 in S0. On the other hand, we put δ0⋊θ := [g1](δ) and δ̄0⋊θ := [g1](δ̄) (thus
δ0, δ̄0 ∈ T0). We define an element D ∈ S0 to be the image of (δ0, δ̄

−1
0 ) ∈ T0 × T̄0

in S0. Then (V,D) forms a 1-hyper-cocycle. We let inv(γ, δ; γ̄, δ̄) be the hyper-
cohomology class of (V,D).

We next consider A. We introduce two kinds of L-embeddings Lj1χ and LjHχ .

(1) Let LG1 := Ĝ1⋊WF , where Ĝ
1 := Ĝθ̂,◦. If we put T̂1 := T̂θ̂,◦, then Ĝ1 is

a connected reductive group whose root system Φ(Ĝ1, T̂1) is regarded as a

subset of Φres(Ĝ, T̂) (see Section 3.3). Since we fixed sets of a-data and χ-

data for Φres(G,T
♦), we also have sets of a-data and χ-data for Φres(Ĝ, T̂)

which is equipped with a Γ-action derived from that of Φres(G,T
♦). Hence,

by the Langlands–Shelstad construction [LS87, Section 2.6], we obtain an

L-embedding Lj1χ : T̂
1⋊WF ↪→ LG1. Here, we emphasize that the Γ-action

on T̂1 is imported from that on T̂0 through the isomorphism T̂0
∼= T̂.

Thus T̂1 ⋊WF is nothing but the L-group of the θ-coinvariant T0,θ of T0.

(2) On the other hand, as Φ(H,T♭) is regarded as a subset of Φres(G,T
♦)

(see Section 12.1), the fixed sets of a-data and χ-data also induce those for
Φ(H,T♭). Hence, by the Langlands–Shelstad construction [LS87, Section
2.6], we obtain an L-embedding LjHχ : LT♭ ↪→ LH.

Now we note that the homomorphism ξD ◦ [g1]−1 : T0 → T♭ is F -rational and
induces an isomorphism T0,θ

∼= T♭. Thus we can compare two L-embeddings Lj1χ
and LjHχ through this identification T0,θ

∼= T♭ and ξ̂ : LH ↪→ LG. We define a map
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aT0
: Γ→ T̂1 : σ 7→ aT0,σ by

ξ̂ ◦ LjHχ (1⋊ σ) = aT0,σ · Lj1χ(1⋊ σ),

then aT0
is regarded as a 1-cocycle Γ→ T̂0 under the identification T̂0

∼= T̂. We de-

fine a 1-cocycle aT̄0
: Γ→ ˆ̄T0 in the same manner and putA := (aT0

, aT̄0
/aT0

) : Γ→
Ŝ0. On the other hand, we take an element ssc ∈ T̂sc having the same image in

T̂ad as s ∈ T̂ and write sT0 and sT̄0
for its images in T̂0,sc and ˆ̄T0,sc, respectively.

We put sS0
:= (sT0,ad, sT̄0

/sT0) ∈ Û0. Then (A−1, sS0) forms a 1-hyper-cocycle.

We let A be the hyper-cohomology class of (A−1, sS0
).

The following proposition and its proof are inspired by [Mez13, Lemma 17].

Proposition 13.7. Let (γ̄, δ̄) ∈ D be another pair such that D = (B♭,T♭,B♦,T♦) ∈
D(γ̄, δ̄). Then we have

∆III[a, χ](γ, δ; γ̄, δ̄) = 〈δ/δ̄, aT♢〉TN.

Here, the pairing on the right-hand side is the Tate–Nakayama pairing for T♦ and
aT♢ is the 1-cocycle transported from aT0

via the identification [g1] : T♦ → T0.

Proof. We examine the construction of ∆III[a, χ](γ, δ; γ̄, δ̄) explained above by as-
suming that D̄ = D. We note that, under the identifications (23) and (24), we have
Vσ = (v̄σ/vσ, v̄σ,ad) and D = (δ0/δ̄0, δ̄

−1
0,ad). Hence, as we have vσ = v̄σ, we see that

V and D are given by

V : σ 7→ (1, vσ,ad) and D = (δ0/δ̄0, δ̄
−1
0,ad).

On the other hand, A and sS0
are given by

A : σ 7→ (aT0
, 1) and sS0

= (sT0,ad, 1).

We have the following commutative diagrams which are dual to each other:

T0,sc
1−θ

// T0

U0
∼= T0,sc ×T0,ad

pr1

OO

1−θ
// S0
∼= T0 ×T0,ad

pr1

OO

T̂0,ad

i1

��

T̂0

i1

��

1−θ̂
oo

Û0
∼= T̂0,ad × T̂0,sc Ŝ0

∼= T̂0 × T̂0,sc
1−θ̂

oo

Here, pr1 and i1 denote the first projection and the injection to the first en-
try, respectively. We note that (A−1, sS0) is the push-out of the 1-hyper-cocycle
(a−1

T0
, sT0,ad) along the map i1. Thus, since (pr1(V ),pr1(D)) = (1, δ0/δ̄0), the func-

toriality of the Tate–Nakayama pairing (see [Wal08, Section 6.3]) implies that

〈inv(γ, δ; γ̄, δ̄),A〉TN = 〈(V,D), (A−1, sS0)〉TN = 〈(1, δ0/δ̄0), (a−1
T0
, sT0,ad)〉TN,

where the last pairing is the one for (T0,sc
1−θ−−→,T0, T̂0

1−θ̂−−→ T̂0,ad).
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We next note the following commutative diagrams which are dual to each other:

{1} //

��

T0

id

��

{1} T̂0
oo

T0,sc
1−θ

// T0 T̂0,ad

OO

T̂0

id

OO

1−θ̂
oo

Since (1, δ0/δ̄0) is obtained by the push-out from 1→ T0 and the image of (a−1
T0
, sT0,ad)

in T̂0 → {1} is (a−1
T0
, 1), again the functoriality of the Tate–Nakayama pairing im-

plies

〈(1, δ0/δ̄0), (a−1
T0
, sT0,ad)〉TN = 〈δ0/δ̄0, a−1

T0
〉TN,

where the pairing on the right-hand side is the one for ({1} → T0, T̂0 → {1}),
which is nothing but the usual Tate–Nakayama pairing for T0 (see [KS99, A.3.13]
and also [KS12, Section 4.3]). Finally, by noting that δ0/δ̄0 = [g1](δ/δ̄), we get the
assertion. □
Lemma 13.8. For any positive integer m ∈ Z>0, we have

∆III[a, χ](γ<r · γm≥r, δ<r · δm≥r) = ∆III[a, χ](γ, δ).

Proof. It suffices to show that the relative factor ∆III[a, χ](γ<r · γm≥r, δ<r · δm≥r; γ, δ)
is trivial. By Proposition 13.7, this relative factor equals 〈δm−1

≥r , aT♢〉TN. Since

we assume that χ is minimally ramified, the character 〈−, aT♢〉TN of T♦ is tamely
ramified. Thus we get 〈δm−1

≥r , aT♢〉TN = 1. □

13.4. Fourth factor ∆IV. Recall from [KS99, Section 4.5] that the fourth factor
∆IV(γ, δ) is defined by

∆IV(γ, δ) := ∆G̃
IV(δ)/∆

H
IV(γ),

where

∆G̃
IV(δ) := |det([δ]− 1 | g/t♦)|

1
2

F
and ∆H

IV(γ) := |det([γ]− 1 | h/t♭)|
1
2

F
.

Recall that, since we are assuming that Φres(G,T
♦) does not contain a restricted

root of type 2 or 3, we have

∆G̃
IV(δ) =

∏
α∈Φres(G,T♢)

|N(α)(ν)− 1|
1
2

F

(see [KS99, Section 4.5]). By noting this, we extend the definition of ∆G̃
IV also for

any semisimple element δ′ ∈ T̃♦ by

∆G̃
IV(δ

′) =
∏

α∈Φres(G,T
♢)

N(α)(ν′) 6=1

|N(α)(ν′)− 1|
1
2

F
,

where ν′ ∈ T is the element such that ξ̃♦(δ
′) = ν′θ. We define ∆H

IV(γ
′) for any

semisimple γ′ ∈ T ♭ in a similar way.

Lemma 13.9. We have

∆G̃
IV(δ) = ∆G̃

IV(δ<r) ·∆
Gδ<r

IV (δ≥r) = |Dred
Gη0

(η+)|
1
2 · |Dred

Gη
(log(δ≥r))|

1
2 ,

∆H
IV(γ) = ∆H

IV(γ<r) ·∆
Hγ<r

IV (γ≥r).
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Proof. We consider only ∆G̃
IV(δ) since the formula for ∆H

IV(γ) can be showed by a
simpler argument. By noting that the valuation of N(α)(ν<r) − 1 is smaller than
r when N(α)(ν<r) 6= 1, we have

|N(α)(ν)− 1|
1
2

F
=

{
|N(α)(ν<r)− 1|

1
2

F
if N(α)(ν<r) 6= 1,

|N(α)(ν≥r)− 1|
1
2

F
if N(α)(ν<r) = 1.

Since {α ∈ Φres(G,T
♦) | N(α)(ν<r) = 1} is identified with the set Φ(Gδ<r

,T♮)
(Section 3.3) and

|N(α)(ν≥r)− 1|
1
2

F
= |α(ν≥r)lα − 1|

1
2

F
= |α(ν≥r)− 1|

1
2

F

(use that lα = 1, 2 and p 6= 2), we get ∆G̃
IV(δ) = ∆G̃

IV(δ<r) ·∆
Gδ<r

IV (δ≥r).

By applying the same argument to ∆G̃
IV(δ<r), we also have a decomposition

∆G̃
IV(δ<r) = ∆G̃

IV(δ0) · ∆
Gδ0

IV (δ+<r). However, we have |N(α)(ν0) − 1|F = 1 when-

ever N(α)(ν0) 6= 1 since N(α)(ν0) is of prime-to-p order. Hence we get ∆G̃
IV(δ) =

∆
Gδ0

IV (δ+<r)·∆
Gδ<r

IV (δ≥r). This can be rewritten as ∆G̃
IV(δ) = |Dred

Gη0
(η+)|

1
2 ·|Dred

Gη
(δ≥r)|

1
2

by [DS18, Remark 2.12]. By also noting that |Dred
Gη

(δ≥r)| = |Dred
Gη

(log(δ≥r))|, we
obtain the assertion. □
Lemma 13.10. There exists a constant d ∈ Z≥0 determined by δ<r such that, for
any positive integer m ∈ Z>0, we have

∆IV(γ<r · γp
m

≥r , δ<r · δ
pm

≥r ) = |p|
md
F
·∆IV(γ<r · γ≥r, δ<r · δ≥r).

Proof. By Lemma 13.9, we have ∆G̃
IV(δ) = ∆G̃

IV(δ<r) · ∆
Gδ<r

IV (δ≥r) and ∆G̃
IV(δ<r ·

δp
m

≥r ) = ∆G̃
IV(δ<r)·∆

Gδ<r

IV (δp
m

≥r ). On the other hand, by [Hal93, Lemma 3.1], we have

∆
Gδ<r

IV (δp
m

≥r ) = |p|m|Φ(Gδ<r ,T
♮)|

F
· ∆Gδ<r

IV (δ≥r) when p > eF + 1, which is assumed

to hold (see the beginning of Section 11). Similarly, we have ∆H
IV(γ<r · γ≥r) =

∆H
IV(γ<r) ·∆H

IV(γ≥r), ∆
H
IV(γ<r · γ

pm

≥r ) = ∆H
IV(γ<r) ·∆H

IV(γ
pm

≥r ), and ∆
Hγ<r

IV (γp
m

≥r ) =

|p|m|Φ(Hγ<r ,T
♭)|

F
·∆Hγ<r

IV (γ≥r) when p > eF+1. By putting all of these into together,

we get the assertion. □
13.5. Tail-scaling lemma on the full transfer factor. By combining Lemmas
13.2, 13.5, 13.8, and 13.10, we get the following proposition, which is the twisted
version of [Kal19b, Lemma 6.3.3].

Lemma 13.11. For any sufficiently large positive integer m ∈ Z>0, we have

∆̊(γ<r · γp
2m

≥r , δ<r · δ
p2m

≥r ) = ∆̊(γ<r · γ≥r, δ<r · δ≥r) and

∆(γ<r · γp
2m

≥r , δ<r · δ
p2m

≥r ) = |p|2md
F
·∆(γ<r · γ≥r, δ<r · δ≥r)

with constant d as in Lemma 13.10.

An important consequence of this lemma is the following.

Proposition 13.12. With the notation as in Theorem 11.3 and Corollary 11.4,
for any D-norm pair (Y,X) ∈ hy,0+ × gη,0+, we have

∆
(
y exp(Y ), η exp(X)

)
= ∆D(Ȳ ,Xsc) and

∆̊
(
y exp(Y ), η exp(X)

)
·∆IV(y, η) = ∆̊D(Ȳ ,Xsc)
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Proof. By Lemma 13.11, we have

∆
(
y exp(Y ), η exp(X)

)
= |p|−2md

F
·∆(y exp(p2mY ), η exp(p2mX))

for any sufficiently large m ∈ Z>0. By taking m to be a sufficiently large integer so
that p2mY belongs to the set V as in Corollary 11.4, we get

∆(y exp(p2mY ), η exp(p2mX)) = ∆D(p2mȲ , p2mXsc)

by Corollary 11.4. By the homogeneity of the Lie algebra transfer factor, we have
∆D(p2mȲ , p2mXsc) = |p|2md

F
· ∆D(Ȳ ,Xsc) (see [Wal97, Section 2.3] and [Hal93,

Section 10]). Thus we get the first equality.

