TWISTED ENDOSCOPIC CHARACTER RELATION FOR TORAL

SUPERCUSPIDAL L-PACKETS OF CLASSICAL GROUPS

MASAO OI

ABSTRACT. We prove that Kaletha’s toral supercuspidal L-packets satisfy the
twisted endoscopic character relation in some cases, including general linear
groups equipped with an involution. Consequently, we show that Kaletha’s
construction of the local Langlands correspondence for toral supercuspidal
representations coincides with Arthur’s. The strategy is to emulate Kaletha’s
proof of the standard endoscopic character relation in the twisted setting by
appealing to Waldspurger’s framework “l’endoscopie tordue n’est pas si tor-

due”.
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1. INTRODUCTION

One fundamental objective in representation theory of reductive groups over
local fields is to establish the local Langlands correspondence. For a connected
reductive group G defined over a local field F', the local Langlands correspondence
is a natural map from the set II(G) of isomorphism classes of irreducible admissible
representations of G := G(F') to the set ®(GQ) of equivalence classes of L-parameters
of G. Here, each fiber of the map is expected to be finite; we let Hg denote
the fiber at ¢ € ®(G) and call it an L-packet. Thus, we may think of the local
Langlands correspondence as a natural partition of II(G) into finite sets labeled by
L-parameters:

nG)= || mof§.
PED(G)

While the local Langlands correspondence was constructed by Langlands ([Cang9))
when F' is archimedean, its existence is still conjectural in general when F' is non-
archimedean. However, numerous results have been obtained up to the present.
Let us review some of them in the following by focusing only on the case where F’
is a p-adic field, i.e., a non-archimedean local field of characteristic zero.

Firstly, the local Langlands correspondence has been completely established for
several specific groups. The particularly important examples include the results
of Harris—Taylor for GL,, ([HTUOI]), Arthur for quasi-split special orthogonal or

On the other hand, one might also attempt to construct the local Langlands
correspondence by restricting the class of representations instead of the class of
groups. An important example of this direction is the work of DeBacker—Reeder
([DR0Y]), which established the local Langlands correspondence for supercuspidal
representations which are of depth zero and regular of arbitrary unramified groups.
After the work of DeBacker—Reeder, Kaletha investigated some particular cases of
positive depth supercuspidal representations ([Kall3, Kall5]). Currently, all these
constructions have been uniformly generalized by Kaletha himself to a considerably
broad class of supercuspidal representations called regular (more generally, non-
singular/semisimple) supercuspidal representations of tamely ramified connected
reductive groups ([KalT9h, KalT4d]).

Taking into account these two possible approaches toward the local Langlands
correspondence (i.e., the “vertical” direction which restricts the class of groups
and the “horizontal” direction which restricts the class of representations), it is
natural to ask whether two different constructions indeed give rise to the identical
correspondence. This problem is not only interesting in itself but also technically
important. For example, the above-mentioned constructions for specific groups
have a favorable compatibility with the global classification theory of automorphic
representations. On the other hand, Kaletha’s construction is highly explicit since
it is ultimately based on the local Langlands correspondence for tori (note that this
is parallel to Langlands’ construction [Lan8d] in the archimedean case). If we get
the coincidence of these different constructions, we can combine their advantages.

Based on this motivation, we first investigated the case of GL,, in a joint work of
Kazuki Tokimoto. In [OTZI], we proved that the local Langlands correspondences
of Harris—Taylor and Kaletha coincide for any regular supercuspidal representation
of GL,(F) whenever p # 2 (note that now this result has been generalized by
Tokimoto to all inner forms of GL,, in [Tok23]).
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The aim of this paper is to establish a methodology for comparing Kaletha’s
construction with others for more general groups. Especially, we prove the following;:

Theorem 1.1 (Theorems IhT1 and I519). Let H be a quasi-split special orthog-
onal or symplectic group over F. Suppose that p is sufficiently large. The Local
Langlands correspondences of Arthur and Kaletha coincide for any “toral” super-
cuspidal representation of H := H(F).

We briefly explain what “toral” supercuspidal representations are (see Section
@ for more details). Let G be a tamely ramified connected reductive group over
F in the following. In [¥al], Yu established an explicit method for producing a
broad class of supercuspidal representations, which are called tame supercuspidal
representations. Yu’s construction associates a tame supercuspidal representation
to each tuple ((_i, 5, 7,%, po) called a cuspidal G-datum. Here, we only recall that
G = (G° C --- € G%) is a sequence of tame Levi subgroups of G and pg is a
depth zero cuspidal representation of an open compact-modulo-center subgroup of
G? (hence regarded as a representation of a finite reductive group). In [KalT3H],
by invoking the Deligne-Lusztig theory [DL76], Kaletha introduced the notion of
reqularity for tame supercuspidal representations and discovered that regular su-
percuspidal representations can be re-parametrized by much simpler data (S, )
called tame elliptic reqular pairs, which consist only of a tame elliptic maximal
torus S of G contained in G° and a character ¥ of S := S(F) satisfying a certain
regularity condition. Based on this re-parametrization, he assigned an L-parameter
to each regular supercuspidal representation and analyzed the internal structures
of the resulting L-packets. Toral supercuspidal representations constitute a special
class among regular supercuspidal representations; they are tame supercuspidal
representations obtained from cuspidal G-data whose G are of the form (S C G).

To obtain Theorem I, what we have to do is verify that Kaletha’s toral su-
percuspidal L-packets satisfy the twisted endoscopic character relation, which is
the characterization of Arthur’s correspondence. Thus we next review the general
framework of twisted endoscopy. Suppose that H is an endoscopic group for (G, 6)
in the sense of Kottwitz—Shelstad, where 6§ is an F-rational pinning-preserving auto-
morphism of G (see Section B). In particular, H is equipped with an L-embedding
é : LH — LG, which enables us to regard any L-parameter ¢p of H as an L-
parameter of G (write ¢) by composing ¢y with é . Suppose that the local Lang-
lands correspondence both for G and H are available, so that we may associate
L-packets TIEL and TI§' to both ¢m and ¢. Assume that ¢ and ¢ are tempered.

(G) D UG RS LG

II(H) > I, ~HEOE W x SLy(C) - LH
H

In this situation, it is expected that the following holds:
Expectation 1.2 (Twisted endoscopic character relation). For each w € Hf there
exists a constant AZ’?:C ~E C such that the following identity holds for any strongly
reqular semisimple § € G(F):

(1) Z AZS‘:—C(D%((S): Z 5(7’5) Z (DTFH(’-Y)'

G S H
IS YEH /st €I
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Here,

e G denotes the twisted space determined by G and 6, i.e., the non-identity
component of the semi-direct product group G x (6) (see Section B);
e &, is the normalized (Harish-Chandra) character of 7y € HgH and @5 is
the normalized twisted character of m € Hfg (see Section B), which can be
defined only when 7 is f-stable (thus the coefficient AJ’® is zero unless 7
is f-stable);
e the sum on the right-hand side is over the stable conjugacy classes of norms
of § in H in the sense of twisted endoscopy (see Section BJ);
e A on the right-hand side is the transfer factor of Kottwitz—Shelstad (see
Section B3).
By linear independence of twisted characters, a family {A(S;’ic}weng, of constants
as above is unique if exists.

In the untwisted case (i.e., 6 is trivial), Kaletha proved that Expectation T2 is in-
deed true for toral supercuspidal L-packets under some assumptions on p ([KalT98,
Theorem 6.3.4]; see [FKS23, Section 4.4] for a more general result in the untwisted
situation).

The point is that when H is a quasi-split special orthogonal or symplectic group,
we can find a general linear group G = GL,, with an involution € such that H is
an endoscopic group for (G, #). The expected identity () then tells us the sum of
characters of representations in each L-packet H?H of H in terms of the twisted
characters of representations of GL,; this information is enough to characterize
Hgﬂ as a finite set of representations by linear independence of characters. What
Arthur did is to prove that there indeed exists a finite set HEH for each ¢y satisfying
the identity (W) with Hg which is determined by Harris—Taylor’s local Langlands
correspondence for GL,,. Therefore, as we already know the coincidence of Kaletha’s
construction with Harris—Taylor’s, it is enough to verify the twisted endoscopic
character relation for Kaletha’s L-packets in order to obtain the coincidence of
Kaletha’s and Arthur’s constructions.

The main result of this paper is as follows:

Theorem 1.3. Suppose that p is sufficiently large (compared to G). Kaletha’s toral
supercuspidal L-packets satisfy Ezxpectation I3 in the following cases:
(1) G =GL, or
(2) G is general, 0 is involutive, and toral supercuspidal L-packets arise from
a torus S splitting over a finite extension E/F with odd ramification index.

We explain the outline of proof of Theorem I3 in the following. Our strategy
is quite simple in some sense; we reproduce Kaletha’s proof of the standard (un-
twisted) endoscopic character relation while taking into account the effect of the
twist 6. Thus let us first review Kaletha’s proof in the untwisted setting briefly.

The starting point of Kaletha’s proof is an explicit formula of the characters of
tame supercuspidal representations due to Adler-DeBacker—Spice ([ASDY, DSTE]).
In the toral setting, it is as follows. Let m(g ) be the toral supercuspidal repre-
sentation of G arising from a tame elliptic regular pair (S, ). Let r € Rs( be the
depth of the character ¥ and X* € (Lie S)*(F) be an element representing the re-
striction of ¥ to the “depth r part” S, of S (see Section B2 for details). Let § € G
be any elliptic regular semisimple element. Then, by the theory of Adler—Spice
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[ASOR], we can take a normal r-approzimation § = d<, - 0>,. Roughly speaking,
this is a nice product decomposition of § into a part “p-adically shallower than r”
and a part “p-adically deeper than or equal to 7”. One of its important properties
is that two parts d., and d>, commute; even more strongly, the deeper part 0>,
belongs to the connected centralizer G;_, := Zg(d<,)° of the shallower part. The
Adler-DeBacker—Spice formula is expressed by using a normal r-approximation as
follows (the symbol 9(—) denotes the conjugate g(—)g~!):

"G <r
(2)  Pr (O =ARE) D e(%ar) (%) - by (l0g(82r)),
9€S\G/Gs_,.
96<r€S

where A§,(—) is the fourth transfer factor of Kottwitz—Shelstad, (90,.) is a root of

. . G . .
unity determined by 96, and £, )?fr (—) denotes the normalized Fourier transform
of the orbital integral with respect to 9X* taken in the (Lie algebra of) Gs_, (see

. . . . G . . .
Section ). The important observation here is that i, ys" (—), which is nothing

but the Lie algebra analogue of the Harish-Chandra characters of representations,
is used to express the contribution of the deeper part d>,. In fact, by the theo-
rem of Waldspurger and Ngo ([Wal0f, Ng610]; see Section 1), we can compare
the Fourier transforms of Lie algebra orbital integrals between any group and its
standard endoscopic group (this can be thought of as a Lie algebra analogue of the
standard endoscopic character relation). The principal idea of Kaletha’s strategy is
to reduce the standard endoscopic character relation to the Lie algebra transfer the-
orem of Waldspurger—Ng6 through the Adler—-DeBacker—Spice character formula.
Now let H be an endoscopic group of G (with trivial §) and suppose that both
HEH and Hg' consist of toral supercuspidal representations (of depth r € Rsq).
When v € H is a norm of § € G, we may transfer a normal r-approximation
0 =0<y - 0>y t0 ¥ = Y<r - ¥v>r. Therefore, by applying the Adler-DeBacker—Spice
formula to all the characters of representations in Hg' and HEH with respect to
these r-approximations, the G-side and the H-side of (0) are rewritten as follows:

, G

(3) > AP ARG) Y e(90ar) - 9(%0<) - ioxs (log(62).
m(s,0) €S geS\G/Gs_,.
95.r€8

@ X Am) X ARM Y e(ren) u(tre) iy (log(r)).
YEH /st W(SH,ﬂH)EH;IH heSu\H/H_,
"y<r€SH

Note that the Lie algebra orbital integrals are taken not in G and H but in the
“descended” groups Gs_, and H,_ . The crucially important ingredient here is the
theory of descent for standard endoscopy due to Langlands—Shelstad [LS90], which
guarantees that the group H,_, again has a structure of an endoscopic group of
G;_,. Moreover, the transfer factor for the pair (G, H) is related to that of the
descended pair (Gs_,.,H,_.). Then the basic setup for utilizing the Lie algebra
transfer is done.

descent
G oG Sen
standard endoscopy ‘ ‘ standard endoscopy
descent
H XX H"/<T»
[§}



However, there are still several subtle points remaining. Firstly, before thinking
about comparing the summands of (B) and (@) via the Lie algebra transfer, we must
investigate how the index sets of those sums can be compared. Another related task
is to rewrite both sides (B) and () in a way such that the Fourier transforms of
orbital integrals are summed up over rational conjugacy classes within a stable
conjugacy class (in Gs_, or H,_, ), so that the Lie algebra transfer can be applied.
Kaletha resolved these issues by an ingenious trick of rearranging the sums. By
construction, the members of Hg are labeled by the rational conjugacy classes
within the stable conjugacy class of admissible embeddings (see Definition [Z2) of
S into G. The second index set of (B) can be thought of as a set measuring the
difference between the rational conjugacy in G and that in Gs_,. Hence the double
sums in (B) are combined into a single sum over G;_, -conjugacy classes within the
stable G-conjugacy class of admissible embeddings. If we again partition this sum
based on the stable Gs_, -conjugacy, we can obtain a sum over the desired index
set, i.e., Gs_,.-conjugacy classes within the stable Gs_, -conjugacy class. The same
argument can be also applied to the H-side (#). Then, by utilizing the “descent

stable Gs__-conjugacy classes within the stable G-conjugacy class to that over
H,_ -conjugacy classes within the stable H-conjugacy class.

Y<r
Hf G descent lem. H?}[ H descent lem.
G \ / G6<T H / H’Y<T
ADS formula G5 Lie alg. trans. ADS formula H’Y Lie alg. trans.
<r <r

[A9))

Secondly, we also have to relate the roots of unity “c” in the summands in (8)
and (@). These factors are explicitly computed in [ASOY, DSTR]; they reflect the
symmetry of the root system ®(G,S), which is a finite set equipped with a (typ-
ically, highly nontrivial) Galois action. Kaletha first showed that this part can
be re-interpreted in terms of several invariants having a more “endoscopic” nature
such as the second transfer factors Ay ([KalT98, Corollary 4.8.2]). Then, by com-
puting the transfer factor A(% 0) explicitly and also by utilizing various nontrivial
results on the arithmetic invariants such as local root numbers and Weil constants,
he eventually proved that all of these subtle quantities perfectly fit together.

Now, let us move on to the twisted situation. In the following, we let 6 be a
nontrivial F-rational involution of G and H is an endoscopic group of (G, #). Our
first task is to establish a twisted version of the Adler—-DeBacker—Spice formula. For
this, we have to start with investigating a twisted version of the notion of a normal
r-approximation because the Adler-DeBacker—Spice formula is based on it. The key
observation is the following. Let v = v, - v>, be a normal r-approximation to an
elliptic regular semisimple element v € G (in the usual, untwisted, sense). In fact,
a normal r-approximation is a refinement of a topological Jordan decomposition;
the shallower part v, is furthermore decomposed into a topologically semisimple
part 7o and a topologically unipotent part vZf, such that v = o - (v, - v>r)
gives a topological Jordan decomposition of « in the sense of [Spi08]. If we put
Y4 = v, - y>r, then v belongs to G, and the decomposition v, = vE A
is a normal r-approximation to 4 in G.,. Here, we note that the converse is
not always true; even if we take a topological Jordan decomposition v = o - 74+
and a normal r-approximation y; = fy'<"r - ¥>r in G, the resulting decomposition
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v = (Y0 -7<,) - v>» might not be a normal r-approximation to v in G. The point is
that, however, the property that v, = 'yirr > is a normal r-approximation in G,
is enough so that the arguments in [ASOR, ASOY, DSTR] work well. Based on this
observation, we arrive at the following construction (rather than the “definition”)
of a normal r-approximation to an elliptic regular semisimple element § € G(F ):
(1) Take a topological Jordan decomposition § = dy-d4 by [SpiUg]. Here, while
8o lies in G(F), & lies in the “untwisted” part G(F), in fact, even Gy, (F).
(2) Take a normal r-approximation §; = §%, - 6>, in Gs,. Here, note that
0+ € Gy, is no longer “twisted”, hence the work of Adler—Spice [ASOR] is
enough so that we can find a normal r-approximation to 4+ in G,.