By Lemma 13.9, we have ∆IV(γ, δ) = ∆IV(y, η) ·∆
Gη

IV (δ≥r) ·∆
Hy

IV (γ≥r)
−1. Hence,

by noting ∆
Gη

IV (δ≥r) ·∆
Hy

IV (γ≥r)
−1 = ∆D

IV(Ȳ ,Xsc), we get the second equality. □

14. Twisted endoscopic character relation

14.1. Twisted endoscopic character relation. We assume that (S, ̂, χ, ϑ) in a
toral supercuspidal L-packet datum of G whose L-parameter φ factors though the

L-embedding ξ̂ for an endoscopic data (H, LH, s, ξ̂) (i.e., we are in the situation as
in Section 9.2). Here, by replacing (S, ̂, χ, ϑ) with its isomorphic data if necessary,
we may assume that χ = χϑȷ̂

(see Section 7.3.3). As in the manner of Section
9.5, we get a toral supercuspidal L-packet datum (SH, ̂H, χH, ϑH). Similarly, we
may assume that χH = χϑȷ̂H

. Let ΠG
ϕ (resp. ΠH

ϕH
) denote the associated toral

supercuspidal L-packet of G (resp. H).
The aim of this section is to establish the following in some special cases:

Expectation 14.1. For each π ∈ ΠG
ϕ there exists a constant ∆spec

ϕ,π ∈ C such that

the following identity holds for any elliptic strongly regular semisimple δ ∈ G̃:∑
π∈ΠG

ϕ

∆spec
ϕ,π Θπ̃(δ) =

∑
γ∈H/st

∆H
IV(γ)

2

∆G̃
IV(δ)

2
∆(γ, δ)

∑
πH∈ΠH

ϕH

ΘπH
(γ),

or equivalently, ∑
π∈ΠG

ϕ

∆spec
ϕ,π Φπ̃(δ) =

∑
γ∈H/st

∆̊(γ, δ)
∑

πH∈ΠH
ϕH

ΦπH
(γ),(25)

where the first sum on the right-hand sides is over the stable conjugacy classes of

strongly G-regular semisimple elements of H and we put Φπ̃(δ) := ∆G̃
IV(δ) · Θπ̃(δ)

and ΦπH
(γ) := ∆H

IV(γ) ·ΘπH
(γ).

14.2. Several preliminary considerations.

14.2.1. Initial observation on the index sets. In the following, we fix an elliptic
strongly regular semisimple element δ ∈ G̃ and also fix a normal r-approximation
δ = δ0δ

+
<rδ≥r in the sense of Definition 3.15 (recall that we can always find a

normal r-approximation by Proposition 3.17). We let η denote δ<r ∈ G̃ss. We take
a set Hη ⊂ Hss as in Section 10.3, i.e., Hη is a set of representatives for the stable
conjugacy classes of semisimple elements of H such that y corresponds to η and Hy

is quasi-split for any y ∈ Hη.
Recall that the θ-stable members of ΠG

ϕ are parametrized by

J̃G
G := {j : S̃ ↪→ G̃ | j is F -rational and j ∼G −1}/∼G.
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More precisely, for each j ∈ J̃G
G , the corresponding member is given to be the toral

supercuspidal representation (let us write πj) arising from the tame elliptic regular
pair (Sj , ϑ

′
j) of G (see Section 7.3.3). According to the twisted character formula

(Theorem 6.10), the twisted character Φπ̃j
(δ) is expressed by a sum over the set

{g ∈ Sj\G/Gη | gη ∈ S̃j}. For each j ∈ J̃G
G , we put

J̃GGη
(j) := {k : S̃ ↪→ G̃ | k is F -rational, k ∼G j, and η ∈ S̃k}/∼Gη

.

Lemma 14.2. We have a bijection

{g ∈ Sj\G/Gη | gη ∈ S̃j}
1:1←→ J̃GGη

(j) : g 7→ [g−1] ◦ j.

Proof. It suffices to check that the surjective map from {g ∈ Sj\G | gη ∈ S̃j} to

{k : S̃ ↪→ G̃ | k is F -rational, k ∼G j, and η ∈ S̃k} given by g 7→ [g]−1 ◦ j is in fact
injective. (Then we can get the assertion by taking the quotient by Gη.) Let us
suppose that two elements g and g′ of G map to the same element, i.e., we have
[g]−1 ◦ j = [g′]−1 ◦ j. Then g′g−1 belongs to Sj , hence g and g′ belong to the same
double coset. Hence the map in the assertion is injective. □

By this lemma, the G-side
∑
π∈ΠG

ϕ
∆spec(φ, π)Θπ̃(δ) of the twisted endoscopic

character relation (25) can be written as a double sum over the sets J̃G
G and J̃GGη

(j)

(for j ∈ J̃G
G ). We rearrange this double as follows. We first combine J̃G

G and J̃GGη
(j)

(for j ∈ J̃G
G ) into the following single set:

J̃G
Gη

:= {k : S̃ ↪→ G̃ | k is F -rational, k ∼G −1, and η ∈ S̃k}/∼Gη .

Then we again divide JG
Gη

into the sets J̃G
Gη

and J̃Gη

Gη
(j) (for j ∈ J̃G

Gη
), where

• J̃G
Gη

:= {j : S̃ ↪→ G̃ | j is F -rational, j ∼G −1, and η ∈ S̃j}/∼Gη
,

• J̃Gη

Gη
(j) := {k : S̃ ↪→ G̃ | k is F -rational, k ∼Gη j, and η ∈ S̃k}/∼Gη .

In the following arguments, we fix representatives of these sets and loosely identify
these sets with the fixed sets of representatives.

GJ̃G
G

jjjj
jj

J̃G
Gη

TTTT
TT

G

J̃G
Gη

SSSS
SS Gη

J̃Gη
Gη

kkkk
kk

Gη

Keeping this observation in mind, let us first consider the case where

D(y, η) = ∅ for any y ∈ Hη.

In this case, by Proposition 10.11 (and Remark 10.12), J̃G
Gη

is necessarily empty.

This implies that the G-side of the twisted endoscopic character relation contains
a sum over the empty set, hence equals 0. On the other hand, we see that also the
H-side equals 0 by the following lemma:

Lemma 14.3. If D(y, η) = ∅ for any y ∈ Hη, then there is no norm of δ in H.

Proof. For the sake of contradiction, let us suppose that there exists a norm γ ∈ H
of δ. Then we have a diagram D ∈ D(γ, δ) associated to (γ, δ) by Lemma 10.7.

If we put ε := ξ̃D(η), D is also a diagram associated to (ε, η). Then, by the
same argument as in the proof of the surjectivity part of Proposition 10.11, we can
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construct a unique y ∈ Hη and a diagram D′ associated to (y, η) by modifying D
via H-conjugacy. Thus we get a contradiction. □

Therefore, in the following, we focus on an(y) elliptic strongly regular semisimple
element δ ∈ G such that

D(y, η) 6= ∅ for some y ∈ Hη.

Remark 14.4. This argument shows that if there does not exist an elliptic strongly
regular semisimple element δ ∈ G such that D(y, η) 6= ∅ for some y ∈ Hη, then
there is nothing to prove anymore. In this case, we simply put ∆spec(φ, π) := 0 for
any π ∈ ΠG

ϕ .

14.2.2. Head-tail stratification of the endoscopic index set. When γ ∈ H is a norm
of δ ∈ G̃, we take a diagram D ∈ D(γ, δ) and consider the associated map ξ̃D.
According to Lemma 10.7, such a diagram always exists uniquely up to equivalence
and the map ξ̃D is independent of the choice of D. By noting this, we put γi :=
ξ̃D(δi) for i ∈ R≥0. Then we get a normal r-approximation γ = γ<r · γ≥r (see
Lemma 13.1). Note that the r-approximation to γ induced from that to δ in this
way is consistent with respect to the stable H-conjugacy. More precisely, for any
norms γ ∈ H and γ̄ ∈ H of δ which are stably conjugate by h ∈ H (say γ̄ = hγ),
we have γ̄i =

hγi.
For each y ∈ Hη, we put

Hy[δ]r :=

ß
z ∈ Hy,srs

∣∣∣∣ yz ∈ H is a norm of δ,
y · z is the fixed normal r-approximation to yz

™
.

Lemma 14.5 ([Kal15, Lemma 6.4]). The map⊔
y∈Hη

Hy[δ]r/∼Hy → {γ ∈ Hsrs | γ is a norm of δ}/∼H : z 7→ yz

is a π0(H
y)(F )-torsor on each disjoint summand Hy[δ]r/∼Hy

(onto its image).
Furthermore, the induced map⊔

y∈Hη

(Hy[δ]r/∼Hy )/π0(H
y)(F )→ {γ ∈ Hsrs | γ is a norm of δ}/∼H : z 7→ yz

is bijective. Here, ∼Hy
on the left-hand side (resp. ∼H on the right-hand side)

denotes the stable conjugacy in Hy (resp. H).

Proof. The well-definedness of the map is obvious.
We first show the surjectivity of the map. Let γ ∈ Hsrs be a norm of δ. Then,

according to Lemma 10.7, there exists a diagram D ∈ D(γ, δ) unique up to equiv-

alence. We put ε := ξ̃D(η). Then, by the definition of Hη, there uniquely exists a
y ∈ Hη which is stably H-conjugate to ε. Let us take an element h ∈ H giving this
stable conjugacy, that is, [h](ε) = y and σ(h)−1h ∈ Hϵ for any σ ∈ Γ. Then the
map [h] gives an inner twist between Hϵ and the quasi-split connected reductive
group Hy. Since any maximal torus defined over F transfers to the quasi-split
inner form, we may suppose that the map [h] : Hϵ → Hy induces an F -rational
isomorphism from Hγ (this is a maximal torus of Hϵ) to a maximal torus of Hy.
Then z := [h](ξD(δ≥r)) is an element of Hy such that yz = [h](γ). This means that
the map in the assertion is surjective.

We next investigate the fibers of the map. Suppose that we have z ∈ Hy[δ]r
and z̄ ∈ Hȳ[δ]r for y, ȳ ∈ Hη such that yz and ȳz̄ are stably H-conjugate. Let
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h ∈ H be an element giving the stable conjugacy, i.e., [h](yz) = ȳz̄. As we took the
normal r-approximations to be consistent with the stable conjugacy, this implies
that [h](y) = ȳ. Then, by the definition of Hη, we get y = ȳ, hence h ∈ Hy. Since
we also have [h](z) = z̄, we know that z and z̄ are conjugate under the action of
π0(H

y)(F ) by [Kal15, Lemma 6.3]. □
Lemma 14.6. We put X := log(δ≥r) ∈ gη. Let z ∈ Hy[δ]r and we put Y :=
log(z) ∈ hy. There exists a diagram D ∈ D(y, η) uniquely up to equivalence such
that (Y,X) is a D-norm pair.

Proof. By the definition of the set Hy[δ]r, yz is a norm of δ and y · z is the fixed
r-approximation to yz. Hence, according to our choice of normal r-approximations,
there exists a diagram D = (B♭,T♭,B♦,T♦) ∈ D(y, η) satisfying ξ̃D(η) = y and
ξD(δ≥r) = z. This implies that (Y,X) is a D-norm pair.

To check the uniqueness of D, let us suppose that (Y,X) is a D̄-norm pair for
another diagram D̄ = (B̄♭, T̄♭, B̄♦, T̄♦) ∈ D(y, η). Then, by replacing D̄ with its
equivalent diagram appropriately, we may assume that T̄♭ = T♭ and T̄♦ = T♦ and
that ξD(exp(X)) = exp(Y ) = ξD̄(exp(X)) (cf. the argument in the proof of Lemma
10.8). This implies that both D and D̄ belong to D(y exp(Y ), η exp(X)). Thus,
by Lemma 10.7, D and D̄ are equivalent in D(y exp(Y ), η exp(X)), hence also in
D(y, η). □

By the invariance of the logarithm map, Lemma 14.6 implies the following.

Lemma 14.7. The association z 7→ log(z) induces a bijection

Hy[δ]r/∼Hy

1:1−−→
⊔

D∈D(y,η)

{Y D←→ X}/∼Hy
,

where the left-hand side denotes the set of Hy-conjugacy classes of elements of
Hy[δ]r and the right-hand side denotes the set of Hy-conjugacy classes of elements
Y ∈ hy which constitute a D-norm pair with X := log(δ≥r) (over D ∈ D(y, η)).

14.2.3. Lie algebra transfer: revisited. We introduce the sets JH
H , JHHy

, JH
Hy

and

JHy

Hy
to rearrange the index sets on theH-side of (25) in a similar manner to Section

14.2.1.

GJ̃G
G

jjjj
jj

J̃G
Gη

TTTT
TT

G

J̃G
Gη

SSSS
SS Gη

J̃Gη
Gη

kkkk
kk

Gη

HJH
H

jjjj
jj

JH
Hy

TTTT
TT

H

JH
Hy

SSSS
SS Hy

JHy
Hy

kkkk
kk

Hy

Recall that, by Proposition 10.11, we have a bijective map

tran :
⊔
y∈Hη

(
D(y, η)× JH

Hy

)
/π0(H

y)(F )→ J̃G
Gη
.

Suppose that D ∈ D(y, η), jH ∈ JH
Hy

, and j ∈ J̃G
Gη

satisfy tran(D, jH) = j.

We also recall that, in Section 9, we fixed X∗ ∈ s∗ and Y ∗ ∈ s∗H, which are the
elements realizing the toral characters ϑ and ϑH, respectively (see Corollary 9.21).
In the following, for k ∈ JG, we put

X∗
k := (dk∗)−1(X∗) ∈ s∗k ↪→ g∗

(note that dk : s ∼= sk, hence dk
∗ : s∗k

∼= s∗). This can be also thought of as an
element of s∗k representing the character ϑk|Sk,r

= ϑ′k|Sk,r
. Note that when k
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belongs to J̃G
Gη

, we also have an element X∗
k ∈ s♮∗k ↪→ g∗η, which can be thought

of as the image of the above X∗
k under the natural map s∗k ↠ s♮∗k . Similarly, for

kH ∈ JH, we put

Y ∗
kH

:= (dk∗H)−1(Y ∗) ∈ s∗kH ↪→ h∗.

By the construction of the map tran, the maps ξS and ξD coincide under the
embeddings j and jH, i.e., ξD ◦ j = jH ◦ ξS. This implies that dξ∗D(Y

∗
jH

) = X∗
j ∈

(t♦∗)θ♢ .

Lemma 14.8. (1) The set {Y ∗
kH
| kH ∈ J

Hy

Hy
(jH)} represents the Hy-conjugacy

classes within a stable Hy-conjugacy class.

(2) The set {X∗
k | k ∈ J̃

Gη

Gη
(j)} represents the Gη-conjugacy classes of elements

of gη,0+ constituting a D-norm pair with Y ∗
kH

for a(ny) kH ∈ J
Hy

Hy
(jH).

Proof. The assertion (1) is obvious by the definitions of Y ∗
kH

and JHy

Hy
(jH). Since

we have dξ∗D(Y
∗
jH

) = X∗
j , (Y

∗
jH
, X∗

j ) is a D-norm pair. Noting that all elements
of gη,0+ constituting a norm pair with Y ∗

kH
are Gη-conjugate, the assertion (2)

follows. □

Lemma 14.8 enables us to rewrite Proposition 11.8 as follows:

Proposition 14.9. We have∑
Y

D↔X/∼Hy

∆̊D(Ȳ ,Xsc)
∑

kH∈JHy
Hy

(jH)

D
Hy

Y ∗
kH

(Y ) =
∑

k∈J̃Gη
Gη

(j)

∆̊D(Ȳ ∗
jH , X

∗
k,sc)D

Gη

X∗
k
(X).