With the normal r-approximation to § obtained in this way, we can reproduce
all the arguments necessary for the Adler-DeBacker—Spice formula in the twisted
setting. The resulting formula is expressed in the following way:

G ~ 5 Gs_,
(5)  Prg, () =AFO) D E(90<) I(90<r) - iay (log(05r)).
9geS\G/Gs_,.
95.,.€8

Here, we put “~” on the symbols to indicate that these are quantities determined

in this twisted context. Although we wrote the above formula (8) in a way parallel
to (@), the actual expression of € is much more complicated than in the untwisted
case (see Proposition G110 for the details). One of the subtleties comes from the
twisted character formula of the Weil representations of finite symplectic groups. As
a toral supercuspidal representation is constructed by using the (Heisenberg—)Weil
representation of a finite symplectic group, the proof of Adler-DeBacker—Spice for-
mula is eventually reduced to computing the characters of Weil representations. In
[AS0Y, DSTR], it was done by appealing to an explicit formula of Gérardin [Gér77].
Gérardin’s result can be also applied to compute the twisted characters of Weil rep-
resentations, but we additionally need to handle a lot of case-by-case computation
depending on the symmetry of ®(G,S) (see Sections GB).

By looking at the formula (H), we notice that the contribution of the deeper part
0>, is expressed via the Fourier transform of a Lie algebra orbital integral with
respect to the descended group Gs_, as well as in the untwisted case. Therefore,
one might expect that the same strategy again works in this twisted setting. Unfor-
tunately, in the twisted setting, it is not always the case that H,_, has a structure
of an endoscopic group of Gs_,. Nevertheless, it is still possible to relate H,,__
to Gs_, by introducing another variant of the notion of standard endoscopy called
non-standard endoscopy. More precisely, there exists a group H such that H is a
standard endoscopic group of the simply-connected cover of Gs_, and also that the
simply-connected covers of H and H., ., form a non-standard endoscopic pair. Fur-
thermore, the Lie algebra transfer for Fourier transforms of orbital integrals is also
available for the non-standard endoscopic pair. This is the framework “I’endoscopie
tordue n’est pas si tordue” established by Waldspurger ([Wal0g]).

d t
G ~~= Gs_, +— Gy_, s

‘ standard endoscopy
twisted endoscopy I:I — I:ISC

‘ non-standard endoscopy

> H

descent

H

T<r Y<r,SC



Now we gained the right to attempt to mimic Kaletha’s proof. Let us discuss the
rearranging argument on the index sets of the sums in the twisted endoscopic char-
acter relation. The first difficulty is that only #-stable members of H(f contribute
to the twisted endoscopic character relation. Hence we must clarify the 6-stability
condition in terms of admissible embeddings, which parametrize the members of

G We deal with this issue by examining the notion of a twisted mazimal torus.
The second difficulty is that Kaletha’s descent lemma, which is necessary for the
index sets comparison, needs a major modification. The idea of the descent lemma
in the untwisted case is to utilize admissible isomorphisms, which are F-rational
isomorphisms between maximal tori of G and those of H. For a given F-rational
admissible embedding of a maximal torus Sy into H, by composing it with an
admissible isomorphism between Sy and a maximal torus (say S) in G, we may
produce an F-rational admissible embedding of S into G. However, this construc-
tion no longer works in the twisted setting because an admissible isomorphism in
twisted endoscopy is an F-rational isomorphism between an F-rational maximal
torus of H and the coinvariant (with respect to the “twist”) of a maximal torus of
G. To resolve this issue, we utilize the notion of a diagram introduced by Wald-
spurger (see Definition IM). A diagram induces an admissible isomorphism, but
also encapsulates more information. Hence it can be thought of as a “rigidification”
of an admissible isomorphism. Using diagrams instead of admissible isomorphisms,
we can reproduce Kaletha’s descent lemma in the twisted setting.

We next discuss comparing the roots of unity appearing in the G-side with
those in the H-side. Our basic strategy is to unravel various arithmetic or root-
theoretic invariants using similar techniques as in the untwisted case. However,
somehow our computation left us with a very complicated quantity as a ratio of
a summand in the G-side to that in the H-side (see (B2) and also (£3)). What
we do is, rather than trying to express this ratio more explicitly, just defining the
coefficient “AJ’®” in the endoscopic character relation to be exactly this ratio.
Then the endoscoplc character relation holds almost tautologically. Instead, the
well-definedness of A’ becomes quite nontrivial; a priori A7 heavily depends

on the elliptic regular semisimple element § € G taken at the beginning. Thus
what we do next is to show that AJ’’® is in fact independent of the choice of 4.
By examining each factor involved in Abpec we see that it is enough to check that
the quantity (84), which is much 51mp1er than (B7), is independent of §. In fact,
every factor appearing in (84) is related to ramified symmetric roots contained in
the restricted root system (in the sense of Kottwitz—Shelstad; see Section B3) of a
maximal torus S of G associated to a #-stable toral supercuspidal representation
m. Therefore, if the restricted root system does not contain any ramified symmetric
root, then (E4) is trivial. This is how we obtained Theorem I3 (2). What we
eventually verified is that (E4) is trivial also when G = GL,; this is achieved by
explicitly classifying the possible Galois actions on (restricted) root systems of GL,,.

Let us finish this introduction by giving several concluding remarks. We believe
that it is possible to generalize our results in various directions. The artificial as-
sumption on G or S of Theorem I3 stems only from the last part of the proof, which
is about the well-definedness of AZ’°°. Probably this part can be dealt with in gen-
eral by a case-by-case computatlon based on a classification of twisted endoscopy;
cf. [Wal08, Chapitre 14-18]. Also, the assumption that 6 is involutive is in fact
not necessary in most parts of our arguments (except only for the above-mentioned
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part on AZ°¢). Thus it should be also fairly possible to drop the assumption on 6.
We expect that it is also possible to establish a depth-zero version of our result by
replacing the Adler-DeBacker—Spice character formula with the one of DeBacker—
Reeder [DR0OY]. It is a natural problem to extend our result to the case of general
regular (or even non-singular) supercuspidal representations, but it should require
twisting the recent work of Spice [Spilg, SpiZl], which are quite deep.

We finally would like to emphasize that our arguments are also inspired by Mezo’s
proof of the twisted endoscopic character relation for discrete series L-packets of
real reductive groups (cf. [MezT3]). We think that our constant A%’¢ is nothing but
the p-adic version of what is called the spectral transfer factor in the archimedean

Organization of this paper. In Section B, we list our fundamental notation.
In Section B, we establish a version of the theory of good product expansion by
Adler—Spice in the twisted space setting. In Section 8, we review Yu’s construction
of tame supercuspidal representations with emphasis on the toral case. In Section
H, we establish a preliminary version of a twisted Adler—-DeBacker—Spice character
formula for toral supercuspidal representations. In the main theorem of this section
(Theorem BTH), the contribution of the shallow part of § remains not to be com-
puted. In Section B, we compute the contribution of the shallow part by appealing
to Gérardin’s character formula. Some of the results needed in this section are sum-
marized in Appendix Al In Section [, we review Kaletha’s construction of the local
Langlands correspondence for regular supercuspidal representations. In Section B,
we review the framework of twisted endoscopy. In Section H, we investigate the
structure of a @-stable regular supercuspidal L-packets. In Section [0, we examine
the notion of a diagram and establish a twisted version of Kaletha’s descent lemma.
In Section [, we briefly review Waldspurger’s framework. In Sections I and I3,
we prove some technical lemmas needed in the computation of the spectral transfer
factor. In Section I, we compare the G-side and the H-side of the endoscopic
character relation. Especially, we introduce the spectral transfer factor. In Section
3, we prove that the spectral transfer factor is well-defined in the GL,, case, which
implies that the twisted endoscopic character relation holds for toral supercuspidal
L-packets of twisted GL,,.
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2. NOTATION AND ASSUMPTIONS ON p

2.1. Notation. Let us summarize the basic notation used in this paper here.

2.1.1. p-adic fields. We fix a p-adic field F', i.e., F' is a finite extension of Q,. We
also fix an algebraic closure F of F. For any extension E of F in F, we write Og,
pg, kg, and 'y for the ring of integers of E, the maximal ideal of O, the residue
field Op/pE, and the absolute Galois group Gal(F/E) of E, respectively. For any
finite extension F of F in F, we write Wg, Ig, and Pg for the Weil groups of E,
its inertia subgroup, and its wild inertia subgroup, respectively. For any r € Ry,
let I}, denote the r-th upper ramification filtration of Ir. We fix a valuation valp
of F such that valg(F) = Z. We extend it to F and again write valg for it. We
define an absolute value | - |z of F by | - |5 := p~ Valr(),

Because ' appears so often in this paper, we simply write I' for I'r. Similarly,
we simply write k& for kp.

We fix an additive character ¢ p: F — C* satisfying ¥p|,, = 1 but ¢¥r|o, # L.

2.1.2. Algebraic varieties and algebraic groups. In this paper, we use a bold letter
for an algebraic variety and use an italic letter for the set of its F-valued points
when it is defined over F'. For example, if X is an algebraic variety defined over F,
then X := X(F).

For any algebraic group G, we write X*(G) and X, (G) for the group of charac-
ters and cocharacters of G, respectively. We let Zg denote the center of G. When
G is defined over F', so is Zg and the set of its F-valued points is denoted by Zg.

For any torus S torus equipped with an automorphism fg, we let S’ and Sog
denote the invariant and coinvariant of S with respect to g, respectively.

2.1.3. Centralizers and normalizers. Suppose that G is an algebraic group and X
is an algebraic variety having a left and right actions of G, for which we write
GxXxG—=X:(g1,2,92) = g1 -2 - g2. Then we define the conjugate action of
GonXby GxX — X:(g,2)— g-x-g'. We introduce the following notation:
e For g € G, let [g] denote the conjugation automorphism X — X: z +—
g-x-g- 1. We also often write 92 := [g](z) = g-x- g~ L.
e For z € X, let G” denote the full stabilizer of z in G with respect to the
conjugate action, i.e., G* := {g € G | [g](z) = z}.
e For z € X, let G, denote the connected stabilizer of z in G with respect
to the conjugate action, i.e., G, := G%°.

Note that, when G and X are F-rational, [g] is also F-rational if g € G(F).
Similarly, G* and G, are F-rational if x € X(F).
For any subset Y C X, we put

¢ Zg(Y):={g€ G|gl(y) =y for any y € Y} and
e Ng(V):={geG|[g](Y)CY}
When Y is a singleton {y}, we simply write Zg (y) := Zg(Y) (= GY) and Ng(y) :=
Ng(Y). If G and X are defined over F and Y is a subset of X(F), then Zg(Y)
and Ng(Y) are defined over F' and the sets of their F-valued points are denoted
by Za(Y) and Ng(Y), respectively.
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2.1.4. Reductive groups. For any connected reductive group G and its maximal
torus S, we let ®(G,S) and ®Y(G,S) denote the set of roots and coroots of S in
G, respectively. Note that, when both G and S are defined over F', the sets ®(G, S)
and ®V (G, S) are equipped with an action of I'. We let Qg (S) be the Weyl group
of S in G, i.e., Qg(S) := Ng(S)/S. We sometimes loosely write Qg for Qc(S)
when the choice of a maximal torus S is clear from the context (e.g., when S is a
maximal torus belonging to a splitting of G).

We write g for the Lie algebra of G. When G is defined over F, g is an algebraic
variety over F, hence we write g := g(F') as explained above.

2.1.5. Bruhat—Tits theory. Suppose that G is a connected reductive group over F.
We follow the notation on Bruhat-Tits theory used by [ASOR, AS0Y, DSTR]. (See,
for example, [ASOR, Section 3.1] for details.) Especially, B(G, F) (resp. B*4(G, F))
denotes the enlarged (resp. reduced) Bruhat—Tits building of G over F. We define
R to be the set RU{r+ | 7 € R}U{oo} with a natural order. Then, for any r € HNQZO
and x € B*4(G, F), we can consider the r-th Moy—Prasad filtration Gy, of G with
respect to the point x. For any r,s € @20 satisfying r < s, we write G r.s for the
quotient Gx,/Gx s. We put G, := Uxesred(G’F) Gy, for r € @20 Similarly, we
have the Moy—Prasad filtration {gx .}, on the Lic algebra g = g(F'), their quotients
Ox,r:s, and the unions g,. We also have the Moy-Prasad filtration on the dual Lie
algebra g* := Homp(g, F') defined by

g;k(,r = {Y* € g* | <gx,(—r)+aY*> - PF}

for any r € R>o and x € B (G, F) (g%, is defined to be |J,., g% ,)-

Suppose that S is an F-rational tamely ramified maximal torus of G. By fixing
an S-equivariant embedding of B(S, F) into B(G, F'), we may regard B(S, F') as a
subset of B(G, F'). Then, for any point x € B(G, F), the property that “x belongs
to the image of B(S, F')” does not depend on the choice of such an embedding (see
the second paragraph of [FKS23, Section 3] for details). For any point x € B(G, F')
which belongs to B(S, F'), we have Sy, C Gy, where S}, denotes the maximal bounded
subgroup of S. When § is elliptic in G, the image of B(S, F) in B*4(G, F) consists
of only one point. If x € B(G, F') belongs to the image of B(S, F'), we say that x is
associated to S.

We also fix a family of mock-exponential maps gx , — Gx for x € B(G, F') and
r € Rso and simply write “exp” for it (see [ASOY, Appendix A]; cf. [HakIR, Section
3.4]). We write “log” for the inverse of exp. It is guaranteed that a mock exponential
map in the sense of [AS0Y, Appendix A] always exists under the assumption that
p1|Qc|, which we will assume later.

2.1.6. Finite sets with Galois actions. We put ¥ :=T' x {£1}. Suppose that ® is a
finite set with an action of X, e.g., the set of roots of an F-rational maximal torus
in a connected reductive group (—1 acts on ® via a — —« in this case). Following
[AS09], we put & := &/T and & := &/%.

For each o € ®, we put T, (resp. I'1,) to be the stabilizer of « (resp. {+a}) in
I'. Let F, (resp. Fi,) be the subfield of F fixed by I'y, (resp. I'+,). Hence we have
Fa == I‘Fa and F:toc = FFia:

FCcF.,CF, +— TI'>DI'i.DTl,.

We abbreviate the residue field kg, of F, (resp. kr,, of Fio) as ko (resp. kiq).
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We say that a is asymmetric if F, = F1, and that « is symmetric if F, 2 Fi,.
We remark that « is symmetric if and only if the I'-orbit of o contains —a.. By noting
that the extension F,/Fy, is necessarily quadratic if « is symmetric, we say that «
is (symmetric) unramified (resp. ramified) if F,/Fy, is unramified (resp. ramified).
We write @asym, Purs Pram, and Pgypy, for the set of asymmetric elements, symmetric
unramified elements, symmetric ramified elements, and symmetric elements of ®,
respectively.

For a € ®gym, we let kot FY, — C* denote the quadratic character of F,
corresponding to the quadratic extension F, /Fy, under the local class field theory.

Note that, if a is symmetric, 'a = X«. This implies that the sets @Sym and

®gym can be naturally identified (and, of course, the same is true for ®,; or ®,am).

2.1.7. Several arithmetic invariants. For any finite extension F1 of F' and its qua-
dratic extension E, we let Ag/p, = Ag/p, (YF o Trg, /r) denote the Langlands
constant with respect to the nontrivial additive character ¢)p o Trg, ,p of Ex (see,
e.g., [BHOH, 30.4]). When the quadratic extension E/Ey is given by F,/Fyi, as in
Section EZ7T8, we even write A, for Ap, /p, -

In this paper, we often consider the root number &(3, X*(S)c, ¢r) of the e-factor
of the Galois representation X*(S)¢ obtained from an F-rational torus (see [BHOS,
Section 30] or [Tat7d, Section 3.6] for the definition of the e-factor). We shortly
write £(S) := £(%, X*(S)c, ¥r).

2.1.8. Finite fields. Suppose that k is a finite field of odd characteristic p. Then
the multiplicative group k* is cyclic of even order, hence there exists a unique
nontrivial sign character £ — {+1}. We write sgn;x (—) for this character.

Next, we furthermore suppose that [k : Fp] is even. Then, there uniquely exists
a subextension k. satisfying [k : k.| = 2. We let k' denote the kernel of the norm
map Nry /g k™ — kX. By noting that k' is also cyclic of even order, we write

sgny1 (—) for the unique nontrivial sign character of k.

2.2. Assumptions on p. From Section B4, we assume that p is odd. In Section
B, we add the assumption that p does not divide the order of the absolute Weyl
group of G. From Section I to the end of this paper, we furthermore assume that
p is greater than or equal to (2 + ep)n, where n is the minimum of the dimension
of a faithful representation of G and e is the ramification degree of F/Q,.

3. TWISTED SPACES

In this section, we review basics of twisted spaces and establish a version of the
theory of good product expansion by Adler—Spice ([AS08]) in twisted spaces.

3.1. Twisted spaces. Recall that the theory of twisted endoscopy ([KSY4]) starts
with fixing a triple (G, 6,a). Here,
e G is a connected reductive group over F,
e 0 is an F-rational quasi-semisimple automorphism of G (i.e.,  preserves a
Borel pair), and
e ac H' (Wp,Z¢g), where G is the Langlands dual group of G over C.
In this paper, we focus on the case where (G, 6, a) satisfies the following conditions:
o G is quasi-split (hence, we may and do fix an F-splitting splg = (B, T, {Xs}a)
of G);
13



e 0 preserves splg and is involutive, i.e., the order of 0 is 2;
e a is trivial.

Example 3.1. We particularly have the following example in mind. Let G be the
general linear group GL, over F. Let 6 be the F-rational automorphism of G
defined by

0(9) == Ju'g "I "
where J,, is an anti-diagonal matrix of size n whose (i,n + 1 — ¢)-th entry is given
by (—1)~! and g denotes the transpose of g. Then  is involutive and preserves
the standard splitting of GL,,. This is the case considered in Arthur’s theory of the

Following Labesse ([Cab04]) and Waldspurger ([Wal08]), we work with the for-
malism of twisted spaces as follows. We put

G := Go.
This is a twisted space in the sense of Labesse, that is, an algebraic variety over F’
which is a bi-G-torsor. As an algebraic variety, it is isomorphic to G by the map
written by g — gf. The right and left actions of G on G is given by

91+ (99) - 92 = (9190(g2))0.
Thus the conjugate action of G on G is given by

[91](90) = g1 - (99) - 91 ' = (9190(g1) ™19
Note that the f-twisted conjugacy in G (as in [KS99]) is amount to the G-conjugacy
in G. The conjugate action of G on G is also defined by, for § = gf € G,

[0] :=[g]o8: G — G.

3.2. Twisted maximal torus. We next investigate the notion of a twisted max-
imal torus.

e an F-rational maximal torus S of G and ~
e an F-rational S-twisted subspace S of G (i.e., subvariety of G which is a

bi-S-torsor under the bi-S-action on S C G).

We say that (S, S) is an F-rational twisted mazimal torus of G if the following two
conditions are satisfied:
(1) There exists a Borel subgroup Bg of G (not necessarily defined over F)
containing S and satisfying S = Ng(S) N Ng(Bs).
(2) The set S = S(F) of F-valued points of S is not empty.

By the condition (1) of Definition B3, every n € S acts on S by the conjugation
[n]. Since S is an S-twisted space and S is commutative, this action is independent
of the choice of . We let 65 denote this automorphism of S. Note that we can take
7 to be F-rational by the condition (2) of Definition B3, hence g is F-rational.
Moreover, since @ is involutive, so is fs.

When (S, S) is an F-rational twisted maximal torus of G, we often simply say
that “S is an F-rational twisted maximal torus of G”. For an F-rational twisted
maximal torus S of G, we put S% := S%:°. Note that, for any n € S, we have
St = S, C G,,. The relationship between S and S? is described as follows:

14



Proposition 3.3. For any F-rational twisted mazimal torus S of G, we have
(1) Za(SY) =S,
(2) Za(S)° = Shz and )
(3) for any n € S, S* is a mawimal torus of G, (when n € S, both S and G,
are F-rational).

Proof. Let n € S. Let Bg be a Borel subgroup of G containing S and satisfying
S = Ng(S) N Ng(Bs). Then [n] defines an automorphism of G preserving the

[KS99, Theorem 1.1.A], to the automorphism [n]. By [KS99, Theorem 1.1.A (2)],
SN Gy, is a maximal torus of G,. Since S, C SN G, C S”, the connectedness of
SN G, implies that S,, = SN G,,. Thus we get the assertion (3) (the F-rationality
of S and G,, when 7 € S is clear). Moreover, by [KSYd, Theorem 1.1.A (4)], we get
the assertion (1).

Let us check the assertion (2). As the inclusion Zg(S)° O S is obvious, we
1

show the converse inclusion. Let g € Zg(S)°. Then we have gsng~+ = sn for any
s € S since S = Sn. Note that, as n € S, we have Zg(S)° C Zg(7)° = G,,. Thus
gsng~! = sn (for any s € S) if and only if gsg~! = s (for any s € S), which implies
that g € S. HencewegetgGSﬂGn:Sn:Sh. (]

Recall that an element § € G is said to be
e semisimple if [d] is quasi-semisimple,
e reqular semisimple if § is semisimple and Gy is a torus, and
o strongly reqular semisimple if ¢ is semisimple and G is abelian
(see [KSYY, Sections 3.2 and 3,3]).
Let A& denote the maximal split subtorus of Zé.

Definition 3.4. (1) Let S be an F-rational twisted maximal torus of G. We
say that S is elliptic if S! is anisotropic modulo Ag.
(2) For any semisimple element § € G, we say that & is elliptic if there exists
an F-rational elliptic twisted maximal torus S of G such that 6 € S.

Remark 3.5. 1 (S,S) is an F-rational twisted maximal torus of G whose S is
elliptic, then (S, S) is elliptic. Indeed, as we have an injection

S*/Ag — S/ (Zg NS*) — S/Zg,

the ellipticity of S in G (which is equivalent to the anisotropy of S modulo Zg)
implies that the anisotropy of S modulo As.

Lemma 3.6. Let S be an F-rational mazimal torus of G. If there exists a semisim-
ple element n € G and~ a Borel subgroup Bg containing S such that (Bs,S) is
preserved by [n], then (S,8) := (S1,8) is an F-rational twisted mazimal torus of
(G,G).

Proof. Since G = Gr and [1)] preserves (Bs, S), we have
Ng(S)NNg(Bs) = (Ng(S)NNg(Bs))n = Snp = S.

Moreover, obviously S = S(F ) is not empty as it contains 7. a
15



3.3. Steinberg’s result on the structure of descended groups. Let S be an
F-rational twisted maximal torus of G and Bg a Borel subgroup which contains
S and is preserved by the action of S. By fixing an element gs € G satisfying
[9s](Bs,S) = (B, T), we get an isomorphism [gs]: (S,S) = (T, T). Note that the
isomorphism [gs]: S — T is independent of the choice of gs € G and that the
automorphism fg of S is transported to § on T via [gg], i.e., 0 o [gs] = [gs] o Os.

For any 7 € S, its connected centralizer G, is a connected reductive group with
a maximal torus Sf (Proposition B3). In this subsection, we review some facts
about the structure of the root system ®(G,,.S?) following [WalOR, Section 3.3]
(we will review more details in Section [ZT).

We write T? := T%°. We put

o Y*(T):=X*(T)/(X*(T)Nn(1—-6)X*(T)g) and
e Y(T) = X.(T)/(X.(T) N (1 - 0)X.(T)g).
We write p*: X*(T) — Y*(T) and p.: X.(T) — Y.(T) for the natural surjections.
Then we have the following;:
(1) Y*(T) = X*(T?) is the Z-dual to X,(T)’ = X, (T?);
(2) Y,(T) is the Z-dual to X*(T)".

We put © := (). Note that the action of © on (G, T) induces an action on
®(G,T). For any a € ®(G, T), we let I, be the cardinality of the @-orbit of « in
®(G, T) and define an element N(«) € ®(G,T) by

la—1

)= b(a)
=0

We also define [,v and N(aV) for any a¥ € ®V(G,T) in the same manner. For
a € (G, T), we shortly write cyes := p*(a). We define a set P,5(G, T) by
D,es(G,T) = {p*() | a € ®(G,T)} C Y*(T) = X*(T?).

Then ®,¢(G, T) forms a (possibly non-reduced) root system. We call elements of
D, (G, T) restricted roots. Following [KS9Y, Section 1.3], we say that a € ®(G,T)
(or its associated cues) is of

o type 1 if 20, %ares ¢ (I)res(Ga T),
o type 2 if 20t05 € Pres(G, T),
e type 3 if %ares € 0,s(G,T).

We put

{1 if a is of type 1 or 3, {1 if a is of type 1 or 2,
Oa = Sa *=

2 if « is of type 2, —1 if a is of type 3.

We also define a set ®,,(G,T) by
©,0(G,T) = {ea - N(a") | a € Y(G,T)} € X.(T)? = X,(T*).
Then we have bijections
(G, T)/O0 15 B0 (G, T): @ ies (= p* (1)),
¢V(G,T)/0 5 @

T)
T)
(We note that @res(G T) and ®Y, (G, T) are denoted by ™ and ¥ in [Wallg,
Section 3.3], respectively.)

G, T): a— 0, N(a).

res (
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Remark 3.7 ([KS99, (1.3.3)]). There exists a restricted root of type 2 or 3 only when
®(G, T) contains an irreducible component of Dynkin type Asg,, which is preserved
and acted by 6 nontrivially.

Now let 7 be an element of S and let v € T be the element such that
[9s](n) = v0 € T =T4.

Then [gs]: G — G induces an isomorphism between (G,,S?) and (G, T?). In
particular, the sets ®(G,,S") and ®V(G,,S?) can be identified with ®(G,¢, T%)
and ®V(G,g, T?), respectively (note that here we ignore the Galois actions). The
latter sets are described in terms of the restricted roots and coroots as follows:

©(Guo, T%) = {p*(a) | @ € (G, T); N(a)(v) = <} C ®res(G, T),
V(Gug, T%) = {00 - N(") | ¥ € (G, T); N(a)(v) = ca} C Dy (G, T).
Note that these sets are thought of as subsets of X*(T%) and X, (T%).

3.4. Good product expansion in twisted spaces. We discuss a twisted version
of the theory of good product expansion due to Adler and Spice ([ASOR]).

We first recall the definition of a good product expansion of elements of p-
adic groups in the untwisted case. We temporarily let G be any tamely ramified
connected reductive group over F. Let G be the quotient G/ Z¢ of G by the
identity component of the center Zg of G.

Definition 3.8 ([ASOR, Definitions 4.11 and 6.1]). (1) We say that an element
v € G is good of depth zero if y is semisimple and its image 7 in G is ab-
solutely semisimple, i.e., every character value of ¥ (see [ASOR, Definition
A.4]) is of finite prime-to-p order.

(2) For d € Ry, an element v € G is said to be good of depth d if there exists
an F-rational tame-modulo-center torus S in G such that
e v € S5\ S44, and
e for every a € ®(G,S), a(y) =1 or valp(a(y) — 1) =d.

Definition 3.9 ([ASOR, Definition 6.4]). For r € R, a sequence v = (Vi)o<i<r Of
elements of G indexed by real numbers 0 < i < r is called a good sequence if

e v; is 1 or a good of depth i for each 0 < ¢ < r, and
e there exists an F-rational tame torus S of G such that v; € S for every
0<i<r.

To a good sequence v = (7;)o<i<r, We associate subgroups of G to v as follows:
() () o ° (1) ()
@@= Zetw) . 280 =Zew
0<i<r

Definition 3.10 ([ASO08, Definition 6.8]). For v € G, a good sequence vy =
(vi)o<i<r (r € @>0) is called an r-approximation to ~ if there exists a point
X € B(Cg)(l)7F) satisfying v € ([Jp<i<,7i)Gx,r- When we have v € Cg)(l)v
we say that v is a normal r-approximation to .

When we have a normal r-approximation v to v, we put

var = ] % veei=vo02)
0<i<r
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and simply say that “y = y<, - v>, is a normal r-approximation.” Note that v,
commutes with v., when v = v, - 7>, is a normal r-approximation.

Now we move on to the setting of twisted spaces. Let (G,#) be as in Section
B. In particular, we have a twisted space G = G#. From now on, we assume that

p is odd.

We put G := G x (f). Note that this is a disconnected reductive group whose
identity component is G and non-identity component is given by G. Recall that
A& is the maximal split subtorus of Z%. To extend the theory of Adler-Spice to
G, we utilize Spice’s topological Jordan decomposition.

Definition 3.11 ([SpiU8, Definition 1.6]). For v € G, we say that a pair (7,74 )
of elements of GT is a topological p-Jordan decomposition modulo Ag of v if
® Y =7+ = Y+70,
e 7 is absolutely p-semisimple modulo Ag, i.e., the image 7 of 7o in Gt /A&
is of finite prime-to-p order, and
e 7. is topologically p-unipotent modulo Ag, ie., the image 44 of 4 in
GT/AG satisfies lim,, o0 ’?ﬁn =1.

In this paper, we refer to a topological p-Jordan decomposition modulo Ag
simply as a topological Jordan decomposition. Similarly, when an element v is ab-
solutely p-semisimple modulo Ag (resp. topologically p-unipotent modulo Ag), we
often simply say that 7 is topologically semisimple (resp. topologically unipotent)
as long as there is no risk of confusion.

Remark 3.12. Note that, for a given element v € GT, its topological Jordan de-
composition is unique modulo Ag if it exists. More precisely, if both (vo,7v+) and
(76,7) are topological Jordan decompositions of v, then we have 79 = 7 and
Y+ =7, in GT/Ag.

Proposition 3.13. Let S be a torus equipped with an involutive automorphism Os.
Then the order of mo(S%) = 8% /S%s:° s a power of 2.

Proof. Recall that the abelian category of groups of multiplicative types (i.e., al-
gebraic groups isomorphic to a product of Gy,’s or uy,’s for n € Z~1) is equivalent
to the opposite of the abelian category of finitely generated Z-modules by taking
the character groups (e.g., see [Poold, Theorem 5.5.10]). Thus, the short exact
sequence
1—8%° 80 5 7ry(8%) =1
induces a short exact sequence
1 — X*(m(S%)) = X*(8%) - X*(8%°) = 1.

Since 7o(8?%) is finite and abelian, we have |m(S?)| = |X*(mo(S%))|. Thus it
suffices to show that | X*(mo(S%))| is a power of 2.
Note that X*(mo(S%)) is the torsion part of X*(S%). From the left exact
sequence
1-8% 8%, g

where the map 1 — fg is given by s — s-fs(s)™!, we get a right exact sequence

X*(8) 2%, x*(s) = X*(8%) 0.
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Hence, by fixing an identification X*(S) = Z®", it is enough to show that the
cokernel of the homomorphism 1 — 6% : Z%™ — Z®™ has no ¢-torsion for any prime
number ¢ # 2. Equivalently, it suffices to show that Cok(1 — 0§) ®z Z, has no
torsion for any ¢ # 2. Since tensoring Z; over Z preserves the right-exactness,
Cok(1 — [n]*) ®z Zy is isomorphic to the cokernel of 1 — 0%: ZF™ — ZF™.

We put V := Zg”ﬂ on which 6§ acts. Since 6§ is involutive, we have a decom-
position V' = VT @ V= such that fg acts on VT (resp. V) via identity (resp.
negation). Indeed, the projection from V to V* is given by v — (v £ 65(v)).
(Note that here we use ¢ # 2.) From this, we immediately see that the cokernel of
1 — 6§ is free again by noting that ¢ # 2. O

We say that an elliptic semisimple element § of G is tame if there exists an F-
rational elliptic twisted maximal torus (S, S) such that S is tame and § € S. We
note that if G is tamely ramified and p does not divide the order of the absolute
Weyl group of G, any F-rational maximal torus of G is tame by [Fin21, Theorem
3.3]. In particular, any elliptic semisimple element ¢ of G is tame.