14.2.4. a-data and χ-data for restricted roots. In our computation of the transfer
factor carried out later, we need to fix sets of a-data and χ-data for the restricted
roots. We explain our choice in the following.

We first discuss the G-side. Suppose that j ∈ J̃G
Gη

. For any k ∈ J̃Gη

Gη
(j),

we get an η-stable (hence also η0-stable) tame elliptic toral pair (Sk, ϑ
′
k) of G.

Then we have the set Φres(G,Sk) of restricted roots. We define a set aresk =
{aresk,αres

}αres∈Φres(G,Sk) of a-data for Φres(G,Sk) by

aresk,αres
= 〈Hαres , X

∗
k〉,

where

• Hαres
:= dα∨

res(1) ∈ s♮k(Fα), and

• X∗
k ∈ s♮∗k,−r is an element associated to ϑ′k as in Section 14.2.3.

We define a set χres
k = {χres

k,αres
}αres∈Φres(G,Sk) of χ-data for Φres(G,Sk) as follows:

• For αres ∈ Φres(G,Sk)asym, let χ
res
k,αres

be the trivial character of F×
αres

.

• For αres ∈ Φres(G,Sk)ur, let χ
res
k,αres

be the unique unramified nontrivial

quadratic character of F×
αres

.
• For αres ∈ Φres(G,Sk)ram, let χ

res
k,αres

be the unique tamely ramified char-

acter of F×
αres

characterized by the following properties:

χres
k,αres

|F×
±αres

= καres and χres
j,αres

(2aresk,αres
) = λαres .

Remark 14.10. We can check that the above conditions uniquely specify the tamely
ramified quadratic character χres

k,αres
for αres ∈ Φres(G,Sk)ram in the same manner

as in [Kal19b, Section 4.7]. Indeed, if we let σαres
∈ Gal(Fαres

/F±αres
) be the unique
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nontrivial element, then we have σαres
(Hαres

) = σαres
(dα∨

res(1)) = dσαres
(α∨

res)(1) =
−dα∨

res(1) = −Hαres and σαres(X
∗
k) = X∗

k . Hence σαres(a
res
k,αres

) = −aresk,αres
. This

implies that the valuation (normalized with respect to Fαres
) of aresk,αres

is odd.

We note that, by restriction, (Sk, ϑ
′
k) induces a tame elliptic toral pair (S♮k, ϑ

′♮
k )

of Gη0 , where ϑ
′♮
k = ϑ′k|S♮

k
(Lemma 5.4). Then, by the construction of Kaletha

(see Section 7.1), we have a set aϑ′♮
k

= {aϑ′♮
k ,α
}α∈Φ(Gη0

,S♮
k)

of a-data and a set

χϑ′♮
k
= {χϑ′♮

k ,α
}α∈Φ(Gη0

,S♮
k)

of χ-data for Φ(Gη0 ,S
♮
k). We shortly write (a♮k, χ

♮
k) for

(aϑ′♮
k
, χϑ′♮

k
). As explained in Section 12.1, the set Φ(Gη0 ,S

♮
k) can be regarded as a

subset (root subsystem) of Φres(G,Sk). By construction, we have the following:

Lemma 14.11. The sets of a-data and χ-data (a♮k, χ
♮
k) are restrictions of (a

res
k , χres

k ).

We next discuss the H-side. Suppose that D ∈ D(y, η), jH ∈ JH
Hy

, and j ∈ J̃G
Gη

satisfy tran(D, jH) = j. For any kH ∈ J
Hy

Hy
, we get a tame elliptic toral pair

(SkH , ϑ
′
kH

) := (SH,kH , ϑ
′
H,kH

) of H. By applying Kaletha’s construction (Section

7.1) to (SkH , ϑ
′
kH

), we get the sets akH := aϑ′
kH

of a-data and χkH := χϑ′
kH

of

χ-data with respect to Φ(H,SkH). Suppose that y ∈ SkH . Then, as explained in
Section 12.1, the set Φ(Hy,SkH) can be regarded as a subset (root subsystem) of

Φ(Gη,S
♮
k), which is a subset of Φ(Gη0 ,S

♮
k).

Lemma 14.12. Suppose that αy ∈ Φ(Hy,SkH) is identified with αη ∈ Φ(Gη,S
♮
k).

Then, we have lα · akH,αy = aresk,αη
.

Proof. By definition, we have akH,αy = 〈Hαy , Y
∗
kH
〉 and aresk,αη

= 〈Hαη , X
∗
k〉. Since

(Y ∗
kH
, X∗

k) is a D-norm pair (Lemma 14.8) and we have Hαy
= dα∨

y (1), Hαη
=

dα∨
η (1), we get the equality lα · akH,αy

= aresk,αη
by Lemma 12.1. □

14.2.5. Twisted character formula of a normalized form. In the following, for each
j ∈ J̃G

G , we fix a set of elements {gk ∈ G | k ∈ J̃GGη
(j)} such that {[gk]−1 ◦ j}

is a (fixed) set of representatives of J̃GGη
(j). (Note that this set also represents

{g ∈ Sj\G/Gη | gη ∈ S̃j} by Lemma 14.2.) Moreover, we fix a base point η
j
of the

twisted space S̃j For each k ∈ J̃GGη
(j), we fix a base point η

k
of the twisted space

S̃k by η
k
:= [gk]

−1(η
j
).

For any k ∈ J̃G
Gη

, we define a character ε⋆ϑk
of Sk by

ε⋆ϑk
(s) :=

∏
α∈Ξ̈(G,Sk)
αres: ram

εα(s).

Proposition 14.13. Let j ∈ J̃G
G . For each k ∈ J̃GGη

(j), we write η = sk · ηk ∈ S̃k.
Then we have

Φπ̃j (δ) = Cη
j
· (−1)|Ξ̈η0,ur| · e(Gη0) · e(Gη) · ε(TG∗

η0
) · ε(TG∗

η
)−1·∑

k∈J̃G
Gη

(j)

ϑk(sk) · εSk,ram(sk) · ε⋆ϑk
(sk) ·∆

Gη0

II [aresk , χres
k ](η+) · ι̂

Gη

X∗
k

(
log(δ≥r)

)
,

where aresk and χres
k are the sets of a-data and χ-data for Φ(Gη0 ,S

♮
k) as in Section

14.2.4.
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Proof. By Proposition 6.11, we have

Φπ̃j (δ) = Cη
j
· (−1)|Ξ̈η0,ur| · e(Gη0) · e(Gη) · ε(TG∗

η0
) · ε(TG∗

η
)−1∑

g∈Sj\G/Gη
gη∈S̃j

ϑ′j(sj,g) · ε̃Ξ(sj,g) ·∆
Ggη0

II [a♮ϑ′
j
, χ♮ϑ′

j
](gη+) · ι̂

Ggη

X∗
j
(log(gδ≥r)),

where sj,g ∈ Sj is the element satisfying gη = sj,gηj . Recall that ϑ
′
j(sj,g) = εϑj

· ϑj
(Section 7.3.3). Here we caution that we took the initial regular supercuspidal
packet datum such that its χ-data is equal to χϑȷ̂

, hence the zeta character contained
in ϑ′j is trivial. As we have εϑj = εϑj ,asym · εϑj ,ur · εSj ,ram and ε̃Ξ is the product of

εα’s for α ∈ Ξ̈ such that αres is asymmetric or unramified (see Section 6.7), we get

ϑ′j(sj,g) · ε̃Ξ(sj,g) = ϑj(sj,g) · εSj ,ram(sj,g) · ε⋆ϑj
(sj,g).

By our choice of base points, when g = gk, we have η
j
= gη

k
, hence sj,g = gsk.

Thus we get ϑj(sj,g) = ϑ(j−1(sj,g)) = ϑ(j−1 ◦ [g](sk)) = ϑ(k−1(sk)) = ϑk(sk).
Similarly, we have εSj ,ram(sj,g) = εSj ,ram(

gsk) = εSk,ram(sk), ε
⋆
ϑj
(sj,g) = ε⋆ϑj

(gsk) =

ε⋆ϑk
(sk), and ι̂

Ggη

X∗
j
(log(gδ≥r)) = ι̂

Gη

g−1X∗
j

(log(δ≥r)) = ι̂
Gη

X∗
k
(log(δ≥r)). Moreover, by

noting that ϑ′♮j and ϑ♮j give rise to the same a-data and χ-data (Section 7.1) and

using Lemma 14.11, we have ∆
Ggη0

II [a♮ϑ′
j
, χ♮ϑ′

j
](gη+) = ∆

Gη0

II [aresk , χres
k ](η+). Thus we

arrive at the claimed formula. □

14.2.6. Third factor ∆III: revisited. We next rewrite Proposition 13.7 in a form
suitable for our purpose. Suppose that D = (B♭,T♭,B♦,T♦) ∈ D(y, η), jH ∈ JH

Hy
,

and j ∈ J̃G
Gη

satisfy tran(D, jH) = j. Hence, we may and do assume that T♭ = SjH

and T♦ = Sj . Let k ∈ J̃
Gη

Gη
(j).

We introduce the following character according to [Kal19a, Proposition 5.25]:

Definition 14.14. Let ζdesc : Sk → C× be a character given by

ζdesc(s) :=
∏

α∈Φ̈asym(G,Sk)
αres: ramified

εα(s)
∏

α∈Φ̇ur(G,Sk)
αres: ramified

εα(s).

Our aim here is to show the following:

Proposition 14.15. Suppose that (γ̄, δ̄), (γ̄,′ δ̄′) ∈ D are such that D ∈ D(γ̄, δ̄)
and D ∈ D(γ̄′, δ̄′). Then we have

∆III[a
res
k , χres

k ](γ̄, δ̄; γ̄′, δ̄′) =
ϑk(δ̄/δ̄

′)

ϑjH(γ̄/γ̄
′)
· ζdesc(δ̄/δ̄′) · ζχres

j /χjH
,SjH

(γ̄/γ̄′).

Recall that we introduced a 1-cocycle aSk
which measures the difference between

Lj1χres
k

and ξ̂ ◦ LjHχres
k

in Section 13.3. Let us write a[LjHχres
k
/Lj1χres

k
] for aSk

.

On the other hand, we also have L-embeddings Ljχk
: LSk ↪→ LG and LjχH

: LSjH ↪→
LH obtained by applying the Langlands–Shelstad construction to the χ-data χk
and χjH as in Section 14.2.4. We define a 1-cocycle a[LjχjH

/Ljχk
] by a[LjχjH

/Ljχk
] ·

Ljχk
= ξ̂ ◦ LjχjH
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We furthermore introduce one more L-embedding Ljinf(χres
k ) :

LSk ↪→ LG. For

this, we first define a set of χ-data inf(χres
k ) of Φ(G,Sk) by inflating the set of χ-

data χres
k of Φres(G,Sk) along the natural restriction map Φ(G,Sk) ↠ Φres(G,Sk)

(see [Kal19a, Definition 5.14]) and then apply the Langlands–Shelstad construction.
We define 1-cocycles a[Ljinf(χres

k )/
Ljχk

], a[Lj1χres
k
/Ljinf(χres

k )], and a[
LjχjH

/LjHχres
k
] in

a similar way to a[LjχjH
/Ljχk

].

LH

ξ̂

++LG1 �
�

// LG

LSjH
∼= //

?�

LjHχres
k

LjχjH

OO

L(Sk,θSk
)

?�

Lj1χres
k

OO

� � // LSk
?�

Ljχk

Ljinf(χres
k

)

OO

Lemma 14.16. For any s ∈ Sk, we have

(1) 〈s, a[LjχjH
/Ljχk

]〉TN = ϑk/ϑjH(s),

(2) 〈s, a[Ljinf(χres
k )/

Ljχk
]〉TN = ζdesc(s)

−1,

(3) 〈s, a[Lj1χres
k
/Ljinf(χres

k )]〉TN = 1.

Proof. We first consider (1). Recall that we have Ljχ ◦ φϑ = ξ̂ ◦ LjχH
◦ φϑH

(see
Section 9.5, especially, (14)). Since we assumed that χ = χϑȷ̂

and χH = χϑȷ̂H

(see the beginning of Section 14.2.1), this identity can be rewritten as Ljχk
◦ φϑk

=

ξ̂ ◦ LjχjH
◦ φϑjH

. This implies that φϑk
= a[LjχjH

/Ljχk
] · φϑjH

. Hence we get the

identity (1).
We next consider (2). We note that the set χk of χ-data is minimally ramified,

which is obtained by the “minimalization” of inf(χres
k ) ([Kal19a, Definition 5.24]).

Therefore the claimed identity is a direct consequence of [Kal19a, Proposition 5.25].
(Just note that the integers “e(α/αres)” in [Kal19a, Proposition 5.25] are all equal
to 1, which can be checked by looking at the proofs of Lemma 12.2 and 12.3).

It is a routine work to check the assertion (3) by going back to the Langlands–
Shelstad construction. □

Proof of Proposition 14.15. By Proposition 13.7, we have

∆III[a
res
k , χres

k ](γ̄, δ̄; γ̄′, δ̄′) = 〈δ̄/δ̄′, a[LjHχres
k
/Lj1χres

k
]〉TN.

We note that a[LjχjH
/Ljχk

] is equal to

a[LjχjH
/LjHχres

k
] · a[LjHχres

k
/Lj1χres

k
] · a[Lj1χres

k
/Ljinf(χres

k )] · a[Ljinf(χres
k )/

Ljχk
].

Hence, Lemma 14.16 implies that

ϑk/ϑjH(δ̄/δ̄
′) = ζχjH

/χres
k ,SjH

(γ̄/γ̄′) ·∆III[a
res
k , χres

k ](γ̄, δ̄; γ̄′, δ̄′) · ζdesc(δ̄/δ̄′)−1

Thus we get the assertion. □

14.3. Appearance of the spectral transfer factor. We start with rewriting the

endoscopic side of (25). We put ΦH,st
ϕ :=

∑
πH∈ΠH

ϕH

ΦπH
. By Lemma 14.5, we have∑

γ∈Hsrs/∼H

∆̊(γ, δ)ΦH,st
ϕ (γ) =

∑
y∈Hη

1

|π0(Hy)(F )|
∑

z∈Hy [δ]r/∼Hy

∆̊(yz, δ)ΦH,st
ϕ (yz).(26)
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In the following, we put X := log(δ≥r) ∈ gη. Let z ∈ Hy[δ]r and we put Y :=
log(z) ∈ hy. By Lemma 14.6, there exists a unique D ∈ D(y, η) such that (Y,X) is
a D-norm pair. Therefore, by Proposition 13.12, we have

∆̊D(Ȳ ,Xsc) =

®
∆̊(yz, δ) ·∆IV(y, η) for a unique D ∈ D(y, η),
0 otherwise.