Proposition 3.14. Let § be a tame elliptic semisimple element of G. Then there
exists a pair (3,64 ) of elements of G such that

(1) 6 =606+ = 0+,

(2) 60 € G C G' is absolutely p-semisimple modulo Ag,

(3) 64 € Gs,.040 C GT is topologically p-unipotent, and

(4) 0o and &4 belong to the closure (§)Ag of (§)Ag in GT.

In particular, (8,04 ) is a topological Jordan decomposition of 4.

Proof. Since 4 is elliptic semisimple, there exists an F-rational elliptic twisted max-
imal torus S of G such that § € S by definition (Definition B2). Since the asso-
ciated automorphism fg of S can be thought of as the conjugation by é on S, the
element 62 of S is fixed by fs. In other words, 62 belongs to S%. Thus, by putting
k := mo(S%), we see that 62 € S% (recall that S := S%:°).

Since S is elliptic, S? is anisotropic modulo Ag, hence 5% is compact modulo
Ag. In particular, 62F has a topological Jordan decomposition in Sh/AG according
to [SpiU8, Proposition 1.8]. More precisely, if we write ¢’ for the image of §%F in
5%/Ag, then we have two elements &) and ', of S%/Ag such that

o 5 =58, = 5,5,
e J; is of finite prime-to-p order,
e 0, is topologically p-unipotent.

We put S := Sh/A(;. We note that the image of 5; under the natural injection
S'/Ag = 5% = (S¥/Ag)(F)

belongs to the pro-unipotent radical S’g . of the unique parahoric subgroup 5'8 of
S4. Indeed, by [SpiU8, Lemma 2.21], the topological p-unipotency of 5; implies the
topological F-unipotency of 5; in the sense of [Spi08, Definition 2.15], that is, Sg_
belongs to Sf(E)qy for the splitting field £ of S%. Since the torus S? is tame, we
have S%(E)qy N S% = S’g+ (see [Yulll, Proposition 2.2]).

By applying [KalTdh, Lemma 3.1.4 (2)] to the short exact sequence

15 Ag—S = Sio1,
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we see that the map 53 L 5’8 4 issurjective. Thus we can take an element ¢’ € Sg it
mapping to &, € S’(L.

Now note that 2k is a power of 2 by Proposition B3, in particular, 2k is prime
to p. Thus we can take §4 € S8+ satisfying cﬁk = ¢ as follows. Let a € Zx( be a
positive integer such that p® =1 (mod 2k). Then the topological p-unipotency of
¢’_ implies that the sequence

is Cauchy. If we let 5_7_1 € Sg+ be the limit of this sequence, then we have 53_’“ =0

We put 6g := 6 - 5;1. Then obviously &y belongs to S C G. Since d; belongs
to S%, 64 commutes with y. Moreover, by the construction, 62* belongs to S% and
its image in S° /Ag is of finite prime-to-p order. Hence, again by noting that 2k is
prime to p, we conclude that d¢ is absolutely p-semisimple modulo Ag. Finally, in
order to check that do,d4 € (§)Ag, it suffices to show only d4 € (§)Ag. Since the

similar statement holds for &', , namely, &', € (¢') C S%/Ag, we have &', € (§2F)Aq.
By the construction of 6, this implies that §,. € (J)Ag. a

In the rest of this paper, for a tame elliptic semisimple element § of G, we call a
decomposition as in Proposition B4 a topological Jordan decomposition of 9.

Definition 3.15. Let § € G be a tame elliptic semisimple element. A normal
r-approzimation to & (r € Rs) is a pair (6 = dob4,0,) of

e a topological decomposition & = g of & and

e a normal r-approximation 0, = (d;)o<i<, to o4 in Gs,.

For a normal r-approximation (6 = dpd4,d,) to a tame elliptic semisimple ele-
ment § € G, we put
0L, = I 6 dcri= [ 6 02r:=0206,
0

<i<r 0<i<r
C(T) 5) = C(T) K
G ( ) ° G50 ( +)'

When (6 = 0pd4,0,) is a normal r-approximation to d, we often simply say that
“§ = 5052r(52T is a normal r-approximation to §”.

Lemma 3.16. Let § and (do,d4) be as in Proposition B-I4. If 6 is elliptic reqular
semisimple in G, then so is 01 in Gg,.

Proof. Let S be an F-rational elliptic twisted maximal torus of G containing 4.
Then, by Proposition B3 (3), S” is a maximal torus of Gs. Since Gy is a torus by
the regular semisimplicity of d, this implies that G5 = S%. As we have (Gg,)s, C
G4 = S, we see that (Gso)sy = St and 4, is regular semisimple in G, .

Let us check that S? is elliptic in Gg,. Again by Proposition B3 (3), S% is a
maximal torus of Gg,. Since S is elliptic, S¥ is anisotropic modulo Ag. As Ag is
contained in the center of Gg,, the maximal torus S of Gs, is elliptic. O

Proposition 3.17. Suppose that G is tamely ramified and p does not divide the
order of the absolute Weyl group Qg of G. Then any elliptic semisimple element
6 € G has a normal r-approzimation.
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Proof. Since the existence of a topological Jordan decomposition of ¢ is guaranteed
by Proposition BI4, we only have to show that 64 has a normal r-approximation in
Gs,- By [ASDR, Lemma 8.1], any bounded-modulo-Zg 5, element of Gy, belonging
to an F-rational tame maximal torus of G;, has a normal r-approximation as long
as the assumption “(Gd%%)” is satisfied (see [ASOR, Definition 6.3]). Since d, is
bounded-modulo-Zg, , it is enough to show that d, is contained in an F-rational
tame maximal torus of G, and that (Gd“%) is satisfied.

As remarked above, the assumption on p implies that § is tame, hence we can
find an F-rational elliptic twisted maximal torus (S,S) such that § € S. This
implies that S is an F-rational tame maximal torus of Gs,. By construction, 64
belongs to S%. As p does not divide the order of the absolute Weyl group Qg,, of
G5, (note that this is a subgroup of Qg; see [KS9Y, Section 1.1]), the assumption
(Gd®?) is satisfied by [EmZl, Theorem 3.6]. O

Lemma 3.18. Let § € G be a tame elliptic semisimple element having a normal
r-approzimation § = 8o0L,.65,. Then &y belongs to (6-,)Ag.

Proof. We let 0y denote the image of g in GT/AG. Let p’ be the order of &g,
which is prime to p. If we take k € Z~( such that p* =1 (mod p’), then we have

k= —nk  — (n—Dk - . .
86 = do. Hence, for any n € Z~, we have 6§ = df = ... = dp. Since 0%, is

topologically p-unipotent and commutes with &g, we have

nk nk =

(S<T)p"'k = (So)pnk : (Sir)p = 50 : (Si—r)p m) 60.
Thus &y belongs to (6<,) C GT/Ag. It can be easily checked that this implies that
8o belongs to (,)Ag C G. O

Lemma 3.19. Let § € G be a tame elliptic semisimple element having a normal
r-approrimation § = 5052r62T. Then we have

(Gsy)sz, = G,

Proof. The statement can be proved by a similar argument to the untwisted case
(cf. [ASO8, Corollary 6.14]) as we explain in the following.

We may take an F-rational tame twisted maximal torus S containing d, dy, and
d<r. Indeed, as 64 = 0%,6>, is a normal r-approximation in Gg,, d; belongs
to (Ggo)éz, hence we can find an F-rational tame maximal torus S’ of (G5o)527,
containing d; (note that &, is semisimple). Then S’ contains 6%, and J,. By
Steinberg’s result (see [KS99, Theorem 1.1.A]), S := Zg(S’) gives an F-rational
tame maximal torus of G. Moreover, S is [dg]-stable and there exists an [dp]-stable
Borel subgroup containing S. Hence, by Lemma B8, S := Sd; is an F-rational
tame twisted maximal torus of G. (Note that then S’ = S%.) By construction, we
have 8,8y,0<, € S.

Since 6., = 6oL, the inclusion (G50)5Z C Gy_, is obvious. Let us show that
this inclusion is in fact the equality. As S% is a maximal torus both in (Gs,) 5%,
and Gs_,, it suffices to check that (I)((Gtso)éL’ S%) equals ®(Gs._,,S"). By taking
gs € G as in Section B33, we put

Verl) =956, € TO, 10 =955, € TO, vE, :=96% €T
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Then ((Gi, )+ ,S%) and ®(G;_,,S") are identified with (G, ,T%) and
O(G,_.9, T?), respectively. By the description explained in Section B3, we have

(G0, TF) = {res | @ € (G, T); N(a) () = <o},
hence
B((Guyo), =, T = {Oes | @ € B(G,T); N(@) () = s and e (vE,) = 1},
On the other hand, we have
(G0, T%) = {res | @ € B(G, T); N(a)(vr) = Ga }.
Thus our task is to check that, for any o € ®(G, T) satisfying N(a)(v<,) = Sa,

we have N(a)(vp) = ¢4 and ayes(vL,) = 1. Let a € ®(G, T) be such a root. By
the definition of I, we have 23:0 0 (o) = % Zi‘;gl 0*(«). Thus we get

N(@)(ver)™ = (lZ 0')) ver)s
=0

_ (zl: ai(a)) (ver) = a(f[ ei(yq)) = a((vr0)?).
1=0 =0

Hence, noting that (v-.0)% = (100)? - 1/227 we have

2
o = a((ver0)?) = a((n0)?) - a(vi,)?.
Since dg is of finite prime-to-p order modulo A and 5L, is topologically p-unipotent,

we see that a((10)?) € F”™ is of finite prime-to-p order (note that Ag is killed by
any root) and a(vZ,)? € F” is topologically p-unipotent. Thus, by noting that

So € {£1} and p # 2, we must have a(vZ,)? = 1, which furthermore implies that

a(vt,) = 1. Then we get

Sa = N(a)(ver) = N(a)(r0) - N(a)(vZ,) = N(a)(v0).

4. REGULAR SUPERCUSPIDAL REPRESENTATIONS

4.1. Regular supercuspidal representations. In the following, we assume that

e G is tamely ramified over F', and
e p # 2 and p does not divide the order of the absolute Weyl group Qg of G.

In [Yu0T], Yu introduced the notion of a cuspidal G-datum and attached an irre-
ducible supercuspidal representation of G to each cuspidal G-datum. Recall that
a cuspidal G-datum is a quintuple ¥ = ((:‘;,5, 7, X, po) consisting of the following
objects (here we follows the convention of [HMOS, Section 3.1]):

e G is asequence G° C G! C --- C G? = G of tame Levi subgroups such

that Zgo/Zg is anisotropic,

e X is a vertex of the reduced Bruhat-Tits building B"4(G°, F) of G?,

e 7is a sequence 0 < rg < --- <rqg_1 <rgsuch that 0 < rg when d > 0,

e Jisa sequence (g, ...,"Y4) of characters 9; of G* satisfying

— for 0 <i < d, ¥; is G**'-generic of depth r; at x, and
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— for i =d,

depth, (9q) =rqg if rq_1 < rq,
19,1 =1 if Td—1 = Td,

e po is an irreducible representation of G2 whose restriction to Ggyo contains
the inflation of a cuspidal representation of the quotient Gg’(m ey

We call the representations obtained from cuspidal G-data by Yu’s construction
tame supercuspidal representations.

The “fibers” of Yu’s construction was investigated by Hakim—Murnaghan; in
[HNMUOR], they introduced an equivalence relation called G-equivalence and proved
that two cuspidal G-data give rise to the same (isomorphic) supercuspidal repre-
sentations if and only if two data are G-equivalent. Thus Yu’s construction gives
the following bijective map:

1:1

Yu’s construction

{cusp. G-data}/G-eq. {tame s.c. rep’'ns of G}/~

In [KalT9H], Kaletha introduced the notion of (extra) regularity for cuspidal G-
data (see [Kall9H, Section 3]). Tame supercuspidal representations arising from
(extra) regular cuspidal G-data are called (extra) regular supercuspidal representa-
tions. Kaletha discovered that (extra) regular cuspidal G-data can be parametrized
by much simpler data called tame elliptic (extra) reqular pairs. Let us recall the
definition of a tame elliptic (extra) regular pair:

Definition 4.1 ([KalT98, Definition 3.7.5]). A tame elliptic reqular (resp. extra
reqular) pair is a pair (S,) consisting of

e a tame elliptic F-rational maximal torus S of G and

e a character ¥: S — C*

satisfying the following conditions:
(1) By choosing a finite tamely ramified extension E of F splitting S, we put
Py :={a € ®(G,S) [ (JoNrg/p OO&V)M;J+ =1}.

Then the action of Ip on ®¢ preserves a set of positive roots.

(2) We put G to be the tame Levi subgroup of G with maximal torus S and
root system ®q.. Then 9J|g, has trivial stabilizer for the action of Ngo(S)/S
(resp. Qgo(S)(F)).

Kaletha’s re-parametrizing result [KalT9H, Proposition 3.7.8] asserts that G-
equivalence classes of (extra) regular cuspidal G-data bijectively correspond to
G-conjugacy classes of tame elliptic (extra) regular pairs. We write m(g y) for the
(extra) regular supercuspidal representation which corresponds to a tame elliptic
(extra) regular pair (S, ).

{cusp. G-data}/G-eq. — & {tame s.c. rep’ns of G}/~
U U
{(ex.) reg. cusp. G-data}/G-eq. ——— {(ex.) reg. s.c. rep’ns of G}/~
11
S, 9)—>m
{tame ell. (ex.) reg. pairs}/G-conj. (89} ma.0)
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4.2. Toral supercuspidal representations. We next give more detailed expla-
nation of Yu’s construction in the case of toral supercuspidal representations, which
will be mainly treated in this paper.

—

Definition 4.2. We say that a cuspidal G-datum X = (é, 9,7, %, po) is toral if it
satisfies the following:

e d =1 and G is an F-rational tame elliptic maximal torus S of G (thus
G=(sca)
e 0<rg=ri(=1),
o J = (9, 91), where
— 199 is a G-generic character of S of depth r (put ¥ := ), and
- 191 = ]]-7
e po is the trivial representation 1.
We call a tame supercuspidal representation associated to a toral cuspidal G-datum

toral supercuspidal representation.

Remark 4.3. We caution that, in some literature, the terminology “toral” only
means that G is a torus. For example, in [ESZI], they distinguish these two
versions of torality by calling the one of Definition B2 the “O-torality”. We decided
to use “toral” rather than “O-toral” in this paper following [DSIR] and [KalT9H].

Under the bijection of [KalT9H, Proposition 3.7.8] mentioned above, a tame
elliptic regular pair corresponding to a toral cuspidal G-datum ((S C G),(r =
r),(9,1),x,1) is simply given by (S,?). Let us call a tame elliptic regular pair
obtained in this way a tame elliptic toral pair. We note that the torality implies
the extra regularity.

In the following, we fix a tame elliptic toral pair (S,9). Let x € B**4(G, F) be
the point associated to S and r € Rs¢ be the depth of ¥. We put s := r/2 and
define the subgroups K, J, and J of G by

K= SGx,S7 J = (S, G)x,(r,s), JJr = (Sv G)x,(r,s+)a

where (S, G)x (r,s) and (S, G)x,(r,s+) are the groups defined according to the manner
of Yu (see [YnOI, Sections 1 and 2]). Note that we have K = SJ.

Since the depth of ¥ is 7, we can extend ¥ to a character ¥ of J satisfying
1§| 7, = 1. Then, by the definition of the G-genericity, there exists an element X*
of s*, which is G-generic of depth r in the sense of [Yull, Section 8] and satisfies

Vexp(Y)) = r((Y, X))

for any Y € gx s4.+ (or, equivalently, for any Y € s,1.,.1). Here, as explained in
[Yu0d, Section 8], we may regard s* as a subspace of g* by considering the coadjoint
action of S on g*. We recall that the definition of G-genericity consists of two
conditions GE1 and GE2. The condition GE1 requires that valp({H,, X*)) = —r
for any a € ®(G,S), where H, := daV(1). We do not review the condition GE2
because GE1 implies GE2 by [YuOl, Lemma 8.1] when p is not a torsion prime
for the dual based root datum of G. (Recall that we have assumed the p { |Qg/,
which is equivalent to p { [Qg|. In fact, this implies that p is not a torsion prime
for the dual based root datum of G; see [FinZll, Lemma 3.2].)

The point of the construction is that, by putting NV := Kerd C J, the quotient
J/N has the structure of a finite Heisenberg group:
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o The center of J/N is given by J, /N, which is isomorphic to p, = F, via ¢
(here we fix an isomorphism p, = Fp).
e The quotient J/J has a symplectic space with respect to the pairing

(J/d4) % (J/4) = wp 2 Fp: (g,9") = 9((g.9])

(see [YnOI, Section 11]; we will review the structure of the symplectic space

——
J/J4 in more detail in Section G).

Therefore, as an application of the Stone-von Neumann theorem, there exists a
unique irreducible representation of J/N whose central character on J; /N is given
by J. Furthermore, as the conjugate action of S on J preserves J, and N and
induces a symplectic action on J/.J;, we can extend the (inflation of) the represen-
tation of J to the semi-direct group S x J, for which we write w(g gy (so-called the
Heisenberg-Weil representation). Then the tensor representation wg ) ® (¥ x 1) of
S x J descends to SJ = K (factors through the canonical map Sx J —» K). We let
p(s,9) be the descended representation of K. The toral supercuspidal representation
m(s,9) i given by

T(S,9) = C-Ind% P(8,9)-

We also recall the definitions of a few more groups and representations which
will be needed later (for describing the Adler—DeBacker—Spice character formula in
Sections B and B):

K, = SGx70+, 0(8,9) *= Indﬁ“ P(S,9)»
T(s,9) = Ind ps v) (= Ind i o(s ).

5. TWISTED ADLER—DEBACKER—-SPICE FORMULA: PRELIMINARY FORM

In this and the next sections, we discuss a twisted version of the character formula
of Adler-DeBacker—Spice for toral supercuspidal representations ([AS0Y, DSTE]).
Our arguments heavily depend on the work [ASUR, AS0Y, DSTE]. We note that sev-
eral technical assumptions on p are required so that the theory of Adler-DeBacker—
Spice works, but it is enough to assume only the oddness and the non-badness of
p (for the root system of G in the sense of [SS70, 1.4.1], see also [ASO8, Section
A]) whenever G is tamely ramified by [KalT9dh, Section 4.1]. Recall that we have
assumed that p is odd and does not divide the order of the absolute Weyl group
Q¢ of G; in fact, this implies the non-badness of p ([Fin21, Lemma 3.2]).

5.1. Twisted character of a #-stable representation. Let us first recall the
basics of twisted characters of irreducible admissible representations. See [LHIZ,
Section 2.6] for the details of the content of this subsection.

Let n € G. Then [n] is an F-rational automorphism of G. Recall that, for an
irreducible admissible representation 7w of G realized on a C-vector space V, its
n-twist 7" is defined by the action

7(g) := 7o [n](g) = w(ngn~")

on the same representation space V. We say that 7 is n-stable if 7" is isomorphic
to m as a representation of G.
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Remark 5.1. Note that, if we write n = n°0 with an element n° € G, then we
have [n] = [n°] o 8. Hence, as [°] does not change the isomorphism class of any
representation, 7 is n-stable if and only if 7 is #-stable. More explicitly, 7(n°) gives
an intertwiner between 7¥ and 7, i.e., 7 (g) om(n°) = 7 (n°) o7’ (g) for any g € G.

Suppose that 7 is an n-stable irreducible admissible representation of G. We fix

an intertwiner
I 7 = gt
(note that such an I? is unique up to C*-multiple, as 7 is irreducible) and put
w(gn) :==m(g) o I]

for any gn € G with g € G. Then we get a representation 7 of G on the representa-
tion space V of 7, i.e., #: G — Autc(V) is a map satisfying the following relation
for any ¢g1,92 € G and 6 € G:

7(g1-0-g2) = 7(g1) 0 7(9) o m(g2).
For any f € C°(G), an operator 7(f) on V is defined by

w(f) = [ _f(0)x()ds,
6eG
where dd is a measure on G obtained by transferring a Haar measure on dg on G
by the bijection G — G': g — gn. Then, as in the untwisted case, the operator 7(f)
is of finite rank and hence we can define its trace. In this setting, the (n-)twisted
character O of m is defined to be the unique locally constant function on G,5 such
that
wil(f)= [ 0:0)10)ds
Grs
for every f € C°(Q) satisfying supp(f) C G.s, where G denotes the set of regular
semisimple elements of G.

Remark 5.2. (1) We emphasize that the twisted representation 7 and the twisted
character ©% depend on the choice of an intertwiner I'! between 7 and 7"
although this dependence is not reflected to the symbol 7. For any ¢ € C*,
eI := (c-idy)oI? is again an intertwiner between 7 and 7. If we define a
twisted representation by using cI?? (let us write c7 for it), then its twisted
character is simply given by ©.z = ¢ - ©z.

(2) As mentioned in Remark B, for any n = 1°0 € G, = is n-stable if and
only if it is f-stable. When I? is an intertwiner between 7 and 7, then
I7 := 7t(n°)oI? gives an intertwiner between m and 7. If we write 7[I7] and
#[I9] for the twisted representations of G obtained from 7 by using these
two intertwiners 17 and I?, then we can easily check that #[I7] = #[I¢]. In
particular, we have ©z 1 = Oz(z0].

5.2. Twist and intertwiner. Let € G. Only in this subsection, for any sub-
group H of G, we let H" denote its conjugate [n]~'(H) = n~'Hn. We caution
that this usage of notation is temporary; in other places of this paper, the upper n
denotes the stabilizer of 7.

For any tame elliptic toral pair (S,d) of G, its n-twist

(8,0)" = ([~ (8), 0 o [n])
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is again a tame elliptic toral pair of G. Thus we have the toral regular supercuspidal
representation 7(g g)n associated (S,9)”. On the other hand, we also have the 7-
twist 77(7’5 9) of the toral regular supercuspidal representation g ) associated to
(S, d). In fact, these representations are isomorphic. Let us investigate how we can
construct an intertwiner mg gyn = W?S 9"

Recall from Section BTl that (g gy is defined to be the compact induction
c—Indf( p(s,9) of a representation p(s gy of an open compact-mod-center subgroup
K = SJ of G. Hence the n-twisted representation W?S 9) is isomorphic to the
compact induction of p?S 9) from K" to G by the following explicit intertwiner:

(1) c-Ind%., p?S,ﬂ) = (c-Ind% ps,9)" = ﬂ?sﬁ)l f=fom™

On the other hand, we can easily see that the open compact-mod-center subgroup
associated to n-twisted pair (S,4)" is given by K" = S"J". Thus mg gy is given
by the compact induction c—Ind?@ p(s,9)n of a representation p(s gy» of K.

Let us consider the relationship between the representations pE’S’ ) and p(g,9)yn of
K". The representation ps ») of K is defined to be the push-out of the represen-
tation ws ) @ (¥ x 1) of S x J along the natural multiplication map S x J —» S.J.
Hence p?sﬁ) is the push-out of W?s,ﬂ) ® (97 x 1) along S7 x J7 — S7J7. On
the other hand, p(g g)» is defined to be the push-out of w(g gy» ® (97 x 1) along
STx JT — S1J". We note that both of wZ’Sﬁ) and w(g,g)» are Heisenberg—Weil rep-

resentations with central character 9. Hence, by the Stone—von Neumann theorem,
w?s 9) and ws gy» are isomorphic. Let us fix an intertwiner

n . ~yo
IW(S,ﬁ) B CR ) Ws,9)
which naturally induces an intertwiner
n . ~yon
IP(s,ﬂ) N CR p(S,ﬂ)'

Then we get an intertwiner between Ind?@, p(s,9)n and Ind?(,, p7(787 9) given by

e} ~ e}
(2) Ind%y ps,0)n — Indz, p?s,@f feIlg, of
Therefore, combining (1) with (2), we obtain an intertwiner Il ., between

m(s,9)n and W?Sﬂ) given by fi— I7 o fo [n] =L

(2) (1)
T(S,0)n = C—Ind%, p(S,9)m —> c—Indfm p?s,ﬁ) - (C—Indf( pes,)" = 77278’19).

From now on (until the end of Section B), suppose that we have the following;:

e an F-rational tame elliptic twisted maximal torus (g, S) of (G, G), and
e a tame elliptic toral pair (S,?) of depth r € Rs( which is n-invariant, i.e.,
(S,9) = (S,9)", for n € S. (Note that (S,9) is n-invariant for some 7 € S
if and only if so is for any n € S.)
Let us fix a base point 1 € S which is topologically semisimple in the following.
Note that we can always find such an element since S is nonempty by the definition
of a twisted maximal torus (Definition B32); apply Proposition B4 to any element
of S and take the topologically semisimple part.
Then, by using the intertwiner ITEF(S, ») We just constructed, we obtain a represen-
tation (g gy of G and its twisted character Oz sy (see Section B).
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We note that, since [1] preserves S, the point x € B:ea(G, F') associated to S is
stabilized by the action on Byeq(G, F') induced from [n]. Accordingly, every group

used in the construction of p(g gy (such as Gy s, K, J, J, and so on) is stabilized by
[7]. Then we also have a twisted representation ps ) of K=K 1 and its twisted
which is a function on K defined by

@ﬁ<s,19) (kﬂ) = t1"(0(5,19)(16) © Ig(s,re))'

naturally induces an intertwiner between o(s gy and its n-twist

character ©5 ,,,

Also note that Ig(sm

O'(QS 9) (recall that o(g ) is a representation of K, defined by Ind?’ p(s,9)). Thus we

get a twisted representation 7 (g ) of K, = o1 and its twisted character Oz ,,,

which is a function on K, defined by
Oss,0) (k1) = tr(o(s.g)(k) o Ig(s,m)~

We emphasize that the construction of the intertwiner I%S’ » explained above in-

volves the unspecified choice of an intertwiner Ig(s’ﬁ) Do) = w(ﬂs 9) of Heisenberg—

Weil representations. In Section B2, we will choose Ig(& ) 1N an explicit way.
We finally recall that, by the torality of ¢, there exists a G-generic element
X* € s* . of depth r which lifts a unique element of s* .. satisfying ¥(exp(Y")) =

Yr((Y,X*)) for any Y € s4..r. We note that
0o n)(exp(Y)) = d(exp([n](Y))) = vr({](Y), X™)) = ¥r (Y, [n](X™),

where we again write [n] for the action on s induced by [n] and used that exp: 4.4 =
Sst.r4 18 [n]-equivariant (the action of [n] on X* is, by definition, given by the iden-
tity ([n](Y), X*) = (Y, [n](X*))). Thus, as we have ¥ o [§] = ¢ by the assumption,
we see that [n](X™) equals X* ins* . .

Lemma 5.3. We may take X* € s* . to be [n]-invariant.

Proof. Since p # 2, we have 2(X* + [](X*)) € s*,. Note that this element is
[n]-invariant. Moreover, as the image of X* in s* ., is [p]-invariant, the image
of 2(X* + [n](X*)) in s*,._,, is equal to the image of X*. Thus, by replacing X*
with 3 (X* + [](X*)), we get a desired element. O

In the following, by this lemma, we assume that an element X* € s* | represent-

ing the character ¥|g, is invariant under [n]|s = fs.
We finish this subsection by showing one more lemma.

Lemma 5.4. For any n € S, the restriction (S, 9% := V| g) gives a tame elliptic
toral pair of Gy, (of depth r).

Proof. Note that, as we have S C S, we have s? C s, hence s* — s, We can
take an element of sh_*r representing the character 9% to be the image of X* taken
above via the natural map s* — s%. Our task is to show that X* is an G-
generic element of depth 7. We note that our assumption that p t |Q2g| implies that
P1|Qq,]| (recall that Qg, is regarded as a subgroup of Q). Thus it is enough to
only check that GE1 is satisfied, which requires that valp((H,,  ,X*)) = —r for
any ayes € ®(Gy,, S), where H,, . = day, (1) (see Section A2).
By the description of ®(G,,S?) and ®V(G,,S") as in Section B33, we have
Hy.. = 003 3! Hyg () As X* is fg-invariant, we have (Hpg (), X*) = (Ha, 05(X*)) =
28



(Ho, X*). Hence (Hq,.., X*) = 04 " lo - (Ha, X*). Since X* is G-generic of depth

rand p{ gq - la, we get valp((Ha,.., X*)) = —r. O

5.3. Separation lemma. In this subsection, we prove some technical lemma and
propositions which will be needed later.

The following follows from [KP23, Theorem 12.7.1] by using the tamely ramified
descent for the Bruhat—Tits buildings ([KP23, Section 12.9]).

Proposition 5.5. Let dy € S be absolutely p-semisimple modulo Ag. There exist
an identification between the building B(Gs,, F') and the fized points of B(G, F)
under the action induced by [8o] such that A(S%, F) is mapped to A(S, F)%:

B(Gs,,F) —— B(G,F)* < B(G,F)
U - U U
A(S%, F) —=— A(S,F)® C A(S,F)

Proposition 5.6. Let 8y € S be absolutely p-semisimple modulo Ag. Suppose
that the point x associated to S belongs to A(S%, F) under the identification as in
Proposition &d. Then we have the following for any r,s € Ry satisfying r < s:

(1) SE=(S.)% (= (S,)%) and S5,., = (Sot:)>,

(2) G&hxm = (GX,T)60 and (Sha G&J)x,(r,s(Jr)) = (Sv G)io,(ns(_i_));
(3) 86, Gsoxr = (So4Gxr),

(4)

4 (Sb’ G50)x7(7‘,s):(r7s+) = (Sa G>f3(r,s):(r,s+)'

Proof. Let us first show (1). Recall that &y acts on S via s and we put S% := §fs-°,
The r-th filtration of S is defined by

S, = {t € S%|valp(x(t) — 1) > r for any y € X*(S)},

where S° denotes the Iwahori subgroup of S (here note that S is tamely ramified;
see [KP23, Definitions 2.5.13 and B.5.1]). Similarly, the r-th filtration of S% is
defined by

Si = {t e S0 | valp(x(t) — 1) > r for any y € X*(S%)}.

Thus, noting that S%° is contained in S°, we have S& C (S,.)%. To show the
converse inclusion, we take any element ¢ € (S,)%. By Proposition B3, there
exists a power of 2 (say k € Z~) satisfying t* € S%. Then, as discussed in the proof
of Proposition B4, we can remove k and get ¢ € Sf since p # 2 and ¢ is topologically
p-unipotent. We consider the latter part of (1). By the former part which we just
showed, we have S(h)+:'r = (So4+)%/(S,)%. Note that we have (Sp;)%/(S,)% <
(Sos)%. Let 5 be an element of (Sp;..)% represented by s € Soy. Then sfg(s)
is an element of (Sp;)%. Again by noting that sfs(s) is topologically p-unipotent
and p # 2, we can find an element ¢ € (Sy )% satisfying t> = sfg(s). Then we have
2 = 52, hence f = 5 since the order of (Spy.,.)% is prime to 2. Hence we obtained
the surjectivity of the map (Soy)%/(S,)% < (Soy.r-)%.

The assertion (2) follows from [KPZ3, Proposition 12.8.5] (together with the
tamely ramified descent of Bruhat-Tits theory). Note that the assumption of
[KP23, Proposition 12.8.5] is satisfied by (1).

Let us show (3). The inclusion SngGao,x,r C (So+Gx,T)5“ is obvious. To check
the converse inclusion, let us take an element g of (SoyGx.,)%. Since we have
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So+ N Gx,» = Sy (see [ASOY, Proposition 4.6]), we have a bijection

SO+:’I” = SO+/ST 1’1_) SO+Gx,r/Gx,r-

This implies that the coset gGx , is represented by an element s of Spi. As g is
[dp]-invariant and the above bijection is [dp]-equivariant, the coset sS, is also [dg]-
invariant. Since we have (S, ..)% = Sg-s—:r by (1), we know that s can be taken to
be an element of Sg+. Now let us write g = sg’ with s € S(hH_ and ¢’ € Gx,. Since
g and s are dp-invariant, so is ¢’. By (2), this implies that ¢’ € Gs, x.r-

The assertion (4) follows from the same argument as in the proof of assertion
(1) by using (2). O

Lemma 5.7. Let § be an elliptic reqular semisimple element of G with a topological
Jordan decomposition § = 6o6. If 6 belongs to SGx, ., then §y belongs to Gxr§ 1=
{9s| g€ Gx,r,s €S}

Proof. For any element g € G, we write g for its image in Gf /Ag. Similarly, we
write Gx, and S for the images of Gx, and S in GT/AG, respectively.