Thus, by also using Lemma 14.7, we see that the right-hand side of (26) equals

(27)
∑
y∈Hη

1

|π0(Hy)(F )|
∑

D∈D(y,η)

∑
Y

D↔X/∼Hy

∆̊D(Ȳ ,Xsc)∆IV(y, η)
−1ΦH,st

ϕ (yz).

Now we utilize the character formula ([Kal19b, Lemma 6.3.1]):

ΦH,st
ϕ (yz) = ε(TH)ε(THy

)−1
∑

jH∈JH
Hy

∆H
II [ajH , χjH ](y)ϑjH(y)

∑
kH∈JHy

Hy
(jH)

ι̂
Hy

Y ∗
kH

(Y ),

where ajH := aϑjH
, χjH := χϑjH

(see Section 14.2.4). Note that the above formula

is simplified compared to [Kal19b, Lemma 6.3.1] because now Hy is quasi-split and
〈inv(jH,wH

, kH), 1〉 = 1 since the groups S+
ϕH

is abelian. Thus (27) equals

(28)
∑
y∈Hη

ε(TH)ε(THy
)−1

|π0(Hy)(F )|
∑

D∈D(y,η)

∑
jH∈JH

Hy

∆IV(y, η)
−1

∆H
II [ajH , χjH ](y)ϑjH(y)

∑
Y

D↔X/∼Hy

∆̊D(Ȳ ,Xsc)
∑

kH∈JHy
Hy

(jH)

ι̂
Hy

Y ∗
kH

(Y ).

According to Proposition 10.11, the first three index sets with 1/|π0(Hy)(F )| are
combined into one index set J̃G

Gη
. Hence we can rewrite the above sum as

(29)
∑

j∈J̃G
Gη

ε(TH)ε(THy )
−1∆IV(y, η)

−1∆H
II [ajH , χjH ](y)ϑjH(y)

∑
Y

D↔X/∼Hy

∆̊D(Ȳ ,Xsc)
∑

kH∈JHy
Hy

(jH)

ι̂
Hy

Y ∗
kH

(Y ).

Here, for each j ∈ J̃G
Gη

, we let y ∈ Hη and jH ∈ JH
Hy

denote the unique (up to

π0(H
y)(F )-action) elements determined by Proposition 10.11. By applying the Lie

algebra transfer for twisted endoscopy (Proposition 14.9):∑
Y

D↔X/∼Hy

∆̊D(Ȳ ,Xsc)
∑

kH∈JHy
Hy

(jH)

D
Hy

Y ∗
kH

(Y ) =
∑

k∈JGη
Gη

(j)

∆̊D(Ȳ ∗
jH , X

∗
k,sc)D

Gη

X∗
k
(X)

to the last double sum of (29), we see that (29) is equal to

(30)
∑

j∈J̃G
Gη

ε(TH)ε(THy )
−1∆IV(y, η)

−1∆H
II [ajH , χjH ](y)ϑjH(y)

· γ(gη)γ(hy)−1
∑

k∈JGη
Gη

(j)

∆̊D(Ȳ ∗
jH , X

∗
k,sc)ι̂

Gη

X∗
k
(X)
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(recall that D
Hy

Y ∗
kH

(Y ) = γ(hy)ι̂
Hy

Y ∗
kH

(Y ) and D
Gη

X∗
k
(X) = γ(gη)ι̂

Gη

X∗
k
(X)). Again using

Proposition 13.12, this equals

(31)
∑

j∈J̃G
Gη

ε(TH)ε(THy
)−1∆H

II [ajH , χjH ](y)ϑjH(y)

· γ(gη)γ(hy)−1
∑

k∈JGη
Gη

(j)

∆̊
(
y exp(Y ∗

jH), η exp(X
∗
k)
)
ι̂
Gη

X∗
k
(X).

By definition, ∆̊ is given by the product of ε(TGθ
)ε(TH)−1, ∆I, ∆II, and ∆III.

In the following, we choose the a-data aresk and χ-data χres
k as in Section 14.2.4 to

compute these factors. Then, in summary, the H-side (31) equals

(32)
∑

j∈J̃G
Gη

ε(TGθ
)ε(THy

)−1 ·∆H
II [ajH , χjH ](y)ϑjH(y)γ(gη)γ(hy)

−1

·
∑

k∈JGη
Gη

(j)

∆I,II,III[a
res
k , χres

k ]
(
y exp(Y ∗

jH), η exp(X
∗
k)
)
ι̂
Gη

X∗
k
(X).

Now we are reduced to comparing the above to theG-side of (25). Let {∆spec
ϕ,j }j∈JG

G

be any family of constants such that ∆spec
ϕ,j = 0 for any j ∈ JG

G ∖ J̃G
G . By Propo-

sition 14.13,
∑
j∈J̃G

G
∆spec
ϕ,j Φπ̃j

(δ) equals

(33)
∑
j∈J̃G

G

∆spec
ϕ,j Cηj

(−1)|Ξ̈η0,ur|e(Gη0)e(Gη)ε(TG∗
η0
)ε(TG∗

η
)−1

·
∑

k∈J̃G
Gη

(j)

ϑk(sk) · εSk,ram(sk) · ε⋆ϑk
(sk) ·∆

Gη0

II [aresk , χres
k ](η+) · ι̂

Gη

X∗
k
(X).

By putting ∆̄spec
ϕ,k := ∆spec

ϕ,j Cηj
for any k ∈ J̃GGη

(j), (33) equals

(34)
∑
j∈J̃G

G

∑
k∈J̃G

Gη
(j)

∆̄spec
ϕ,k · (−1)

|Ξ̈η0,ur| · e(Gη0)e(Gη) · ε(TG∗
η0
)ε(TG∗

η
)−1

· ϑk(sk) · εSk,ram(sk) · ε⋆ϑk
(sk) ·∆

Gη0

II [aresk , χres
k ](η+) · ι̂

Gη

X∗
k
(X).

Therefore it suffices to prove that, for every j ∈ J̃G
Gη

, the contribution of each

k ∈ J̃Gη

Gη
(j) to the H-side (32)

(35) ε(TGθ
)ε(THy

)−1 ·∆H
II [ajH , χjH ](y)ϑjH(y) · γ(gη)γ(hy)−1

·∆I,II,III[a
res
k , χres

k ]
(
y exp(Y ∗

jH), η exp(X
∗
k)
)

(other than the Fourier transform of the orbital integral ι̂
Gη

X∗
k
(X)) is equal to that

to the G-side (34)

(36) ∆̄spec
ϕ,k · (−1)

|Ξ̇η0,ur| · e(Gη0)e(Gη) · ε(TG∗
η0
)ε(TG∗

η
)−1

· ϑk(sk) · εSk,ram(sk) · ε⋆ϑk
(sk) ·∆

Gη0

II [aresk , χres
k ](η+)
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under an appropriate choice of ∆spec
ϕ,k such that ∆spec

ϕ,k is constant on k ∈ J̃GGη
(j).

Hence let us just define ∆spec
ϕ,k , or equivalently ∆̄spec

ϕ,k , so that (35) equals (36):

(37) ∆̄spec
ϕ,k :=

ε(TG∗
η
) · ε(THy

)−1 · γ(gη)γ(hy)−1

e(Gη)
· ∆H

II [ajH , χjH ](y)

∆
Gη0

II [aresk , χres
k ](η+)

·
ε(TGθ

) · ε(TG∗
η0
)−1

e(Gη0) · (−1)|Ξ̇η0,ur| · εSk,ram(sk) · ε⋆ϑk
(sk)

· ϑjH(y)
ϑk(sk)

·∆I,II,III[a
res
k , χres

k ]
(
y exp(Y ∗

jH), η exp(X
∗
k)
)
.

Then the problem is that this quantity heavily depends on η and y. What we have
to do now is to check the well-definedness of ∆spec

ϕ,k ; in other words,

(1) ∆̄spec
ϕ,k is constant for k ∈ J̃GGη

(j), and

(2) ∆̄spec
ϕ,k is independent of η.

We first recall the following formula of Kaletha–Kottwitz:

Proposition 14.17 ([Kal15, Lemma 4.8, Theorem 4.10]). Let J be a connected
reductive group over F and SJ an F -rational maximal torus of J. We fix a J-
invariant symmetric non-degenerate bilinear form Bj on j. Then we have

ε(SJ)ε(TJ∗)−1 = e(J)γ(j)
∏

α∈Φ̇(J,SJ)sym

κα(Bj,α)
−1,

where TJ∗ denotes a minimal Levi subgroup of the quasi-split inner form of J and
Bj,α := Bj(Xα, Yα) ∈ F×

±α for any elements Xα ∈ jα(Fα) and Yα ∈ j−α(Fα)
satisfying [Xα, Yα] = Hα(:= dα∨(1)).

Lemma 14.18. We have

ε(TG∗
η
) · ε(THy

)−1 · γ(gη)γ(hy)−1

e(Gη)
=

∆
Hy

II [ajH , χjH ](exp(Y
∗
jH

))

∆
Gη

II [aresk , χres
k ](exp(X∗

k))
.

Proof. By Proposition 14.17, we have

ε(S♮k) · ε(TG∗
η
)−1 = e(Gη)γ(gη)

∏
αη∈Φ̇(Gη,S

♮
k)sym

καη (Bgη,αη )
−1,

ε(SjH) · ε(THy )
−1 = γ(hy)

∏
αy∈Φ̇(Hy,SjH

)sym

καy (Bhy,αy )
−1.

(note that e(Hy) = 1 since Hy is quasi-split). Hence, by noting that X∗(SjH)C
∼=

X∗(S♮k)C, the left-hand side of the assertion is equal to∏
αη∈Φ̇(Gη,S

♮
k)sym

καη (Bgη,αη )
∏

αy∈Φ̇(Hy,SjH
)sym

καy (Bhy,αy )
−1.(38)

This can be computed by the same argument as in the final paragraph of the

proof of [Kal19b, Theorem 6.3.4] as follows. For any αη ∈ Φ(Gη,S
♮
k)sym, we have

lim
m→∞

αη(exp(p
2mX∗

k))− 1

p2m
= dαη(X

∗
k),

106



where X∗
k ∈ g∗η is regarded as an element of gη via non-degenerate bilinear form

Bgη on gη. By noting that Bgη is an invariant bilinear form, we have

〈Hαη
, X∗

k〉 = Bgη
(X∗

k ,Hαη
) = Bgη

(X∗
k , [Xαη

, Yαη
]) = Bgη

([X∗
k , Xαη

], Yαη
).

Since we have [X∗
k , Xαη ] = dαη(X

∗
k)Xαη , we get 〈Hαη , X

∗
k〉 = dαη(X

∗
k) · Bgη,αη .

Hence, as we have aresk,αη
= 〈Hαη

, X∗
k〉, we get

χres
k,αη

Å
αη(exp(X

∗
k))− 1

aresk,αη

ã
= χres

k,αη

Å
αη(exp(p

2mX∗
k))− 1

aresk,αη

ã
= καη (Bgη,αη )

−1,

where we used that χres
k is minimally ramified in the first equality.

Similarly, for any αy ∈ Φ(SH,Hy)sym, we have

lim
m→∞

αy(exp(p
2mY ∗

jH
))− 1

p2m
= dαy(Y

∗
jH) = 〈Hαy , Y

∗
jH〉 ·B

−1
hy,αy

.

Since we have ajH,αy
= 〈Hαy

, Y ∗
jH
〉, we get

χjH,αy

Å
αy(exp(Y

∗
jH

))− 1

ajH,αy

ã
= χjH,αy

Å
αy(exp(p

2mY ∗
jH

))− 1

ajH,αy

ã
= καy (Bhy,αy )

−1.

Therefore we see that (38) is given by the ratio of ∆
Hy

II [ajH , χjH ](exp(Y
∗
jH

)) to

∆
Gη

II [aresk , χres
k ](exp(X∗

k)) as in the right-hand side of the assertion. □

From Lemma 14.18 and the descent properties of the second transfer factors
(both in the twisted and untwisted cases, Lemma 13.3 and [Kal19b, Lemma 4.6.7]),
we see that (37) equals

(39) ∆G̃
II [a

res
k , χres

k ](η0) · χres
k (η0) ·

∆H
II [ajH , χjH ](y exp(Y

∗
jH

))

∆H
II [a

res
k , χres

k ](y exp(Y ∗
jH

))

·
ε(TGθ

) · ε(TG∗
η0
)−1

e(Gη0) · (−1)|Ξ̇η0,ur| · εSk,ram(sk) · ε⋆ϑk
(sk)

· ϑjH(y)
ϑk(sk)

·∆I,III[a
res
k , χres

k ]
(
y exp(Y ∗

jH), η exp(X
∗
k)
)
,

where χres
k (η0) is as in Lemma 13.3:

χres
k (η0) :=

∏
αres∈Φ̇(Gη0

,S♮
k)

χres
k,αres

(lα).

Since χres
k (η0) is independent of η0 by Lemma 13.4, let us write χres

k (S♮k) for χ
res
k (η0)

in the following.

Lemma 14.19. The quantity ∆G̃
II [a

res
k , χres

k ](η0) is given by

λresk,ur · (−1)r
res
k,ur+|Ξ̇η0,ur| ·

∏
αres∈Φ̇(Gη0

,S♮
k)ur

f(Gη0
,S♮

k)
(αres) ·

∏
αres∈Φ̇res(G,Sk)sym

N(α)(ν0)6=1

λαres
,

where we put rresk,ur :=
∑
αres∈Φ̇res(G,Sk)ur

eαresr and λresk,ur =
∏
αres∈Φ̇res(G,Sk)ur

λαres .
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Proof. By definition, we have

∆G̃
II [a

res
k , χres

k ](η0) =
∏

αres∈Φ̇res(G,Sk)
N(α)(ν0)6=1

χres
k,αres

Å
N(α)(ν0)− 1

aresk,αres

ã
.

Since ν0θ is topologically semisimple, the valuation of N(α)(ν0)−1 is zero whenever

N(α)(ν0) 6= 1. Hence, for any αres ∈ Φ̇res(G,Sk) such that N(α)(ν0) 6= 1, we can
compute each factor as follows (cf. [Kal19b, Lemma 4.7.1]):

The case where αres is asymmetric: Since χres
k,αres

is the trivial character

of F×
αres

in this case, we have

χres
k,αres

Å
N(α)(ν0)− 1

aresk,αres

ã
= 1.

The case where αres is symmetric unramified: Since χres
k,αres

is the unique

nontrivial quadratic unramified character of F×
αres

and

valF (a
res
k,αres

) = valF (〈Hαres
, X∗

k〉) = r ∈ valF (F
×
αres

),

we have

χres
k,αres

Å
N(α)(ν0)− 1

aresk,αres

ã
= (−1)eαresr.

The case where αres is symmetric ramified: Since ν0θ is topologically semisim-
ple andN(α)(ν0) belongs to the kernel of the norm map Nr: F×

αres
→ F×

±αres
,

we have N(α)(ν0) ≡ −1 (mod pFαres
) whenever N(α)(ν0) 6= 1. By noting

that χres
k,αres

is tamely ramified, we get

χres
k,αres

Å
N(α)(ν0)− 1

aresk,αres

ã
= χres

k,αres
(−2ares,−1

k,αres
).

As we have TrFαres/F±αres
(aresk,αres

) = 0, we have NrFαres/F±αres
(aresk,αres

) =

−ares,2k,αres
. Hence χres

k,αres
(−2ares,−1

k,αres
) = χres

k,αres
(2aresk,αres

) = λαres
.

Therefore, we get

∆G̃
II [a

res
k , χres

k ](η0) =
∏

αres∈Φ̇res(G,Sk)ur
N(α)(ν0)6=1

(−1)eαresr
∏

αres∈Φ̇res(G,Sk)ram
N(α)(ν0) 6=1

λαres

= (−1)r
res
k,ur

∏
αres∈Φ̇res(G,Sk)ur

N(α)(ν0)=1

(−1)eαresr
∏

αres∈Φ̇res(G,Sk)ram
N(α)(ν0) 6=1

λαres
.

We compute (−1)eαresr for αres ∈ Φ̇res(G,Sk)ur satisfying N(α)(ν0) = 1 by
noting whether αres ∈ Ξη0 (i.e., αres appears in the Heisenberg quotient of Gη0

with respect to (x, r2 )) or not. When αres ∈ Ξη0 , we have{
r
2 ∈ e

−1
αres

Z if f(Gη0 ,S
♮
k)
(αres) = +1,

r
2 ∈ e

−1
αres

(Z+ 1
2 ) if f(Gη0

,S♮
k)
(αres) = −1,

by [Kal19b, Proposition 4.5.1]. This is equivalent to that{
eαresr ≡ 0 (mod 2) if f(Gη0

,S♮
k)
(αres) = +1,

eαres
r ≡ 1 (mod 2) if f(Gη0

,S♮
k)
(αres) = −1.
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By noting that these conditions are simply swapped when αres /∈ Ξη0 , we see that

(−1)eαresr =

{
f(Gη0 ,S

♮
k)
(αres)

−f(Gη0
,S♮

k)
(αres)

=

{
−f(Gη0 ,S

♮
k)
(αres) · λαres

if αres ∈ Ξη0 ,

f(Gη0
,S♮

k)
(αres) · λαres if αres /∈ Ξη0

(recall that λαres = −1 since Fαres/F±αres is unramified). Thus we get∏
αres∈Φ̇res(G,Sk)ur

N(α)(ν0)=1

(−1)eαresr = (−1)|Ξ̇η0,ur|
∏

αres∈Φ̇res(G,Sk)ur
N(α)(ν0)=1

f(Gη0
,S♮

k)
(αres) · λαres .

Again noting that λαres = −1, we have∏
αres∈Φ̇res(G,Sk)ur

N(α)(ν0)=1

λαres
= λresk,ur ·

∏
αres∈Φ̇res(G,Sk)ur

N(α)(ν0) 6=1

λαres
.

Recalling that Φ(Gη0 ,S
♮
k) = {αres ∈ Φres(G,Sk) | N(α)(ν0) = 1}, we get the

assertion. □

Lemma 14.20. We have

ε(S♮k) · ε(TG∗
η0
)−1 = e(Gη0)

∏
αres∈Φ̇(Gη0

,S♮
k)sym

f(Gη0
,S♮

k)
(αres) · λαres

Proof. This is a variant of the formula of Kaletha–Kottwitz (Proposition 14.17),
which is stated in [Kal15, Corollary 4.11]. □

By noting that {αres ∈ Φ̇res(G,Sk) | N(α)(ν0) 6= 1} = Φ̇res(G,Sk)∖ Φ̇(Gη0 ,S
♮
k),

Lemmas 14.19 and 14.20 imply that (39) equals

(40) χres
k (S♮k) · (−1)

rresk,ur · λresk,ur ·
∏

αres∈Φ̇res(G,Sk)sym

λαres ·
∏

αres∈Φ̇(Gη0
,S♮

k)ram

f(Gη0
,S♮

k)
(αres)

·
∆H

II [ajH , χjH ](y exp(Y
∗
jH

))

∆H
II [a

res
k , χres

k ](y exp(Y ∗
jH

))
·
ε(TGθ

) · ε(S♮k)−1

εSk,ram(sk) · ε⋆ϑk
(sk)

· ϑjH(y)
ϑk(sk)

·∆I,III[a
res
k , χres

k ]
(
y exp(Y ∗

jH), η exp(X
∗
k)
)
.

We put

χres
j (SjH) :=

∏
αres∈Φ̇(H,SjH

)

χres
j (lα).

Lemma 14.21. We have

∆H
II [ajH , χjH ](y exp(Y

∗
jH

))

∆H
II [a

res
k , χres

k ](y exp(Y ∗
jH

))
= ζχjH

/χres
j ,SjH

(y exp(Y ∗
jH)) · χ

res
j (SjH).

Proof. Since y exp(Y ∗
jH

) is regular semisimple in H, we have

∆H
II [ajH , χjH ](y exp(Y

∗
jH)) =

∏
αres∈Φ̇(H,SjH

)

χjH

Å
αres(y exp(Y

∗
jH

))− 1

ajH,αres

ã
,

∆H
II [a

res
k , χres

k ](y exp(p2mY ∗
jH)) =

∏
αres∈Φ̇(H,SjH

)

χres
k

Å
αres(y exp(p

2mY ∗
jH

))− 1

aresk,αres

ã
.
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By Lemma 14.12, we have aresk,αres
= lα · ajH,αres

. Thus we get

∆H
II [ajH , χjH ](y exp(Y

∗
jH

))

∆H
II [a

res
k , χres

k ](y exp(Y ∗
jH

))
=

∆H
II [ajH , χjH ](y exp(Y

∗
jH

))

∆H
II [ajH , χ

res
k ](y exp(Y ∗

jH
))
·

∏
αres∈Φ̇(H,SjH

)

χres
k (lα).

Here, on the right-hand side, the ratio of two second transfer factors is given by
ζχjH

/χres
k ,SjH

(y exp(Y ∗
jH

)) by[Kal19b, Lemma 4.6.6]. Thus, by noting that both χres
k

and χres
j induce the same set of χ-data on Φ(H,SjH), we get the assertion. □

Now recall that Proposition 10.11 associates to j ∈ J̃G
Gη

a unique element y ∈ Hη

and (D, jH) ∈ D(y, η) × JH
Hy

. Also recall that we have fixed an element η
j
∈ S̃j .

We put y
j
:= ξ̃D(ηj) ∈ SjH . Then, by Lemma 13.2 and Proposition 14.15, we have

(41)
∆I,III[a

res
k , χres

k ](y exp(Y ∗
jH

), η exp(X∗
k))

∆I,III[aresk , χres
k ](y

j
exp(Y ∗

jH
), η

k
exp(X∗

k))

=
ϑk(sk)

ϑjH(y/yj)
· ζdesc(sk) · ζχres

j /χjH
,SjH

(y/y
j
).

(Recall that η = skηk.) Therefore, by using Lemma 14.21, we see that (40) equals

(42) χres
k (S♮k) · χ

res
j (SjH) · (−1)r

res
k,ur · λresk,ram · ε(TGθ

) · ε(S♮k)
−1

· ϑjH(yj) · ζχjH
/χres

j ,SjH
(y
j
exp(Y ∗

jH)) ·∆I,III[a
res
k , χres

k ](y
j
exp(Y ∗

jH), ηk exp(X
∗
k))

· εSk,ram(sk) · ε⋆ϑk
(sk) · ζdesc(sk) ·

∏
αres∈Φ̇(Gη0 ,S

♮
k)ram

f(Gη0
,S♮

k)
(αres),

where we put λresk,ram =
∏
αres∈Φ̇res(G,Sk)ram

λαres
.

Now let us examine the factors contained in (42). The factor ε(TGθ
) obviously

independent of j. Let j′ ∈ J̃G
Gη

and k′ ∈ J̃Gη

Gη
(j′) such that k and k′ are G-

conjugate. Suppose that g ∈ G be an element such that k′ = [g] ◦ k and η
k′

= gη
k
.

Since the F -rational isomorphism [g] : Sk → Sk′ gives a Γ-equivariant isomorphism
Φ(G,Sk) → Φ(G,Sk′) compatible with twists, we get rresk,ur = rresk′,ur, λ

res
k,ram =

λresk′,ram, and ε(S♮k) = ε(S♮k′). Lemma 13.4 implies that χres
k′ (S

♮
k′) = χres

k′ (
gη0) =

χres
k (η0) = χres

k (Sk). It is a routine work to check that the factors χres
j (SjH),

ϑjH(yj), ζχjH
/χres

j ,SjH
(y
j
exp(Y ∗

jH
)), and ∆I,III[a

res
k , χres

k ](y
j
exp(Y ∗

jH
), η

k
exp(X∗

k))

do not change even if we replace (j, k) with (j′, k′).
We summarize our discussion so far. We obtained

(43) ∆̄spec
ϕ,k = χres

k (S♮k) · χ
res
j (SjH) · (−1)r

res
k,ur · λresk,ram · ε(TGθ

) · ε(S♮k)
−1 · ϑjH(yj)

· ζχjH
/χres

j ,SjH
(y
j
exp(Y ∗

jH)) ·∆I,III[a
res
k , χres

k ](y
j
exp(Y ∗

jH), ηk exp(X
∗
k))

· εSk,ram(sk) · ε⋆ϑk
(sk) · ζdesc(sk) ·

∏
αres∈Φ̇(Gη0 ,S

♮
k)ram

f(Gη0
,S♮

k)
(αres).

Moreover, we checked that all factors contained in the first and second lines of the
right-hand side of (43) depend only on the G-conjugacy class of k and, of course,
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are independent of η. In other words, our remaining task is to check that

εSk,ram(sk) · ε⋆ϑk
(sk) · ζdesc(sk) ·

∏
αres∈Φ̇(Gη0

,S♮
k)ram

f(Gη0
,S♮

k)
(αres).(44)

depends only on the G-conjugacy class of k and is independent of η.
We note that all the factors in (44) are products over sets of ramified (restricted)

roots. Thus, there is nothing to prove if Φ(G,Sk) and Φres(G,Sk) do not contain
a ramified symmetric element. For example, a sufficient condition for this is that
S splits over a finite extension E of F whose ramification index e(E/F ) is odd.
Indeed, we have the following diagram:

Fαres
⊂ Fα ⊂ E

F ⊂ F±αres
⊂

∪
F±α

∪

Hence, if e(E/F ) is odd, then the extension Fα/F±α and Fαres
/F±αres

cannot be
quadratic ramified. Let us record this observation here.

Theorem 14.22. The spectral transfer factor ∆spec
ϕ,k is well-defined if S splits over

a finite extension E of F whose ramification index e(E/F ) is odd. In particular,
the twisted endoscopic character relation (25) is satisfied.

What we will do in the rest of paper is to show that (44) indeed depends only
on the G-conjugacy class of k and is independent of η in the case where G = GLn.

Remark 14.23. Recall that the members of ΠG
ϕ are parametrized by the set JG

G .

In the case of standard endoscopy, in [Kal19b, Section 5.3], Kaletha introduced the
paring

〈−,−〉w : JG
G × π0(S+

ϕ )→ C×; 〈j, s〉w 7→ 〈inv(jw, j), s〉

(see [Kal19b, 1155 page] for the details). This is nothing but the spectral transfer
factor in the sense of this paper in the untwisted case. In other words, we have

∆spec
ϕ,j = 〈inv(j, jw), s〉

when θ is trivial. We may understand that Kaletha’s proof of the standard endo-
scopic character relation ([Kal19b, Theorem 6.3.4]) contains this explicit determi-
nation of the spectral transfer factor in the standard case.

15. GLn consideration

In the following, let G := GLn and θ := Jn
t(−)−1J−1

n , where n is even. (Recall
that this assumption is harmless for our purpose; see Remark 6.1).

15.1. Twisted elliptic maximal tori of GLn. Let us assume that (S̃,S) is an

F -rational twisted maximal torus of G whose S is elliptic. Then (S̃,S) is elliptic by
Remark 3.5. It is well-known that there exists a finite extension E of F of degree
n such that S is isomorphic to ResE/F Gm.

Lemma 15.1. There exists an element τθ ∈ AutF (E) of order 2 such that θS(s) =
τθ(s)

−1 for any s ∈ S ∼= E×.
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Proof. Note that θS is of the form xt(−)−1x−1 for some x ∈ GLn(F ). Since θS
preserves S ⊂ GLn(F ), the map X 7→ xtXx−1 preserves s ⊂ gln(F ). As the map
X 7→ xtXx−1 is an involutive F -algebra homomorphism on s ∼= E, it is given by
an element τθ of AutF (E) whose order is either 1 or 2. In other words, we have
θS(s) = τθ(s)

−1 for any s ∈ S ∼= E×.
Let us show that τθ is not trivial. For the sake of contradiction, we suppose that

τθ is trivial. Then the automorphism θS of S is given by s 7→ s−1 on S ∼= E×.
Hence we have S♮(F ) ⊂ SθS(F ) = SθS = {±1}. On the other hand, since (S̃,S) is
a twisted maximal torus, there exists an element g ∈ G such that gS = T and θS
is mapped to θ|T. This implies that the torus S♮ is isomorphic to Tθ,◦ over F . In
particular, the rank of S♮ is given by n/2. However, there is no F -rational torus
whose rank is nonzero such that the set of F -valued points is of order at most 2.
Hence we get a contradiction. □

In the following, we let τθ ∈ AutF (E) be the element as in Lemma 15.1. Let E±
be the fixed field of τθ in E.