Since &y belongs to the closure of () in GT/Ag (see Proposition BId), the
assumption § € SGX}T implies that §y € SGX,T/AG. Let us take elements sy € S
and g4 € Gx,, satisfying dg = g1 so. If we let p’ be the order of dy, which is prime
to p, then we have

’ p/_l
1=0" =[] lso'(77) - 5"
i=0
Since Hf;)l[so]i(ﬁ) € Gx,r, this implies that sgl lies in Ag(S N Gxr) = AgSr
(see [ASO8, Proposition 4.6] for the equality). Furthermore, by noting that sg, is
fixed by [so] and [so] acts on S as g and on Ag trivially, we have 510)1 € Ag(S,)%.
Thus, by Proposition B8 (1), we get sg/ € AGSE.. As p’ is prime to p, we can find
an element s, € S7 such that sgl € As - 55" (see the proof of Proposition B4, the
same argument as in the construction of 4 works). Then, by replacing sg € S with
sos; b€ S and g+ € Gx,r with gys,, respectively, we may assume that

p'—1

[Ilsof@) =1 and 5* =1.

=0

In other words, we have an action of a finite cyclic group Z/p'Z on Gy, given
by i-g = [s0](g) and a 1-cocycle Z/p'Z — Gy, given by 1 — g Since p’ is prime
to p and Gy, is a pro-p group, the first group cohomology H(Z/p'Z,Gx.) is
trivial. (This follows from a standard argument by using that the action of Z/p'Z
is filtration-preserving; see the proof of [KP23, Theorem 13.8.5] for the details).
Hence the cohomology class of the 1-cocycle [1 +— g] is trivial. Namely, there
exists an element k € Gy, such that kg [so](k)™' € Ag. This means that

k6o = kgysok™! = kg [so](k)™*-s0 € Ag - S=28.
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Proposition 5.8. Suppose that the point x associated to S belongs to A(S%, F)
under the identification as in Proposition BZ. Let § be an elliptic reqular semisim-
ple element of G with a normal r-approzimation § = §00L,65,. If & belongs to
G0+ (SG,W), then there exists k € Gy o4+ such that

50 € Slv 5J<r7“ € S,ha 627" € G6<r7x77”7

where (S',S") := ¥(S,8). Here, the point x € B(Gs,, F) is regarded as a point of
B(Gs_., F') by an embedding B(Gs_.., F') = B(Gs,, F).

Proof. By replacing ¢ with its Gx o4-conjugate, we may assume that ¢ itself belongs
to SGX,T. By Lemma 577, we have 8y € ¥S for some element k € Gx,r. We put
(S',8') :="*(S,S). Let us show that 6%, € "% and 6>, € G, x.r-

Note that we have S'Gx,r = kSGx)T = SG,W. Indeed, for any s € S, we have
ks = s-s71ks - k7!. As the s-conjugation on G preserves Gy, s 'ks lies in
Gx,r, which implies that ks e S'nyr. Thus we get kSme - S'Gx,r. By the same
argument for k=1, we also get SGXJ. - kSGxﬂ., hence kS’GxJ. = SGXJ..

Since we have d; € S’ and § = 0p04 € SGX,T = SN”GX,T, we know that §, €
S’Gx,r. On the other hand, by the construction of a topological Jordan decomposi-
tion B4, §, belongs to G5,,0+ C Goy. Since we have S'Gy,»NGoy = Sy, Gy, (see
[ASOR, Proposition 4.6]), we have 6 € Sy, Gx,,. Furthermore, as §; commutes
with dg, we get 04 € S&Ggmxm by Proposition 68 (3).

Now the situation is reduced to the untwisted setting. By applying [ASOR,
Corollary 9.16] to 64 € S&_G(;mx,r, we get 01, € Gooxo+ S8 Thus, by taking
k' € Gsyx.04 such that 0%, € 8" and replacing k with 'k, we have 0%, € S".

On the other hand, [ASOR, Lemma 9.13] implies that the point x belongs to the
set “B,(d4+)” (which is considered in the group Gs,; see [ASOR, Definition 9.5] for
the definition). By the description of the set B,.(d4) in [ASOR, Lemma 9.6], we have

B.(64) = {y € B(CE) (04),F) | 65, € Gy}

Hence x belongs to the building of ngo (64) = (G(;O)(SL (see [ASOR, Corollary
6.14]), which furthermore equals Gs_, by Lemma BTY, and we have §>, € G5, xr-
By the definition of a normal approximation, §>, belongs to (Gs,) s, = Gs_,. Thus
0>, lies in Gy, x,r N Gs_,., which equals G;_, x» by [ASUR, Proposition 4.6]. O

5.4. Twisted character formula of 1st form. Our aim in this and subsequent
sections is to establish a formula of the twisted character of © as in the un-
twisted case by Adler-DeBacker—Spice ([AS09, DSTR]).

Since the pair (S, ¥) is always fixed in the following, we simply write w, p, o, T,
7 for the representations ws gy, p(s,0), 7(s,9), 7(s,9), and m(s,g) (see Section g2),
respectively. Similarly, we simply write p, ¢, and 7 for the twisted representations
as introduced in Section BZA. We use the identification of Bruhat—Tits buildings
and apartments as in Proposition B3 in the following. We may suppose that the
point x associated to S comes from A(S%, F).

In the following, we fix an elliptic regular semisimple element § € G and a normal
r-approximation § = §o6L,6>, to d, which exists by Proposition BT4. We simply
write 1 1= 0<,.

We start by showing the following lemma, which is a twisted version of [AS0Y,
Lemma 6.1]:

7(s,9)
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Lemma 5.9. The set S\{g € G | 99 € §}/G,, is finite.

Proof. First we note that Zg(S%) = S (Proposition B33 (1)). Thus, if an element
n € G belongs to Ng(S?), i.e., satisfies nSfn~! C 8% then we get nSn~! > S by
taking the centralizer groups in G. Hence n~! € Ng(S), which implies n € Ng(S).
Thus we get Ng(S%) € Ng(S). Since S is contained in Ng(S%) and of finite
index in Ng(S), S is of finite index in Ng(S*). Thus it is enough to show that
Ne(SH)\{g € G | 99 € S}/G,, is finite.

For any element g € G satisfying 97 € S, by Proposition B33 (2), we have

IG, = Gay = Za(91)° D Za(S)° = S7.

In other words, we have 978 G,,. Since S% is an F-rational maximal torus of
G,, (see Proposition B33 (3)), so is 97" Sk, Therefore we get an injection

Na(SH\{g € G | 9 € S} = {F-rational maximal tori of G, }: g gt
By taking the quotients with respect to the action of G, we furthermore get

Ne(SH\{g € G | 9n € §}/G, — {F-rational maximal tori of G, }/~¢

where the symbol ~¢, denotes the equivalence class given by G, -conjugation. As
the right-hand side is finite, N (S%)\{g € G | 9n € S}/G,, is also finite. O

Recall that & is a representation of RU = SYGX70+ and that ©; is its twisted
character with respect to the intertwiner as chosen in Section 62. Let O5 be the
zero extension of O from K, = ng70+ to G.

The following lemma is a twisted version of [AS0Y, Proposition 4.3]. In fact, the
same proof as in [AS0OY, Proposition 4.3] works as we present in the following.

Lemma 5.10. For any g € G, if ©5(90) # 0, then we have 96 € G0+ (SGy ).

Proof. We put ¢’ := 95. We obtain a normal r-approximation ¢’ = §,0-%.0%, to &’ by
taking the g-conjugation of § = §p0%,.8>,. Suppose that Os (90) # 0, in particular,
¢ belongs to K, = SG&N. Then, by Proposition B8 (take r in Proposition B8 to
be 0+), we know that &, € &=o+S and 0 € Goy x,04-

Let t € Ry be the largest number such that ¢’, € Gs;x,t ~ G x,tv- Then it
suffices to show that ¢ > r. Let us suppose that ¢t < r for a contradiction.

We take k € Gy o satisfying 8) € *S and put (S',8’) := (*S,*S). By [AS0Y,
Lemma 9.13] (we take (G', G) to be (S, Gy;)), we know that x € By(d} ). In other
words, x belongs to the building of C’gl (0)) = (G%)S’jt = Gy, and we have 0%, €

0
Gs., x.t (cf. the proof of Proposition 538). For any h € ng, (0! )xr—t = Gs., xr—ts
0
we have [0'~1, h] = [05,,h] € G xr- Thus, by noting that o is J-isotypic on Gx,,
([ASOR, Lemma 2.5]) and that ©; is invariant under K,-conjugation, we get

05(8') = ©5("8") = ©5(8" - [0'", h]) = ©5(8") - D([05,", 1)
for any h € Gs_ xr—t. Since 19([(5;1, —]) is nontrivial on Gy, xr—t as proved in

the final paragraph of the proof of [AS0Y, Proposition 4.3], we conclude that ©5(¢")
equals zero. This is a contradiction. (Il

We next establish a twisted version of [ASOR, Lemma 6.3].
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Lemma 5.11. Let K, be an open compact subgroup of Gy,. Then the function
G/Zg — C: g / Oz (%8) dk
Kn

is compactly supported.

Proof. We let F: G — C be the function given by

Flg) = / Oz (%) dk.
K:ﬂ
Our task is to show that F is compactly supported modulo Zg.
We first note that the support of F is contained the following set:

{geG|me G"*‘”S‘}.

Indeed, if 9%§ belongs to the support of O3, then 95§ have to lie in Gxo+ (SGX,T) by
Lemma BT0. On the other hand, as KC;, is a subset of G, every k € K,, commutes
with = d-,. Hence we have 9§ = 97 . 9%5>,. Thus, by Proposition 5X, 9n
necessarily belongs to <0+ S,

We consider the following double quotient:

K \{geG|me G"*"*S’}/Gn.
Since K, = SGx 04+, we have a natural surjection
S\{geG|meS}/G,—~ K,\{g€G|me+S5}/G,.

As the former set is finite by Lemma B9, so is the latter set. Therefore, in order
to show that F is compactly supported modulo Zg, it is enough to show that
F is compactly supported modulo Zg on each double coset K,9G,. From now
on, we fix an element g € G satisfying 9y € Gxo+ S. By replacing g with some
other representative in the double coset K,gG,, if necessary, we may suppose that
g satisfies 99 € S.

We define a function F,: G, — C by

Fy(h) = / O3 (9"*5) dk.
Kn
Note that the function O is invariant under K,-conjugation. Thus the function
F is left- K -invariant, and the restriction of F to the double coset K,gG), is given
by Flk,qac,(lgh) = Fg(h). As K, is compact modulo Zg, it is enough to show
that F, is compactly supported modulo G, N Zg. Since Ag is defined to be the
maximal split subtorus of Z%,, we have Ag CG,NZc C Z%,. Hence it suffices to
show that F, is compactly supported modulo Ag.

We compute 95(9}”“(5) in the integrand of F,. Since g is chosen to satisfy 97 € S,
by also noting that h,k € G,, we have ghky — 95 € §. On the other hand, if
@5(9hk5) is not zero, then we have ghkézr € Gy x,r by Lemma 510 and Proposition
bl. Therefore, by noting that the restriction of o on G, is ﬁ—isotypic ([AsDdg,
Lemma 2.5]), we get

05 ("6) = O5 (") Ly, o, ("2 ) D55, ).
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Since the term ©;(9n) does not depend on h or k, it suffices to show that the
function

Fy: Gy —C; h / Lay, ., ("F05)0(9"%6>,) dk
Ky o - -

is compactly supported modulo Ag.
In the following, we put 1’ := 97. Now recall that our toral cuspidal G-datum
is given by ((S C G),x,(r,r),(0,1),1). We consider a toral cuspidal G,/-datum
(S C Gyy), x, (r,7), (9%, 1), 1), where we put ¥ := ¥|g:. (Note that the torality is
guaranteed by Lemma B4.) We express various objects appearing in Yu’s construc-
tion for this cuspidal G, /-datum by adding a subscript 7" to the notation used in
Section B, Then, again by using Lemma B0, Proposition B8, and [ASNY, Lemma
2.5], we have
9, (" 6>,) = 1g,,

noLx,r

(7% 85 ) Dy (9756 5,.).

Namely, we get
F,(h) = / O, (91%55,) dk.
Kn

. . G !’ . . .
Since the representation c-Indy” o,/ is supercuspidal by Yu’s theory, this func-
,nl

tion is compactly supported modulo Zg, ,, by Harish-Chandra’s well-known result
([BECT7, Lemma 23]). Therefore, now our assertion is reduced to the compactness
of the quotient ZGn' JAg-

Since we have G, D S, we have ZGn’ C S% As S is an F-rational elliptic
twisted maximal torus of G, S is anisotropic modulo A (see Definition B3),
hence S, is compact modulo Ag. Thus Zg,, 1s compact modulo Ag. O

Before we state the “first form” of a twisted version of Adler—DeBacker—Spice
character formula, we introduce some notation. Recall that, for any connected
reductive group J and a regular semisimple element X € j*, the Fourier transform
of the orbital integral [Ifg{; is defined as follows (see [KalT9H, Section 4.2] for the

details). We consider a distribution Ox+(—) on j* given by

Oxs (/) = / F X 5hY) dh
J/Zy(X*)°

for f* € C2°(j*), where we fix a Haar measure dh on J. For any element f € C°(j),
we let f denote its Fourier transform with respect to the fixed additive character
Y, that is, f is an element of CS°(j*) given by

fory = / F(Y) - (Y, Y") dY,

where dY is a Haar measure on j. Then the distribution f — Ox- (f) on j is
represented by a function ﬂ‘)](j on j, i.e., we have

Ox; () = [ (V) 1(¥) ay

for any f € C2°(j). We emphasize that the function ﬂ‘}(j does not depend on the
choice of dY, but depends on the choice of dh.
Recall that, as discussed in the proof of Lemma BT, we have a tame elliptic
toral pair (S%,9%) of G, (here, ' := 9 for an element g € G satisfying 97 € S)
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which is the image of the fixed element X* € (s*,)%
representing the character ¥|g, (see Section BEZ). Since X* € sh_r, which is re-
garded as an element of g;,, is G,y-generic of depth r, hence regular semisimple in
G,y. Hence we have Zg ,(X*)° = Sf. By noting that G, /S% is the quotient of
G, /(Gy N Zg) by S%/(G,y N Zg), we choose a measure on G, /S% which is the
quotient of the following two measures:

e the Haar measure dh on G /(G N Zg) satisfying dh((Gyy N K,)/(Gy N

Zg)) =1
e the Haar measure on S%/(G,y N Zg) whose total volume is 1 (note that

G,yNZg is co-compact in S %, which follows from that S% is compact modulo
2G5 cf. the final step of the proof of Lemma B5TT).

The following is a twisted version of [AS0Y, Theorem 6.4]:

represented by X* € Pl

—rs

Theorem 5.12. We have

(6) 0:(0)= > 0s(n)- 45" (log(?d5,)).
geS\G/ Gy
Ines

Here, note that the condition 99 € S implies that S% C Gy, hence the function
[L)(?i”(—) makes sense as explained above. In the definition of ﬂgi", we use the
Haar measure on ng/Sh ezplained above.

Proof. The starting point of the proof is the twisted version of Harish-Chandra’s
integration formula (see [CHI7, Partie I, Théoreme 6.2.1 (2)]):

0x( deg”/ /@ (9%6) dk dg,
dimo Jg/zq

where K is an open compact subgroup of G, dk is the Haar measure on K satisfying
dk(K) = 1, and dg is a Haar measure on GG/Zg and deg 7 denotes the formal degree
of m with respect to the measure dg.