15.2. Roots of elliptic maximal tori of GLn. We next recall a description of
the set of roots of S in GLn following[Tam16, Sections 3.1 and 3.2] (see also [OT21,
Sections 3.2 and 5.1]). First we fix a set {g1, . . . , gn} of representatives of the

quotient Γ/ΓE such that g1 = id. Then we get an isomorphism S(F ) ∼=
∏n
i=1 F

×

which maps x ∈ E× ∼= S(F ) to (g1(x), . . . , gn(x)). Then the projections

δi : S(F )
∼=−→

n∏
i=1

F
× → F

×
; (x1, . . . , xn) 7→ xi

form a Z-basis of X∗(S). The set Φ(G,S) of roots of S in G is given byßï
gi
gj

ò
:= δi − δj

∣∣∣∣ 1 ≤ i 6= j ≤ n
™

and the set Φ̇(G,S) is described as follows:

(ΓE\Γ/ΓE)′
1:1−−→ Φ̇(G,S); ΓEgiΓE 7→ Γ ·

ï
1
gi

ò
,

where (ΓE\Γ/ΓE)′ is the set of nontrivial double-ΓE-cosets in Γ.
Suppose that E/F is tamely ramified in the following. We simply write e (resp.

f) for the ramification index e(E/F ) (resp. residue degree f(E/F )). We first recall
an explicit choice of a set of representatives of Γ/ΓE , following [Tam16, Section
3.2]. Let µE denote the set of roots of unity in E. We take uniformizers $E

and $F of E and F , respectively, so that $e
E = ζE/F$F for some ζE/F ∈ µE .

We fix a primitive e-th root ζe of unity and an e-th root ζE/F,e of ζE/F , and put

ζϕ := ζq−1
E/F,e. Then L := E[ζe, ζE/F,e] is a tamely ramified extension of F which

contains the Galois closure of E/F and is unramified over E. The Galois group
Gal(L/F ) of the extension L/F is given by the semi-direct product 〈σ〉⋊〈φ〉, where

σ : ζ 7→ ζ (ζ ∈ µL), $E 7→ ζe$E

φ : ζ 7→ ζq (ζ ∈ µL), $E 7→ ζϕ$E

and φσφ−1 = σq. Moreover, as explained in [Tam16, Proposition 3.3 (i)], we can
take a set of representatives of Γ/ΓE to be

{ΓF /ΓE} := {σkφi | 0 ≤ k ≤ e− 1, 0 ≤ i ≤ f − 1}.
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Here we implicitly regard each σkφi ∈ ΓL/F as an element of ΓF by taking its

extension to F from L. We note that, as L/E is unramified, there exists an integer
c such that Gal(L/E) = 〈σcφf 〉.

L = F [$E , µL]

E

ur. with 〈σcϕf 〉 lllllllll
F [µL]

tot. ram. with 〈σ〉TTTTTTTT

F
tame. ram.

SSSSSSSSSSSS ur. with 〈ϕ〉

iiiiiiiiiiii

We recall a fact about symmetric ramified roots of S in G.

Proposition 15.2 ([OT21, Proposition 5.3]). Let α ∈ Φ(G,S) be a root of the
form

[
1
g

]
for some g = σkφi. The root α is symmetric ramified if and only if

g = σ
e
2 (hence e must be even in this case).

Lemma 15.3. If e is even, then E/E± must be ramified so that a θS-stable toral
character of S exists.

Proof. Let ϑ be a θS-stable toral character of S. If we let r ∈ R>0 be the depth of
ϑ, then we can take a θS-stable element X∗ ∈ s∗−r representing ϑ|Sr (Lemma 5.3).
By the torality of ϑ, X∗ must satisfy Yu’s condition GE2 (see [Yu01, Section 8] or
Section 4.2), which means that valF (〈X∗,Hα〉) = −r for any α ∈ Φ(G,S).

We identify s∗ ∼= E∗ = HomF (E,F ) with E via the F -linear isomorphism [Y 7→
TrE/F (XY )]↔ X. Write X for the element of E corresponding to X∗ ∈ E∗ under

this identification. If we write α = [ gigj ] as in the above notation, then we have
〈X∗,Hα〉 = gi(X) − gj(X). Thus, for any α belonging to the Γ-orbit of α =

[
1
g

]
with g = σkφi, we have valF (〈X∗,Hα〉) = valF (X − g(X)).

Now, for the sake of contradiction, let us suppose that E/E± is unramified.
Since X∗ is θS-invariant and the above identification between E∗ and E is Galois-
equivariant, X must satisfy −τθ(X) = X. We write X = $t

Eu with t ∈ Z and

u ∈ O×
E . Then we have σ

e
2 (X) ≡ (−1)tX (mod pt+1

E ). On the other hand, we have

τθσ
e
2 (X) ≡ (−1)t+1X (mod pt+1

E ). Since E/E± is unramified, τθσ
e
2 6= id. Thus,

by considering the condition GE2 for g = σ
e
2 and g = τθσ

e
2 , we get

valF (X − σ
e
2 (X)) = r = valF (X − τθσ

e
2 (X)).

However, this is impossible because we have

X − σ e
2 (X) ≡ X − (−1)tX (mod pt+1

E ) and

X − τθσ
e
2 (X) ≡ X − (−1)t+1X (mod pt+1

E )

and exactly one of these is nonzero. □

15.3. Computation of spectral transfer factors. Now we go back to the situ-
ation as in Section 14. Thus the explanation given in the previous subsections are
applied to the F -rational elliptic twisted maximal torus (S̃k,Sk) of (G̃,G). Recall
that we want to show that the quantity (44), which is given by

εSk,ram(sk) · ε⋆ϑk
(sk) · ζdesc(sk)−1 ·

∏
αres∈Φ̇(Gη0

,S♮
k)ram

f(Gη0
,S♮

k)
(αres),

depends only on the G-conjugacy class of k and is independent of η.
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Suppose that Sk is isomorphic to ResE/F Gm, where E/F is a tamely ramified
extension of degree n. If the ramification index e of E/F is odd, then so is that of
the Galois closure of E/F , which implies that Sk splits over a finite extension of F
with odd ramification index. Since such a case is already treated in Theorem 14.22,
we assume that e is even in the following. In particular, by Lemma 15.3, E/E± is
a ramified quadratic extension with Galois group generated by τθ = σ

e
2 .

Note that the toral invariant is always trivial when G = GLn (see [OT21, Propo-
sition 4.4]), hence the character εSk,ram is trivial. Moreover, we have

Lemma 15.4. If e is even, then the character ε⋆ϑk
is trivial.

Proof. Recall that, for any s ∈ Sk, ε⋆ϑk
(s) is defined to be the product of εα(s) over

α ∈ Ξ̈(G,Sk) whose restricted root αres is ramified. If the ramification index e of
E/F is even, then there exists a ramified symmetric root of S in G by Proposition
15.2. Then, as discussed in [Kal19b, Section 4.7] (see also [OT21, Section 6.4]),
the depth r of the toral character ϑk of Sk is given by 2s+1

e for some integer s.
However, this implies that the set Ξ(G,Sk) of roots appearing in the Heisenberg
space is empty (see [OT21, Remark 5.10]). Thus we get the assertion. □

Hence we are reduced to investigate the following product:∏
α∈Φ̈(G,Sk)asym

αres:ram

εα(sk)
∏

α∈Φ̇(G,Sk)ur
αres:ram

εα(sk)
∏

αres∈Φ̇(Gη0
,S♮

k)ram

f(Gη0
,S♮

k)
(αres).(45)

Lemma 15.5. The third product in (45) equals∏
αres∈Φ̇(Gη0 ,S

♮
k)

(asym)
ram

f(Gη0 ,S
♮
k)
(αres) ·

∏
αres∈Φ̇(Gη0 ,S

♮
k)

(ur)
ram

f(Gη0 ,S
♮
k)
(αres).

Proof. Let α ∈ Φ(G,Sk)ram be an element satisfying αres ∈ Φ̇(Gη0 ,S
♮
k)

(ram)
ram . Then

α is fixed by θS. Indeed, we may suppose that α is of the form
î

1

σ
e
2

ó
. Since τθ = σ

e
2 ,

θS(α) = τθ ·
ï
1
σ

e
2

ò−1

= σ
e
2

ï
σ

e
2

1

ò
=

ï
1
σ

e
2

ò
= α.

Hence, we have f(Gη0
,S♮

k)
(αres) = f(G,Sk)(α) as noted in the proof of Proposi-

tion 12.7. Again by using that f(G,Sk)(α) = 1 ([OT21, Proposition 4.4]), we get
f(Gη0 ,S

♮
k)
(αres) = 1. □

Lemma 15.6. There exists an element of S̃k of order 2.

Proof. We utilize a realization of G̃ as the space of bilinear forms as in [Wal10,
Section 1.2] (see also [Li13, Section 3.6]).

Let V be an n-dimensional F -vector space equipped with basis {ei}i=1,...,n. We

let θ̃ be a symplectic form on V such that the representation matrix of θ̃ with respect

to {ei}i=1,...,n is J2n, i.e., θ̃(ek, el) = (−1)k−1δk,2n+1−l. Let Homnondeg
F (V ⊗F V, F )

denote the space of non-degenerate F -bilinear forms on V . Note that Homnondeg
F (V⊗F

V, F ) has a bi-GLF (V )-torsor structure by

(g · q · g′)(v, v′) := q(g−1v, g′v′)
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for any q ∈ Homnondeg
F (V ⊗F V, F ) and g, g′ ∈ GLF (V ). (Thus we may regard θ̃ as

a “base point” of Homnondeg
F (V ⊗F V, F ).) Then Homnondeg

F (V ⊗F V, F ) is identified
with G̃ = GLn(F )⋊ θ bi-GLn(F )-equivariantly by the following association:

Homnondeg
F (V ⊗F V, F )↔ GLn(F )⋊ θ : g · θ̃ 7→ g ⋊ θ.

Let us examine how the condition that g ⋊ θ is of order 2 can be rephrased on

the space Homnondeg
F (V ⊗F V, F ). The order of g⋊ θ ∈ G̃ is 2 if and only if we have

g · θ̃ = θ̃ · g−1. Let ι be the involution on the space Homnondeg
F (V ⊗F V, F ) given by

swapping two entries of V ⊗F V , i.e.,

ι(q)(v, v′) = q(v′, v)

for q ∈ Homnondeg
F (V ⊗F V, F ) and v, v′ ∈ V . Then we have ι(g · θ̃) = −θ̃ · g−1.

Indeed, we have

ι(g · θ̃)(v, v′) = (g · θ̃)(v′, v) = θ̃(g−1v′, v) = −θ̃(v, g−1v′) = −(θ̃ · g−1)(v, v′)

for v, v′ ∈ V (we used that θ̃ is symplectic in the third equality). Hence, g⋊ θ is of

order 2 if and only if ι(g · θ̃) = −g · θ̃, in other words, g · θ̃ is symplectic.

Now we note that elements of S̃k can be realized in Homnondeg
F (V ⊗F V, F ) in

the following way ([Wal10, Section 1.3]). Recall that Sk ∼= E× and we have a
degree 2 subextension E/E± with Galois group 〈τθ〉. For any x ∈ E×, we define
an F -bilinear form x̃ on E by

x̃(v, v′) := TrE/F (vτθ(v
′)x).

Then, by choosing an F -basis of E, we can embed {x̃ | x ∈ E×} in Homnondeg
F (V ⊗F

V, F ). This subset realizes S̃k.
Therefore, in order to show the claim, it suffices to find an element x ∈ E× such

that x̃ is symplectic. If we let x ∈ E× be any element satisfying TrE/E±(x) = 0,
then x̃ is symplectic. □

Proposition 15.7. If e is even, then we have natural identifications

{α ∈ Φ̈asym(G,Sk) | αres : ram}
1:1−−→ Φ̇(Gη0 ,S

♮
k)

(asym)
ram : α 7→ αres,

{α ∈ Φ̇ur(G,Sk) | αres : ram}
1:1−−→ Φ̇(Gη0 ,S

♮
k)

(ur)
ram : α 7→ αres.

Proof. We consider only the case of asymmetric roots with ramified restriction since
the case of symmetric unramified roots with ramified restriction can be treated
in the same manner. To show that the association α 7→ αres gives the asserted
identification, we must check the following:

(1) α and θ(α) belong to the same class in Φ̈asym(G,Sk);
(2) any α ∈ Φasym(G,Sk) whose αres is ramified descends to Gη0 .

As investigated in the proof of Lemma 12.2, we must have θ(α) 6= α. Moreover, if we
let τα be the nontrivial element of Gal(Fαres

/F±αres
), then we have τα(α) = −θ(α).

This implies the condition (1). For the condition (2), we note that α descends to

Gη0 if and only if α descends to Gη′0
for any topologically semisimple η′0 ∈ S̃k,

which is equivalent to α(η′20 ) = 1 (see Lemma 12.2 and its proof). Any element η′0
of S̃ of order 2, which exists by Lemma 15.6, satisfies the latter condition. □
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By combining Lemma 15.5 with Proposition 15.7, we see that (45) equals the
following product: ∏

αres∈Φ̇(Gη0
,S♮

k)
(asym)
ram tΦ̇(Gη0

,S♮
k)

(ur)
ram

εα(sk) · f(Gη0
,S♮

k)
(αres).(46)

Therefore, by recalling that η = skηk, we see that (46) equals∏
αres∈Φ̇(Gη

k
,S♮

k)
(asym)
ram tΦ̇(Gη

k
,S♮

k)
(ur)
ram

f(Gη
k
,S♮

k)
(αres)(47)

by Propositions 12.5 and 12.6. Now we can prove the following.

Proposition 15.8. If e is even, then (46) depends only on the G-conjugacy class
of k and is independent of η.

Proof. It is obvious that (46) is independent of η. Let j′ ∈ J̃G
Gη

and k′ ∈ J̃Gη

Gη
(j)

such that k and k′ are G-conjugate. Suppose that g ∈ G be an element such that
k′ = [g]◦k and η

k′
= gη

k
. Then the g-conjugation induces F -rational isomorphisms

[g] : Gη
k
→ Gη

k′
and S♮k → S♮k′ . Hence we get the assertion. □

We summarize what we obtained.

Theorem 15.9. The spectral transfer factor ∆spec
ϕ,k is well-defined for GLn with

even n. In particular, the twisted endoscopic character relation (25) is satisfied.

15.4. A consequence.

Lemma 15.10. Let H be either a quasi-split special orthogonal or symplectic group
over F which is an endoscopic group of (G, θ). Let φH be a toral supercuspidal L-
parameter of depth r ∈ R>0 in the sense of Kaletha (Definition 7.19). Suppose that

SϕH
:= π0(ZĜ(Im(φH))/ZĜ) is trivial. Then ξ̂ ◦ φH is toral supercuspidal as an

L-parameter of G of depth r ∈ R>0.

Proof. We put φ := ξ̂ ◦ φH. Let us check that the three conditions (0), (1), (2) of
Definition 7.19 are satisfied by φ. By the assumption that SϕH

is trivial, we see
that φ is irreducible as an n-dimensional representation of WF , which implies (0).
Since φH is toral supercuspidal of depth r ∈ R>0, ZĤ(φH(IrF )) is a maximal torus

of Ĥ containing φH(PF ). We note that ZĜ(φ(IrF )) is a Levi subgroup of Ĝ by (the

proof of) [Kal19b, Lemma 5.2.2 (1)]. In other words, ZĜ(φ(IrF )) is a θ̂-stable Levi

subgroup of Ĝ whose ZĤ(φH(IrF )) = ZĜ(φ(IrF ))
θ̂,◦ is a maximal torus of Ĥ. This

implies that the Levi subgroup ZĜ(φ(IrF )) is necessarily a (θ̂-stable) maximal torus
of G. Thus we get (1). The condition (3) is obviously satisfied. □

Now we arrive at the following consequence.

Theorem 15.11. Let H be either a split odd special orthogonal or symplectic group
over F . Let ΠH

ϕH
be a toral supercuspidal L-packet with L-parameter φH in the sense

of Kaletha (see Section 7). Let ΠH
ϕH,Art be the L-packet of H corresponding to φH

in the sense of Arthur ([Art13, Theorem 2.2.1]). Then we have ΠH
ϕH

= ΠH
ϕH,Art.

Proof. Recall that both ΠH
ϕH

and ΠH
ϕH,Art are bijective to the set of irreducible char-

acters of the “S-group” SϕH
([Kal19b, Section 5.3] and [Art13, Theorem 2.2.1]). We
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first note that we may assume |ΠH
ϕH
| = |ΠH

ϕH,Art| = 1 by a standard argument based

on the theory of standard endoscopy. Indeed, suppose that |ΠH
ϕH
| = |ΠH

ϕH,Art| > 1.
Then the S-group contains a nontrivial element, which means that the L-parameter
φH factors through the L-group of a nontrivial standard endoscopic group H′ of
H. Let φH′ be an L-parameter of H′ such that its lift to H is φH. By [Kal19b,
Theorem 6.3.4] and [Art13, Theorem 2.2.1], both ΠH

ϕH
and ΠH

ϕH,Art satisfy the stan-

dard endoscopic character relation with ΠH′

ϕH′ and ΠH′

ϕH′ ,Art for any elliptic strongly

regular semisimple element of H, respectively. Therefore, if we can show that
ΠH′

ϕH′ = ΠH′

ϕH′ ,Art, then we see that the signed sum of the characters of members

of ΠH
ϕH

coincides with that of ΠH
ϕH,Art for any elliptic strongly regular semisimple

element of H. Since the strongly regular semisimple locus of H is Zariski dense in
the regular semisimple locus of H, we see that the signed sum of ΠH

ϕH
and that of

ΠH
ϕH,Art coincide for any elliptic regular semisimple elements of H. Hence, by the

orthogonality relation of the elliptic inner product ([Clo91, Theorem 3]), we get

ΠH
ϕH

= ΠH
ϕH,Art. Since the order of ΠH′

ϕH′ (or ΠH′

ϕH′ ,Art) is smaller than that of ΠH
ϕH

,

by repeating this argument inductively, we may assume that |ΠH
ϕH
| = |ΠH

ϕH,Art| = 1.

Let us put φ := ξ̂ ◦ φH. When |ΠH
ϕH
| = |ΠH

ϕH,Art| = 1, or equivalently, SϕH

is trivial, φ is a toral supercuspidal L-parameter of GLn by Lemma 15.10. Thus
we can apply Theorem 15.9; ΠG

ϕ and ΠH
ϕH

satisfy the twisted endoscopic character
relation, i.e., we have

∆spec
ϕ,π Φπ̃(δ) =

∑
γ∈H/st

∆̊(γ, δ)ΦπH
(γ)

for any elliptic strongly regular semisimple element δ ∈ G̃, where π and πH are the
unique members of ΠG

ϕ and ΠH
ϕH

, respectively. Similarly, we also have

Φπ̃Art
(δ) =

∑
γ∈H/st

∆̊(γ, δ)ΦπH,Art
(γ)

for any elliptic strongly regular semisimple element δ ∈ G̃, where πArt and πH,Art

be the unique members of ΠG
ϕ,Art and ΠH

ϕH,Art, respectively. We note that, for any

elliptic strongly regular semisimple element δ ∈ G̃, there exists an elliptic strongly
G-regular semisimple element γ ∈ H satisfying (γ, δ) ∈ D at most uniquely up to
stable conjugacy. In other words, the index set of the above sums can be thought
of as a singleton at most. Moreover, for any elliptic strongly G-regular semisimple
element γ ∈ H, there exists an elliptic strongly regular semisimple element δ ∈ G̃.
(These facts follow from, e.g., an explicit parametrization of semisimple conjugacy
classes of these groups; see [Wal10, Sections 1.3 and 1.9].) Since we have π = πArt

by [OT21], we get ΦπH
(γ) = ∆spec

ϕ,π ΦπH,Art
(γ) for any elliptic strongly G-regular

semisimple element γ ∈ H (recall that ∆̊(γ, δ) 6= 0 whenever (γ, δ) ∈ D). As the
strongly G-regular semisimple locus of H is Zariski dense in the regular semisimple
locus of H, we see that the identity ΦπH

(γ) = ∆spec
ϕ,π ΦπH,Art

(γ) holds for any elliptic
regular semisimple element γ ∈ H. Therefore, again by the orthogonality relation of
the elliptic inner product, we conclude that πH = πH,Art (and also ∆spec

ϕ,π = 1). □

We note that Arthur’s local Langlands correspondence is established only up to
the action of outer automorphisms for quasi-split even special orthogonal groups.
By exactly the same argument as above, we can show the following (note that, in
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that case, for any elliptic strongly regular semisimple element δ ∈ G̃, there exists
an elliptic strongly G-regular semisimple element γ ∈ H satisfying (γ, δ) ∈ D at
most uniquely up to stable conjugacy and the action of the outer automorphisms).

Theorem 15.12. Let H be a quasi-split even special orthogonal group over F . Let
ΠH
ϕH

be a toral supercuspidal L-packet with L-parameter φH in the sense of Kaletha

(see Section 7). Let ΠH
ϕH,Art be the L-packet of H corresponding to φH in the sense

of Arthur ([Art13, Theorem 2.2.1]). Then we have ΠH
ϕH

= ΠH
ϕH,Art up to the action

of outer automorphisms.

Appendix A. Some facts on Heisenberg–Weil representations

A.1. Decomposition formula of twisted characters. Let us consider an ab-
stract situation where the following data are given:

• a finite-dimensional symplectic space V over Fp, where p 6= 2,
• mutually orthogonal finite-dimensional symplectic subspaces V ij where i =
0, . . . , r and j = 0, . . . , li satisfying

V =

r⊕
i=0

li⊕
j=0

V ij ,

• a symplectic automorphism ι of V such that ι : V ij
∼−→ V ij+1 for any 0 ≤ i ≤ r

and 0 ≤ j ≤ li (here we put V ili+1 := V i0 for convenience),
• a nontrivial character ϑ of Fp.

We write H(V ij ) for the finite Heisenberg group associated to the symplectic

space V ij over Fp. More precisely, H(V ij ) is defined to be the set V ij × Fp equipped
with a multiplication law given by

(v1, z1) · (v2, z2) :=
(
v + w, z1 + z2 +

1

2
〈v1, v2〉

)
,

where 〈−,−〉 denotes the symplectic form on V ij . Then, according to the Stone–

von Neumann theorem, we have an irreducible representation ωij of Sp(V
i
j )⋉H(V ij )

with central character ϑ (called a Heisenberg–Weil representation), which is unique
up to isomorphism unless Sp(V ij )

∼= SL2(F3). We let W i
j denote the representation

space of ωij :

ωij : Sp(V ij )⋉H(V ij )→ GLC(W
i
j ).

Let H(V ) denote the Heisenberg group associated to V . Then note that H(V )
is isomorphic to the central product of H(V ij ) for 0 ≤ i ≤ r and 0 ≤ j ≤ li, i.e., the
quotient of the product group

∏
i,j H(V ij ) by the central subgroup{

(1, zij)i,j ∈
∏
i,j

H(V ij )
∣∣∣ ∑
i,j

zij = 0
}
.

If we put W :=
⊗

i,jW
i
j , then W realizes a Heisenberg–Weil representation of

Sp(V )⋉H(V ) with central character ϑ, for which we write ω. Furthermore, on the
subgroup (∏

i,j

Sp(V ij )
)
⋉H(V ) ⊂ Sp(V )⋉H(V ),

the representation ω is isomorphic to
⊗

i,j ω
i
j (see [Gér77, 2.5] for the details).

118



Since ι is a symplectic automorphism of V , an isomorphism

ι∗ : Sp(V )⋉H(V )
∼−→ Sp(V )⋉H(V );

(
g, (v, z)

)
7→

(
ιg, (ι(v), z)

)
is naturally induced, where ιg := ι ◦ g ◦ ι−1. Then, since ι acts on the center
part of H(V ) identically, the ι∗-twist of the representation ω (let us write ωι) is
again a Heisenberg–Weil representation of Sp(V ) ⋉ H(V ) with central character
ϑ. Hence, by the uniqueness part of the Stone–von Neumann theorem, ω and ωι

are isomorphic as representations of Sp(V ) ⋉ H(V ). Our aim in this section is to

construct an intertwiner ω
∼−→ ωι explicitly by using the symplectic decomposition

V =
⊕r

i=0

⊕li
j=0 V

i
j and express the associated twisted character in terms of the

intertwiner.
Since the symplectic isomorphism ι maps V ij to V ij+1, the automorphism ι∗ of

Sp(V )⋉H(V ) induces

ι∗ : Sp(V ij )⋉H(V ij )
∼−→ Sp(V ij+1)⋉H(V ij+1);

(
g, (v, z)

)
7→

(
ιg, (ι(v), z)

)
.

Therefore the subgroup(∏
i,j

Sp(V ij )
)
⋉H(V ) ⊂ Sp(V )⋉H(V )

is preserved under ι∗. As ω and ωι are irreducible as representations of the sub-
group (

∏
i,j Sp(V

i
j ))⋉H(V ) (or even H(V )), any intertwiner between ω and ωι as

representations of (
∏
i,j Sp(V

i
j )) ⋉ H(V ) is automatically an intertwiner as repre-

sentations of Sp(V )⋉H(V ).

Let us consider the representation ωi,ιj+1 given by the pull-back of ωij+1 via ι∗:

ωi,ιj : Sp(V ij )⋉H(V ij )
ι∗−→ Sp(V ij+1)⋉H(V ij+1)→ GLC(W

i
j+1).

Here, similarly to the notation V ili+1 := V i0 , we put ωili+1 := ωi0 for convenience.

Then, since ι preserves the center part of H(V ij ) identically, ω
i,ι
j+1 is a Heisenberg–

Weil representation of Sp(V ij ) ⋉ H(V ij ) with central character ϑ. In particular, by

the uniqueness part of the Stone–von Neumann theorem, ωi,ιj+1 is isomorphic to ωij
as a representation of Sp(V ij ) ⋉ H(V ij ). Let us fix an intertwiner Iij between these
two representations, i.e., an isomorphism

Iij : (ω
i
j ,W

i
j )

∼−→ (ωi,ιj+1,W
i
j+1)

making the following diagram commutative for any (g, h) ∈ Sp(V ij )⋉H(V ij ):

W i
j

Iij
//

ωi
j(g,h)

��

W i
j+1

ωi,ι
j+1(g,h)=ω

i
j+1(ι∗(g,h))

��

W i
j

Iij

// W i
j+1

If we put V i :=
⊕li

j=0 V
i
j , then H(V i) is isomorphic to the central product of

H(V ij ) for 0 ≤ j ≤ li. The automorphism ι∗ of Sp(V )⋉H(V ) preserves the subgroup( li∏
j=0

Sp(V ij )
)
⋉H(V i)
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and its action is described on this subgroup by

ι∗ :
(
(g0 . . . , gli), (v, z)

)
7→

(
(ιgli ,

ιg0, . . . ,
ιgli−1), (ι(v), z)

)
.

We put W i :=
⊗li

j=0W
i
j and define an C-linear automorphism Ii on W i by

Ii : v0 ⊗ · · · ⊗ vli−1 ⊗ vli 7→ Iili(vli)⊗ I
i
0(v0)⊗ · · · ⊗ Iili−1(vli−1).

We write (ωi,W i) for the tensored Heisenberg–Weil representation (
⊗

j ω
i
j ,
⊗

jW
i
j )

of Sp(V i)⋉H(V i). Then we can easily check that Ii gives an intertwiner between

(ωi,W i) and its ι∗-twist (ω
i,ι,W i) as representation of (

∏li
j=0 Sp(V

i
j ))⋉H(V i), that

is, the following diagram is commutative for any ((g0, . . . , gli), h) ∈ (
∏li
j=0 Sp(V

i
j ))⋉

H(V i) :

W i Ii //

ωi((g0,...,gli ),h)

��

W i

ωi,ι((g0,...,gli ),h)=ω(ι∗((g0,...,gli ),h))

��

W i

Ii
// W i

Now we define a C-linear isomorphism I of W =
⊗r

i=0W
i by I :=

⊗r
i=0 I

i, i.e.,

I : v0 ⊗ · · · ⊗ vr 7→ I0(v0)⊗ · · · ⊗ Ir(vr).

Then I is an intertwiner between ω (=
⊗

i ω
i) and its ι∗-twist ω

ι (=
⊗

i ω
i,ι).

Lemma A.1. Let W ′
0, . . . ,W

′
l be finite-dimensional C-vector spaces equipped with

C-linear isomorphisms I ′j : W
′
j

∼−→ W ′
j+1 for 1 ≤ j ≤ l, where we put W ′

l+1 := W ′
0.

We define an automorphism I ′ of W ′ :=W ′
0 ⊗ · · · ⊗W ′

l by

I ′ : v0 ⊗ · · · ⊗ vl 7→ I ′l(vl)⊗ I ′0(v0)⊗ · · · ⊗ I ′l−1(vl−1).

Then we have

tr(I ′ |W ′) = tr(I ′l ◦ · · · ◦ I ′0 |W ′
0).