We take an open compact subgroup K, of Gy, to be K, = KN G,,. We let dc be
the Haar measure of K, satisfying dc(K,) = 1. Then we can replace the integral
over K in Harish-Chandra’s integration formula with an integral over K, by the
following standard argument. First, since KC,, C K and dc(K,;) = 1, we have

/ / O5(9%8) dk dg = / / / 05 (9%¢8) dk de dg.
G/Za JK G/Za JK, JK

By applying Fubini’s theorem to the inner double integral (note that both of K,
and K are compact), we get

/ / /@ (9k<5) dkdcdg—/ // 05 (9%¢8) de dk dg.
G/ZG G/ZG

Then, since the inner integral over K, is compactly supported as a function on
g € G/Zg (Lemma BTI), we can apply Fubini’s theorem to the outer double
integral:

/ / / 05 (9%¢5) de dk dg = / / / O5(95¢8) de dg dk.
G/Zg JK K, KJG/Za JK,
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Finally, by using that dg is right G-invariant and that dk(K) = 1, we get

// / O5(9%5) dcdgdk—/ / 05 (9¢6) dedy.
G/Za GlZg

Now we consider the following partition of G/Zg into double cosets:
/ / O5(9°0) dedg = Y / / ©5(9°0) dedg.
G/Za K:TI geK, \G/G o‘an/ZG Kn

Note that, by Proposition B and Lemma BT, if the contribution of the summand
with respect to g € K,\G/G, is nonzero, then there exists an element ¢’ in the
double coset satisfying g,n € Gx0+S. By Lemma BT3, which will be proved later,
the natural surjective map

S\{geG|meS}/G, - K,\{g€G|me+S5}/G,
is in fact bijective. Hence we see that the above sum of double integrals equals

(7) > /K e /}C n ©5(9°8) dedg.

geS\G /Gy

Ines
Let us compute each summand by fixing g € S\G/G), satisfying 91 € S. We put
y:=gg " and ¢ :=9%=gcg

Then, letting dy and dc’ be the Haar measures on K,9G,/Zg and 9K, naturally
induced from dg and dc, respectively, we get

/ / O5(9¢8) dedg = / / O5(¥<'98) dc’ dy.
Ko9Gyn/Za Ky K,9G,/Za JIK,

By putting ¢ := 94, ' := 97, and 0%, := 95>, we get

/ / (;)5(“/95) dc’ dy = / (;)5(3’6/6’) dc dy.
Kaan/ZG QIC,] KaGn//ZG ’Cn/

We let dh be the Haar measure on G,/ /(G N Zg) = G, Zg/Zg normalized
so that dh((Gyy N K,)/(Gy N Zg)) = 1. Let dy be the quotient measure on
K,G, /Gy Zg of dy by dh. Then we have

/ O5 (¥ 8" dc dy
K"Gn’ /ZG IC”/

= / / / O5 (< 6" de dh dy).
KUGT]//G”'ZG Gn//Gn/ﬁZG n'

Since Oy is left- K, -invariant, this triple integral equals

-1

(8) dj( Ko Gy |Gy Z3) / O5("'8") dc’ dh.
Gn//Gn/ﬁZG K:T,/
Let us compute the volume dy(K, G, /Gy Zc). Since KoGy /Gy Zg = Ko /(G0
K,)Zg is equal to the quotient of K, /Zg by (G,yNKy)Zc/Zc = (GyNKy) /(G0
Za), the volume dy(K,G,y /Gy Za) is given by

dy(K,/Zg) - dh((Gy N K,) /(G N Za)) ™
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By our choice of dh, we have dh((G,y N K,)/(G,y N Zg)) = 1. On the other hand,
we have
dimo

Ay(Ks/Za) = di(Kog/Za) = di(Kos/Za) = G~

(The final equality is a well-known formula for the formal degree of a compactly
induced supercuspidal representation; see, for example, [LHT7, Partie I, Théoréme
6.2.1 (1)]. Recall that 7 is the compact induction of o from K, to G.) Hence we
obtain dy(K,G,y /G,y Zg) = dimo/ deg.

Let us next compute the double integral in (B). Recall that in the proof of
Lemma BT we showed that

@5(h5/5/) _ @&(n/)]lGn,Yxm (hc’ /Zr)ﬁ(ha IZT)

Note that ¢’ is regular semisimple in Gs; by Lemma BTH. As ¢} = (5’2}5’? is
a normal r-approximation in Gy, the regular semisimplicity of o in Gy, implies
that of 65, in (Gﬁé)é’g = G,y (Lemma BT9 and [AS0OR, Corollary 6.14]). Thus
log(0%,) € @y x,r is also regular semisimple. By the orbital integral formula of

/ / lg,, ., ("L, )0(* 6L,) dc' dh = 45 (log(5L,)).
G,/ /GyNZa JK o = = 2

n’

Lemma 5.13. The natural surjective map

S\{geG|meS}/G,— K,\{geG|me+S5}/G,
is bijective.
Proof. Suppose that two double cosets SgG, and S¢’G, map to the same double
coset K,9G,. Then, as K, = SGx04+ and S normalizes Gy 4, we may assume
that ¢’ is given by kg with some k € Gxo0+. We write ' := 9. As we have
S9Gy = SGyg and SkgGy = SkGyy g, it suffices to show that SG, = SkG,, (for
7' € S and k € Gy o4 satisfying ¥’ € ).

Let /' = nyn/, and ¥y’ = *njkn, be the topological Jordan decompositions
induced from 7 = nyn. Let p’ be the order of ny modulo Ag, which is prime-to-p.
By Lemma B8, the conditions n/,*n’ € S implies that n},*n) € S. Thus there
exists an element s, € S such that ¥n) = s 7). By noting that

—1 —1\_
se="ng-nh " =k-(bkng )" € G4,

s+ belongs to SN Gx,04+ = So+. Since the order of 7} and Fn) modulo Ag is given
by p’, we get

’ ’

p—1 p—1
1="n? = H (o) (s4) -mp" = H (o] (s+)
=0 =0

in S/Ag. Thus, by the same argument as in the proof of Lemma 572 (i.e., using
the vanishing of H(Z/p'Z,So+)), we can find an element t; € Sy satisfying
tysimol(ty) ™" € Ag, hence tys i [no](ty) ™" € Ag o, Then we have

Bkl =" (symh) = toese[mh)(t0) " - .
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Hence, by replacing k with ¢, k, we may assume that *n), = an}, for some a € Ag o
In other words, the image k of k in Gx 04 /Ag o, is fixed by [rp]. We note that the
short exact sequence

1= Ag oy = Gxo+ — G,QOJF/AGVOJr -1

induces an exact sequence

1= AL = Glop = (Gxor/Ag o)™ — H' ({[m0]) Ag 04)

and that H'(([n0]), Ag o) vanishes since ([ng]) is of order 2 and Ag ,, is a pro-p
group. Thus we can find an element k' € GZ‘:’M whose image &’ in Gx,0+/AC;,o+
equals k. As we have GZ‘:’M = Gy x,0+ Dy Proposition B8 (2), this implies that &
belongs to Gn(),x70+‘4(“;,0+ = Gy x,0+-
Now we utilize [ASOR, Lemma 9.10], which asserts that if

(G/, G) is a tame reductive F-sequence,
v € G is an element having a normal r-approximation,
x € B(CE'(7), F) N B(G/, F),
k € Gx4, and
Z9 () c @ and *Z5 () c @,
the element k belongs to G;QOJFCg) (7)x,0+- If we take

e (G,G):= (Gn{wsh)v

o (r) _ _

e v :=1/, (then CGn() (7) = (Gyy)y, = Gy by Lemma BT3),

e x to be the point x belonging to A(Sf, F), and

o k S Gn67x10+,

then the assumptions of [ASUR, Lemma 9.10] are satisfied. Indeed, we have Zg) (v) =

2o () = ZG,y- As we have i/ € S, we have G,y D S% hence Zg)(v) C S% Sim-
G n

ilarly, we have ng) (y) € S%. Thus we conclude that k belongs to SSJFGT,/,X,OJF =
Gy x,0+- In particular, we get SG,y = SkG,,. O

Now, by Theorem bT2, our task is to describe each summand of the right-hand
side of (B). We next show the following proposition, which is a twisted version of
[AS0Y, Proposition 5.3.2]:

Proposition 5.14. For any elementn’ € S with a topological Jordan decomposition
n' = nonly, we have

95 (n) = 3 Os(“11),

9ESG, Gy e\ 715,
19
where [1/,;x, r]](GS:G is the subgroup as in [ASOR, Definition 6.6] (taken in G, ).

Proof. Recall that the representation o of SGx o4+ is defined by inducing the rep-
resentation p of SGx,s. Thus, by the Frobenius character formula for induced
representations, we have
Os(n') = > ©s(%n) = > ©5(n").
gESGx,s"\SGx,O{» gESU+G;c~,s\Gx,o+

In'€SGy s In'€SGx,s
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Let us show that the index set on the most-right-hand side can be replaced with
the set {g € 58+G776,x,s\G776,x,0+ | 90 € 58+G776,x,s}~ Suppose that a coset in
So1Gr.s\Gx.01 contains an element g satisfying 97’ € SGy . Then, since 97 =
Ine9n’,. gives a topological Jordan decomposition of 97, Proposition B4 (4) implies
that 97} € SGx. On the other hand, as i belongs to S, we have 7}, € S (this
also follows from Proposition BIa (4)). Thus there exists an element gy € SGx s
satisfying 90} = g4+n}. As we have

g+ ="y =g-mg g " € Gxo+,s

g+ belongs to SGx s N Gx,0+ = S0+Gx,s- Then, by the same argument as in the
proofs of Lemma 57 or Lemma 53 using the vanishing of H(Z/p'Z, So+Gx.s),
we can find an element k € Sy, Gy s such that 95! = nj. Therefore, by replacing
g with kg, we may assume that g belongs to Gx o4+ N G = Gy x,0+ (Proposition
6@ (2)). In other words, we may assume that our coset in SpyGx s\Gx,0+ comes
from a coset in SS_FG%’X)S\G%’X)H (note that SoiGx,s NGy x04 = S(h)+Gn6,x,s by
Proposition 68 (3)). Furthermore, as 97/, belongs to So; G, s and commutes with
Ing = np, we get In’. € So1Gx s N G"o = SB+GT,6,X7S.

Now the same argument as in the proof of [ASOY, Proposition 5.3.2] can be
applied to the descended group G, . (One of the most important inputs in the
proof of [AS0Y, Proposition 5.3.2] is the ﬁ—isotypicity of the representation. In the
current situation, p is @—isotypic on Gx ,, hence also on Gn(',,x,r-) Then we get

() = (91 — (9
Os(n') = > 0,(%n') = > ©5('1').
gesgg;,,,(/),x,ﬁ\G,,,(,),x,0+ gengané,x,s\ﬂn;;x,r]](g:’/

Iy, €83, G 0

nG1%:8

(We caution that our notation are different from those of Adler-Spice. Especially,
the representation p in [DSIR, Proposition 5.3.2] is nothing but our p(s gy. In our
notation, the symbol ~ basically denotes the twist of a representation.) ]

Corollary 5.15. Letn € S be an element with a topological Jordan decomposition
n' = non'.. Then we have

O5(1') = ©5(11) - &, (9,7})] - a,, (V,1),
where QNSGH, (0, n}) and &g, (J, 7)) are the quantities defined in [AS0Y, Definition
0 0
5.2.4] (in the group G,y ).

Proof. By Proposition b4, ©5(n') is given by the sum of ©;(9n') over the set

g€ SLGng,x,s\[[n;;x r}]g), . For any element g € [, ; x, T]](Cfi, , we have

0 0
W =gn'gt=n'-0"" gn'g™ =0 gl = I ).
As g belongs to [ny;x, r]](Gsio, we know that [n7', g] belongs to J;. (Note that this

is fact is necessary also in [AS0Y, Definition 5.2.4] and essentially proved in [ASDY,
Section 5]; one can verify this property by using [ASO8, Lemmas 5.30 and 5.32]).
By ¥-isotypicity of p on J, we have

> 0;(%n') = ©;(1) > ([, 9))-
9EST; G\ 1S, 9EST, G\ r15),

39



The sum on the right-hand side is nothing but &¢ , (9, 7'y ) by definition. Since we
have &g , (0,7)) = [6a , (V,7)]| - Ba, , (¥,7/), we get the assertion. O
b - b

In summary, by combining Theorem BT with Corollary BT3, we obtain the
following:

Theorem 5.16. We have

o AG‘gn
9) ()= Y O5("n) - 18ay,, (@, 7n)] - Ba,,, (9,704 - iy (log(621)).
geS\G/Gy,
Ines

6. TWISTED ADLER—DEBACKER-SPICE FORMULA

Let us keep the notation as in the previous section. Our aim in this section is to
compute ©;(97) in each summand of (d). Recall that the representation p = p(s )
is defined by descending ws ) ® (¥ x 1) from Sx .J to K = S.J. Hence, noting that
9y € S, the computation of ©;(9n) is reduced to the computation of the twisted
character of the Weil representation ws gy. For this, we repeat the computations
in the proofs of [AS0Y, Proposition 3.8] and [DSIR, Proposition 4.21] by taking the
effect of the “twist” into consideration.

In the following (the rest of this paper), we assume that

no restricted root of type 2 or 3 appears in ®,.(G,T).

Remark 6.1. We believe that this assumption is harmless for our purpose, namely,
study of the #-stable toral supercuspidal representations. As explained in Remark
B4, restricted roots of type 2 or 3 appear only when G contains a factor of type
Ay, on which 6 acts nontrivially. However, it is known that GLg,11 does not
have #-stable irreducible supercuspidal representation for such a # whenever p # 2
(see, e.g., [Pra94, Proposition 4]). Hence, since we are assuming that p # 2, this
assumption does not cause any additional constraint.

6.1. Structure of the Heisenberg quotient. We first recall the description of
the group J/J; according to Adler—Spice ([AS0Y, Proof of Proposition 3.8]). By
fixing a finite tamely ramified extension E of F' splitting S, we put

V= Lie(sv G)(E)x,(r,s):(r,s—i-) and V=V
Recall that we have
J/JJF % (S7 G)x,(r,s):(r,s+) = (S7 G)(E))F(,(T,S)Z(T,S+)‘

Thus the exponential map Lie(S, G)(E)x,(r,s):(r,s+) = (S, G)(E)x,(r,s):(r,s+) in-
duces an identification
V= J/Jy.

Let us investigate the space V by using the root space decomposition of g with
respect to the maximal torus S in G. For a € ®(G,S), we put V, to be the
image of g, (E) N Lie(S, G)(E)x,(rs) in Lie(S, G)(E)x,(r,s):(r,s+)- Then the root
space decomposition g = s @ P, ca(G,S) Ba naturally induces a decomposition

V= @ V...
acd(G,8)
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For each o € ®(G, S), we put V,, := VL« (recall that I',, is the stabilizer of v in T').
Here, note that V,, and V, might be zero depending on o € ®(G,S). We define a
subset Z(G, S) of (G, S) by

E(G,S) ={a e ®(G,S) |V, #0}.

Note that, for any o € Z(G,S), the space V,, is (noncanonically) isomorphic to
the residue field k, of F,. Also note that =(G,S) is preserved by the action of
Y =T x {£1} on (G, S). In the following, we simply write = for Z(G, S).