Proof. We take a C-basis {e(0)1 , . . . , e
(0)
n } of W ′

0 and define a C-basis {e(i)1 , . . . , e
(i)
n }

of each W ′
i (1 ≤ i ≤ l) by e

(i)
j := I ′i−1 ◦ · · · ◦ I ′0(e

(0)
j ). Then, by the definition of the

trace, we have

tr(I ′ |W ′) =
∑

1≤j0,...,jl≤n

〈I ′(e(0)j0 ⊗ · · · ⊗ e
(l)
jl
), e

(0)
j0
⊗ · · · ⊗ e(l)jl 〉W ′ ,

where 〈−,−〉W ′ denotes the standard C-bilinear pairing on W ′ ×W ′ given by

〈e(0)j0 ⊗ · · · ⊗ e
(l)
jl
, e

(0)
j′0
⊗ · · · ⊗ e(l)j′l 〉V = δj0,j′0 · · · δjl,j′l

for any 1 ≤ j0, . . . , jl ≤ n and 1 ≤ j′0, . . . , j′l ≤ n, where δ−,− denotes the Kronecker
delta. By the definition of I ′, we have

I ′(e
(0)
j0
⊗ · · · ⊗ e(l)jl ) = (I ′l ◦ · · · ◦ I ′0(e0jl))⊗ e

(1)
j0
⊗ · · · ⊗ e(l)jl−1

Hence the summand of the above formula for the trace of I ′ is not zero only when
j0 = · · · = jl. Moreover, in this case (let us put j := j1 = · · · = jl), we have

〈I ′(e(0)j0 ⊗ · · · ⊗ e
(l)
jl
), e

(0)
j0
⊗ · · · ⊗ e(l)jl 〉W ′ = 〈I ′l ◦ · · · ◦ I ′0(e

(0)
j ), e

(0)
j 〉W ′

0
,
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where 〈−,−〉W ′
0
denotes the standard C-bilinear pairing on W ′

0 × W ′
0 satisfying

〈e(0)j , e
(0)
j′ 〉W ′

0
= δj,j′ for any 1 ≤ j ≤ n and 1 ≤ j′ ≤ n. Thus we get

tr(I ′ | V ′) =

n∑
j=1

〈I ′l ◦ · · · ◦ I ′0(e
(0)
j ), e

(0)
j 〉W ′

0
.

This is nothing but the trace of I ′0 ◦ · · · ◦ I ′l on W ′
0. □

Proposition A.2. Let g := (gij)i,j ∈
∏
i,j Sp(V

i
j ). Then the trace of ω(g) ◦ I on

W is given by
r∏
i=0

tr
(
ωi0

(
gi0 ◦ ι∗(gili) ◦ · · · ◦ ι

li
∗ (g

i
1)
)
◦ Iili ◦ · · · ◦ I

i
0

∣∣∣W i
0

)
Proof. We put gi := (gij)j . Recall that W =

⊗r
i=0W

i, ω(g) =
⊗r

i=0 ω
i(gi), and

I =
⊗r

i=0 I
i. Hence we have

tr(ω(g) ◦ I |W ) =

r∏
i=0

tr(ωi(gi) ◦ Ii |W i).

Let us compute each tr(ωi(gi) ◦ Ii | W i). Recall that W i =
⊗li

j=0W
i
j , ω

i(gi) =⊗li
j=0 ω

i
j(g

i
j), and an automorphism Ii of W i is defined by

Ii : v0 ⊗ · · · ⊗ vli−1 ⊗ vli 7→ Iili(vli)⊗ I
i
0(v0)⊗ · · · ⊗ Iili−1(vli−1).

Hence the automorphism ωi(gi) ◦ Ii of W i is given by

v0 ⊗ · · · ⊗ vli−1 ⊗ vli 7→ Ii,′li (vli)⊗ I
i,′
0 (v0)⊗ · · · ⊗ Ii,′li−1(vli−1),

where we put

Ii,′j := ωij+1(g
i
j+1) ◦ Iij : W i

j
∼−→W i

j+1.

Thus, by Lemma A.1, we get

tr(ωi(gi) ◦ Ii |W i) = tr(Ii,′li ◦ · · · ◦ I
i,′
0 |W i

0).

Then, by the intertwining property of Iij , i.e., ω
i
j+1(ι∗(−)) ◦ Iij = Iij ◦ ωij(−),

Ii,′li ◦ · · · ◦ I
i,′
0 =

(
ωili+1(g

i
li+1) ◦ Iili

)
◦ · · · ◦

(
ωi1(g

i
1) ◦ Ii0

)
= ωi0

(
gi0 ◦ ι∗(gili) ◦ · · · ◦ ι

li
∗ (g

i
1)
)
◦ Iili ◦ · · · ◦ I

i
0.

Hence we get the assertion. □

A.2. Gérardin’s character formulas of Weil representations. In this subsec-
tion, we review character formulas of Weil representations established by Gérardin
[Gér77]. We let V be a finite-dimensional vector space over Fp equipped with
a symplectic pairing 〈−,−〉 : V × V → Fp. Let (ωV ,WV ) be a Heisenberg–Weil
representation of Sp(V )⋉H(V ) with central character, say, ϑ : Fp ↪→ C×.

We introduce some notation following [Gér77, Section 4]. Suppose that T is
an Fp-rational maximal torus of Sp(V ). Then, since T acts on V , we have a
decomposition

VFp
(:= V ⊗Fp

Fp) =
⊕

ϵ∈P (V,T )

V ϵFp
,

where P (V, T ) denotes the set of weights of T in VFp
and V ϵFp

denotes the weight

space with respect to ε ∈ P (V, T ). As the action of T on V is Fp-rational, the set
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P (V, T ) is equipped with an action of ΓFp
= Gal(Fp/Fp). Furthermore, by putting

ΣFp
:= ΓFp × {±1}, ΣFp also acts on P (V, T ) (−1 acts via ε 7→ −ε). We say that a

ΓFp -orbit ω in P (V, T ) is symmetric (resp. asymmetric) if −ω = ω (resp. −ω 6= ω).

For each Ω ∈ P (V, T )/ΣFp
such that ε ∈ Ω, we define a quadratic character χTΩ of

T (Fp) by

χTΩ(t) :=

{
ε(t)

1−qΩ
2 if an(y) ω ⊂ Ω is asymmetric,

ε(t)
1+qΩ

2 if an(y) ω ⊂ Ω is symmetric,

for t ∈ T (Fp), where we put qΩ := p
1
2 |Ω|. we define a quadratic character χT of

T (Fp) by
χT :=

∏
Ω∈P (V,T )/ΣFp

χTΩ.

Proposition A.3 ([Gér77, Corollary 4.8.1]). For any t ∈ T ⊂ Sp(V ), we have

ΘωV
(t) = (−1)l(V,T ;t) · pN(V ;t) · χT (t),

where

• l(V, T ; t) := |{ω ∈ P (V, T )/ΓFp
| ε(t) 6= 1 for an(y) ε ∈ ω}|,

• N(V ; t) := 1
2 dimFp V

t (hence pN(V ;t) = |V t| 12 ).
In order to apply Proposition A.3 to a given semisimple element g ∈ Sp(V ), we

have to pick an Fp-rational maximal torus T of Sp(V ) containing g and analyze the
structure of the set of weights P (V, T ) including its Galois action. The following
lemmas are useful for this:

Lemma A.4. Let g, t ∈ Sp(V ) be semisimple elements. If g and t have the same
(multi-)sets of eigenvalues, then they are Sp(V )-conjugate.

Proof. The proof of this lemma should be standard, but we explain it for the sake
of completeness. Note that Sp(V ) ⊂ Sp(VFp

) ⊂ GL(VFp
). The assumption that g

and t have the same eigenvalues implies that g and t are conjugate in GL(VFp
). It

is known that this furthermore implies that g and t are conjugate in Sp(VFp
) (for

example, see [SS70, 275 page, Exercises 2.15 (ii)]).
Let x ∈ Sp(VFp

) be an element such that g = xtx−1. Then we have xtx−1 =

g = σ(g) = σ(x)tσ(x)−1 for any σ ∈ ΓFp
. In other words, by putting H to be the

centralizer of t in Sp(VFp
), we have σ(x)−1x ∈ H. Hence we obtain a 1-cocycle

zσ ∈ Z1(ΓFp
,H) given by zσ = σ(x)−1x.

We note that H is connected (as an algebraic group) since Sp(VFp
) is simply-

connected (for example, see [Hum95, Section 2.11]). Thus we have H1(ΓFp
,H) = 1

by Lang’s theorem. This means that there exists an element h ∈ H satisfying
zσ = σ(h)−1h. In particular, xh−1 is Fp-rational, i.e., an element of Sp(V ). As we
have (xh−1)t(xh−1)−1 = xtx−1 = g, we obtain the assertion. □
Lemma A.5. Let 2n := dimFp(V ). Let k◦1 , . . . , k

◦
l be finite extensions of Fp sat-

isfying [k◦1 : Fp] + · · · + [k◦l : Fp] ≤ n. Let ki be the quadratic extension of k◦i for
1 ≤ i ≤ l. Then there exists an Fp-maximal torus T of Sp(V ) of the form

l∏
i=1

Ker(Nrki/k◦i : Reski/Fp
Gm → Resk◦i /Fp

Gm)×Grm,

where r := n− ([k◦1 : Fp] + · · ·+ [k◦l : Fp]). Moreover, we have the following:
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(1) The set of weights P (V, T ) is of the form
⊔l
i=1 Ωi t

⊔r
j=1{±εj}, where

• Ωj is a finite set of order [kl : Fp] on which Gal(kl/Fp) acts simply
transitively (Γkl acts trivially) and the unique nontrivial element of
Gal(kl/k

◦
l ) acts via negation,

• εj is a weight on which ΓFp
acts trivially.

(2) If t = (t1, . . . , tl, tl+1, . . . , tl+r) ∈ T (Fp) ∼=
∏l
i=1 k

1
i ×(F×

p )
r, then the (multi-

)set of eigenvalues of t is given by

l⊔
i=1

{σ(ti)}σ∈Gal(ki/Fp) t
r⊔
j=1

{ti+j , t−1
i+j}.

Proof. If we let τi be the unique nontrivial element of Gal(ki/k
◦
i ), then we can

define an Fp-symplectic form on ki by

(x, y) 7→ Trki/Fp
(xτi(y)− τi(x)y).

Since the action of k1i on ki preserves this symplectic form, we see that the sym-
plectic group Sp(ki) (as an algebraic group over Fp) contains an Fp-rational torus
Ker(Nrki/k◦i : Reski/Fp

Gm → Resk◦i /Fp
Gm). Since its rank is given by [k◦i : Fp],

which is the half of dimFp(ki), it is a maximal torus. On the other hand, obviously
Gm is realized as a split maximal torus of the rank one symplectic group. Hence the

torus as in the statement can be realized in
∏l
i=1 Sp[ki:Fp]×

∏r
j=1 Sp2, which can be

embedded in Sp2n
∼= Sp(V ). Again by looking at the rank, we see that it gives an

Fp-rational maximal torus of Sp(V ). The remaining assertions immediately follows
from this explicit realization. □
Proposition A.6 ([Gér77, Theorem 4.9.1 (a), (c)]). Let g ∈ Sp(V ).

(1) Suppose that g has no nonzero fixed point in V . If V ′ is a maximal g-
invariant totally isotropic subspace of V , then we have

ΘωV
(g) = sgnF×

p

(
(−1)

dimV0
2 · det(g | V ′) · det(g − 1 | V0)

)
,

where V0 := V ′⊥/V ′.
(2) Suppose that g fixes pointwise a line L ⊂ V . If V0 is a g-invariant subspace

of L⊥ such that L⊥ = L⊕ V0, then we have

ΘωV
(g) = ΘωV0

(g)
∑

v∈V ⊥
0 /L

ϑ(〈gv, v〉),

where ωV0
is a Heisenberg–Weil representation of Sp(V0)⋉H(V0) with cen-

tral character ϑ.

Lemma A.7. Let V = V+⊕V− be a polarization of V (i.e., V+ and V− are totally
isotropic subspaces). Let g ∈ Sp(V ) be a semisimple element and we suppose that
V+ and V− are invariant under g. Then, for any line L+ ⊂ V+ fixed by g pointwise,
there exist g-invariant decompositions V+ = L+⊕M+ and V− = L−⊕M− such that
L− is a line fixed by g pointwise and we have L⊥

+ = V+ ⊕M− and L⊥
− = V− ⊕M+.

Proof. Let l be an nonzero element of the line L+. We putM− := {v ∈ V− | 〈l, v〉 =
0}. Since V = V+ ⊕ V− is a polarization, we can find an element w ∈ V− satisfying
〈l, w〉 6= 0. Note that, as g is semisimple, the order of g (say p′) is prime to p. Thus,

since g stabilizes the subspace V−, the averaged element w′ := 1
p′

∑p′−1
i=0 gi(w)

belongs to V−. Moreover, w′ is g-invariant and satisfies 〈l, w′〉 = 〈l, w〉 6= 0. By
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putting L− := Fpw′, we get V− = L−⊕M−. By applying the same construction to
V+ using w′ instead of l, we get V+ = L+ ⊕M+. These decompositions satisfy the
conditions as desired. □

Corollary A.8. Let g ∈ Sp(V ) be a semisimple element and we suppose that we
have a g-invariant polarization V = V+ ⊕ V− of V . Then we have

ΘωV
(g) = sgnF×

p
(det(g | V+)) · |V g|

1
2 .

Proof. When V has no nonzero point fixed by g, then Proposition A.6 (1) can be
applied to V ′ = V+. Then, as V = V+ ⊕ V− is a polarization, we have V ′⊥ = V+,
hence V0 = 0. Thus we get

ΘωV
(g) = sgnF×

p
(det(g | V+)).

We next suppose that V has a nonzero point v fixed by g. We write v = v++v−
according to the polarization V = V+ ⊕ V− (v+ ∈ V+ and v− ∈ V−). Then, since
the decomposition V = V+ ⊕ V− is g-invariant, both of v+ and v− are fixed by
g. Since v 6= 0, either v+ or v− is not zero. We may assume that v+ is not zero
without loss of generality. Then the L+ := Fpv+ ⊂ V+ is fixed by g pointwise.

We take g-invariant decompositions V+ = L+ ⊕M+ and V− = L− ⊕M− as in
Lemma A.7. We use Proposition A.6 (2) with L = L+; then L⊥ = V+ ⊕M− =
L+ ⊕M+ ⊕M−, hence V0 can be taken to be M+ ⊕M−. Hence we get

ΘωV
(g) = ΘωV0

(g)
∑

v∈V ⊥
0 /L

ϑ(〈gv, v〉).

Since V ⊥
0 is given by L+ ⊕ L− and g fixes L− pointwise, we have∑
v∈V ⊥

0 /L

ϑ(〈gv, v〉) =
∑
v∈L−

ϑ(〈gv, v〉) =
∑
v∈L−

ϑ(〈v, v〉) =
∑
v∈L−

1 = p.

Then the same argument can be applied to V0. By repeating this procedure and
using the result on the case where V has no nonzero point fixed by g, which is
already proved in the first paragraph, we eventually get

ΘωV
= sgnF×

p
(det(g | V+/V g+)) · pdimFp (V

g
+).

By noting that

det(g | V+) = det(g | V g+) · det(g | V+/V
g
+) = det(g | V+/V g+)

and pdimFp (V
g
+) = |V g+| = |V g|

1
2 , we get the desired result. □
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