For Ta € (G, S), we put

Vi = P Vs and Via = Vi,
BeTa

Then, for any I'a € fb(G, S), we have

Vo =5 Vig = (EB Vﬁ)F:XaH 3 o(Xa).

pBeTa o€l /Ty

Therefore we get

(10) = @ Vra = @ Vsa,
FacE Sac=

where we put Vs, = Vro @ V_rq for a € Eagym and Vs = Vp, for a € Egpp,.
Recall that V' = J/Jy has a structure of a symplectic Fp-vector space given by

(J/J1) x (J]J3) = pp = Fy: (9.9') = 0([g,9))
(see Section B2). In fact, the above decomposition () gives a orthogonal decom-
position of V' into symplectic subspaces. Each symplectic subspace Vg, is described
as follows.
Asymmetric case: Suppose that o € Eagym. We put Vig = Vo @ V_,.
Under the identification V' = J/J, the symplectic form on J/J4 is trans-
formed into the symplectic form on V' given by

VxV— IFPZ (Xl,XQ) = C- Trk/Fp(<X*> [Xl,XQD),

where ¢ € F)¢ is a constant determined by the fixed identification p, = F).
Here, (X*,[X1,X2]) € k denotes the pairing of X* € s}, with the s-
part of [X1, Xs] € gx,rirt (€., the trivial isotypic component with respect
to the S-action). Recall that the identification V,, = Vg, C V is given
by X, — Zoer/ra 0(X4). By noting that, for any o,y € E, we have
(X*, [ Xy, Xas]) # 0 only if ag = —aq, the resulting symplectic form Vi, x
Via = Fp maps (Xo + X0, Yo +Y_,) to

C- Z Z Trk/IF,,(<X*7[U(Xa+X—a)ao'/(Ya+Y—a)]>)
oc€l'/Ty o’€T /T

—c- Z Trym, ((X*, 0([Xa, Yool + [X—a, Ya]))).
o€l /Ty
Since X * is F-rational, this equals c-eq - Try, /r, ((X™, [Xa, Yool +H[X a0, Ya]))-
We recall that V,, = k,. Hence, by fixing nonzero elements X, € V,, and
X_o €V_gsothat X, € V, and X_, € V_, are identified with 1 € k., we
41



may think of the above symplectic form as the symplectic form on k, & k.
which maps (z4 + z_,y4+ +y—) to
Try, /p, (C - (T4y- —2-y4)),

where we put C :=c- e, - (X*, [Xo, X_0]) € EX.
Symmetric case: Suppose that o € Egy. Let 7, € I'/T, be the unique ele-

ment satisfying 7,(a) = —a. By the same discussion as in the asymmetric
case, we see that the symplectic form on V,, induced from that on J/J; is
given by

(Xa,Y,) = c- Z Z Trim, (X, [0(Xa), 0’ (Ya)]))

6€T/To o/€T /T,
=c- Z Tri e, (X*, 0([Xa» Ta(Ya)])))
oc€l'/Tq
=cC-eqy- Trka/Fp«X*, [Xa, Ta(Y)]))-
By recalling that V,, = k, and fixing a nonzero element X, € V,, we may
think of the above symplectic form as the symplectic form on k, which
maps (z,y) to
Try, r, (C - 270(y)),
where we put C :=c- e, - [Xo, Ta(Xa)] € kY. Note that 7,(C) = —C.
Let us introduce one particular property of the set = deduced from the above
description of the symplectic form:

Lemma 6.2. The set = does not contain any symmetric ramified root.

Proof. This fact is explained in the proof of [[DSI8, Proposition 4.21]. For the sake
of completeness, we explain it here. Let o € Zgyry. Then, as explained above, we
have V, = k, and the symplectic form on V, x V, is given by

ko X ko = Fp: (z,y) = Try e, (C - 270(y))

with an element C € kX satisfying 7,(C) = —C. If « is ramified, then 7, acts
trivially on k,, hence there cannot exist such an element C'. Thus « must be
unramified. [

6.2. Intertwiner of Heisenberg—Weil representations. Recall that we fixed a
topologically semisimple element 7 € S (Section B2). Hence any element 1’ € S is
written as i/ = s - 77 with a unique element s € S. Note that the action of [5] on
g induces an action on the set ®(G, S) of order 2, which does not depend on the
choice of n € S. By abuse of notation, let us write g for this action and ©g for
the groupiws) generated by fs. To be more precise, for any a € ®(G,S), fs(a)
is the root given by fs(a) = a o [n]~!. Whenever there is no risk of confusion,
we abbreviate fg(a) even as 6(a). We note that, for X, € ga, [7](Xa) belongs to
09(a)- We also note that, as n is F-rational, the actions of ©g and ¥ =T x {£1}
on ®(G, S) commute. Especially, the symmetry of ®(G, S) is preserved by Osg.
Let us investigate the action [n] on J/J through the isomorphism V & J/J;

and the above decomposition () of V. Note that [n] preserves the symplectic

structure of V. Indeed, for any g,¢’ € J/J, we have

9([[n)(9), [)(g"))) = D(lngn~".ng'n™"]) = I([n)(lg. ¢])) = (g, 4]
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Moreover, each Vs, is mapped onto Vsg(q), respectively. In particular, the action
of ©g on (G, S) preserves =.

As in Section B3, for any a € ®(G,S), we let [, be the cardinality of the
Og-orbit of . We furthermore introduce a number denoted by m, as follows:

Definition 6.3. For a € ®(@G,S), let m, be the order of ¥\ (X x Og)a. In other
words, m,, is the smallest positive integer such that X0« («) = X (hence my, | la).

For Ya € é, let us write (wsa, Wsao) for a Heisenberg—Weil representation
of Sp(Vsa) x H(Vs,) with central character given by ¢, which is unique up to
isomorphism (see Section B). Since the action [p] on V induces an symplec-
tic isomorphism from Vs, to Vsg(a), an isomorphism from Sp(Vsa) x H(Vsa) to
Sp(Vxo(a)) X H(Vsg(a)) is induced (for which we write [n].). Then the pull back
(W%G(Q)vWZG(a)) of the Heisenberg-Weil representation Wyg(q) of Sp(Vsg(a)) X
H(Vsg(a)) to Sp(Vea) X H(Vsa) via [5]. is isomorphic to (wsa, Wsa). For each

Ya € E, we fix an intertwiner
N, ~,, 0
I5,: wsq — Wrp(a):

Recall that the representation w = w(g y) is a Heisenberg—Weil representation
of Sp(V') x H(V') with central character . Since we have the decomposition (I0),
w can be realized by tensoring Heisenberg—Weil representations wy, for Sa € =
(see Section B). Furthermore, by tensoring the fixed intertwiners I%a, we get an
intertwiner between w and its [n].-twist wZ. Let us write Ig for the intertwiner
obtained in this way: B

Ig = 177 : W(S.ﬂ) :—> wﬁ .
: (S,9)

w(s,o) *

Then we have the following;:

Proposition 6.4. For each Ya € =, we put

It 2

A n
I Soma—1(a) o---olg,.

S0(a)

Then, for any ' = sn € 5’, we have

tr(w([s]) o Ig) = H tr(wga([n']'”“ o ™™)o I%@(a))'
aG@s\é

Proof. Let us fix a set {aq, ..., a,} of representatives of Og\=. Then we can utilize
the results of Section B, by taking ¢ := [n], l; := mq, — 1 for each 0 <4 < r and
putting Vji := V59i(a;)- Since the symplectic automorphism [s] preserves each Vji,

Proposition B2 implies that the trace of w([s]) o IZ is given by
[T tr(wsalislolml(lsh oo () o Fo) )-
a€Bs\E

By noting that [5]%([s]) = [n]* o [s] o [5] 7%, we have

[s] o [} ([s]) o+ o [l ([s]) = ([s] o [m])™= o [n] ™ = [sn)™= o ] ™.

Thus we get the desired result. [
43



We still have not specified the choice of each I%a so far. This means that also
IZ still has an ambiguity of a scalar multiple. Now we explain our choice of I%a.
For any Yo € Z, note that I%@(a) is an automorphism of Wy, such that

n
IE(—J(a)

Weso ————— Wsa

wm(g,h)l sza([n]l"“ (9,h))

Wya ————— Wy,

26(a)

is commutative for any (g, h) € Sp(Vxa) X H(Vsa). Note that [n]™« is a symplectic

automorphism of V' preserving Vs,. Hence I%@(a) must be a scalar multiple of the

Heisenberg-Weil action wsq ([7]™). We choose I %a for Yo € Esym so that we have
n
o) = wsa([n]™).

Corollary 6.5. With the above choice of an intertwiner Ig, Jor any n' = sn € S
with topological Jordan decomposition nyn!,,

tr(w(ls) o f2) = ] Ouwsa(lmol™):

aE@s\é

Proof. With the choice of an intertwiner Iz explained as above, we get

rw(ls)elz) = [ Ouwsa(n™)

a€BOs\E

by Proposition E4. Noting that the topologically unipotent part 7/, acts on Vpq
and Vy,, trivially via conjugation, we get the assertion. O

6.3. Descent of the Heisenberg quotient. Recall that we have fixed an elliptic
regular semisimple element § € S and written 7 for ., so far. However, to make
the notation lighter, we temporarily (until the end of Section EB) let n € S denote
any topologically semisimple element.

Recall that, in Section B33, we introduced the notion of a restricted root. Al-
though we discussed it for ®(G, T) in Section B33, the same can be done for ®(G, S),
i.e., we have the set of restricted roots ®,es(G, S) equipped with a natural map

B(G,S) - B(G,S)/Og 5 D,0s(G,S): & > Oes.

Note that, since @..5(G,S) carries a Galois action induced from that of ®(G,S),
we can also discuss the symmetry of a restricted root. For any a € ®(G,S), we
put 'y, to be the stabilizer in I' of the restricted root a,es (or, equivalently, the
Og-orbit Oga of a):

Lo ={0 €T | 0(tres) = pes} = {0 € ' | 0(Ogar) = Oga}.

Qres

Similarly, we put I'x,, . to be the stabilizer in I" of the set {£ayes}:

Pia,. ={0 €l'|oc({Farwes}) = {Farest}t = {0 €' [ c({£Osa}) = {+Osat}}.
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Let F,, . and Fy,, . denote the subfields of F fixed by I',,.. and I'y,,__, respectively.
Fares - Fa Fares ) Fa
U U N N
Fj:oc,-es C Fj:a Fiares D Fia

As reviewed in Section B33, the group G, is a connected reductive group with
a maximal torus S%. Furthermore, ®(G,,S?) is regarded as a subset of the set
®,0s(G,S). By Proposition B3, the point x can be regarded as a point of A(S%, F) C
B(G,,, F'). We introduce the subgroups J,, (resp. J; ;) in the same way as J (resp.
J4) by using (G, S% x,7,5(4)) instead of (G, S, x,r,s(+)), i.e.,

Iy = (Sh,Gn)x(m) and J, 4 = (Sh,Gn)x7(r,5+).
By the same discussion as in Section B, if we put
V,, = Lie(Sy, Gy) (E)x (r,s):(rs+) and  Vy:=V]
then we have J,/J, + =V, and a root space decomposition similar to (I):
V’Z = @ %720‘1'95’
Sores €5y
where we use the notation defined in the same way as in Section B, e.g.,
Ep = E(Gy, S%) == {ues € (Gy, s) | Visawes 7 0}

By Proposition B0 (4), we have a natural identification

Vi = (Sh’ Gn)x7(r,s):(7ns+) = (S, G)Z,(r,s):(r,er) =V,
where (S, G)! (r8):(rs+) and V' denote the set of [1]-fixed points in (S, G)x,(r,s):(r,s+)

and V', respectively. Let us investigate this identification more precisely. The Lie
algebra g, of Gy, is naturally identified with the [n]-fixed points g” of the Lie al-
gebra g of G. If ayes € ®(G,),S?) is a restricted root obtained from a € ®(G,S),
then the root subspace g, . of g, is identified with the [n]-fixed points in the sum
D coa ar of Toot subspaces of g:

8o = (B ga)n-

a’€0a

This induces an identification

n
VTI,Earcs = ( @ VZO/)
Sa’eX\(Ex0)a

for any ayes € Z,. Let us put Veg(a) = @2a/ez\(2x(—))a Vs In particular, by
letting =5 be the set of restricted roots associated to =, the set =, can be thought
of as the set of restricted roots ayes € Zres such that the [n]-action has a nonzero
fixed point in Vyg(a)-

®(G,8) —» B(G,S)/Os —15 B(G,S)res O B(G,,SY)
U u u
=/0s

[ C

Zres D) =n
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6.4. Twisted characters of Weil representations: asymmetric roots. Let
a € Eaqym. We compute O, ([n]™), which constitutes the right-hand side of
Corollary B8. Recall that Vso = Vra @ Vire & Vo, ® V_,, where V, and V_,
are 1-dimensional k,-vector spaces, which are identified with k, by fixing nonzero
elements X, € V, and X_, € V_, (see Section E). As the order of € is 2, there
are exactly 4 possibilities:

(1) () = « (thus I, = mg = 1);

(2) O(a) # a and () ¢ Za (thus I, = my = 2);

(3) 6(a) # @ and 0(«) € T« (thus I, = 2 and my = 1);
(4) 0(a) # a and §(a) € —T'« (thus I, = 2 and m, = 1).

Note that the cases (3) and (4) are exclusive to each other since —a ¢ Ta.

6.4.1. The case where () = . In this case, we have F,, = Fy, = F,... = Fia,...

7Fa

Qres

Fia,,, == Fia

The action of [n] on Vs, preserves Vi, and V_r,. Moreover, it is k,-linear. We
let 7o, (resp. 71—, ) be the element of kX such that [1](Xs) = naXa (vesp. N)(X_o) =
NaX o). By noting that [n] preserves the symplectic form described as in Section
E1, we necessarily have n_, = 1, 1. Then, as an element of Sp(Vsa) = Sp(ka ®ka),
[n] is given by

Tp +To = NaZy +N—al—.

Hence, by Corollary B8, we get

O, ([1]) = sgiigs (det(a | o)) - [Vil, |2 = sgnyx (na) - [VAL, |2

6.4.2. The case where 8(a) # a and 0(a) ¢ Xa. In this case, we have F,, = Fy, =
F,

Qres

= Fiares .
F,

Qres

7FCM

Fia,.. == Fia

Since n? € S, the action of []? = [n?] preserves Vi, and V_t,, and is k,-linear.
Hence the same argument as in the previous case works. If we let 52 be the element
of kX such that [n?](X4) = n2X,, then we get

201 1
Ous. ([n]*) = SgIy, x (n2) - Va2 = SgTy, (n2) - ‘V£®(a)|2'

6.4.3. The case where 0(a) # « and 6(a) € Tr. In this case, we have F,, = Fy, and
[Fo : Fa,..] = 2. Let 0, be the unique nontrivial element of Gal(F,/F,,..), hence
we have o, (o) = 0(«). By noting that [Fy,.. : Fia,..] <2 and [Fig : Fi,..] <2,
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we see that Fi,. = Fiq,. and [Fiq : Fia,..] =2.

quad
F
Qres (o) o
quad
F‘:i:ozmS +a

<°'a>

The action of [n] on Vs, preserves Vp, and V_r,. Since [n](X,) belongs to
Voa) = Vou(a), the induced action of [n] on V,, is o4-linear (note that [n] is ko-
linear on Vg ):

Vi —— Vi Xo ——— Y perr, 0(Xa)
l[n] Jv/
Va = Vra ] 0 0a(Xa) der/ra [n] o o(Xa)

More explicitly, if we let 1, (resp. 7_) be the element of kX such that [n]oo,(Xs) =
NaXa (resp. [77] © O'a(Xfa) = nfaXfa)v then [77] is given by

T+ T2 0006 (T4) +N-a0a(r-)
as an element of Sp(Vs,) = Sp(ka @ ko). Hence, by Corollary B8, we get
Oussa ([1)) = 50z (det (70 © 70 | ko)) - [V3L, |2
= sgng (det(on | ka)) - sgny (na) - [V3l, |2
(1) If F,/F,,.. is unramified, we have det(o, | ko) = (—1)Feres 2l By noting

that sgngx (det(oq | ko)) = Sl (—1)Feres Tl = sgn x (—1), we get

Ous.. ([n]) = sgnyx (—1) - sgnyx (na) - Vol |2

Qres

(2) If F,,/F,,., is ramified, it acts on k, via the identity. Thus we get
1
Ous., ([1]) = sg0;x (11a) - [Viig |2

6.4.4. The case where 6(a) # a and () € —T'«. In this case, we have F,, = Fi,
and F, = F,,__. However, we have [Fy, . : Fiq,..] = 2 (thus [Fiq : Fia,..] =

Qres

2). Let o, be the unique nontrivial element of Gal(F,, ./Fi,,..), hence we have

oa(a) = —0(a).

Fares Fa
quad | {oa)
quad
F:tams - 1T+a

<‘7a>

The action of [] on Vg, swaps Vro and V_r,. Since [n](X4) belongs to Vi) =
V_s.(a), the isomorphism from V;, to V_, induced by [n] is o-linear (note that [r]
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is kq-linear on Vi, ):

Vo —— Via Xo———— Y perr, 0(Xa)
l[n] Jt
V_a ? V_ra [77] o Ua(Xa) < ZJGF/FQ [77] © U<Xa)

More explicitly, if we let _,, (resp. 1,) be the element of kX such that [n]oc,(Xs) =
N-aX—a (resp. [n] 0 0a(X_a) = naXa), then [n] is given by
Ty + T Na0a(T-) +1-a0a(T4)
as an element of Sp(Vsa) = Sp(ko @ ko). Since this automorphism preserves the
symplectic form (v +2_,y4 +y-) + Ty sk, (C - (x4y- — x_yy)) (see Section
B0), we must have
Tfkﬂ/JFp(C' (T1y- —z-y4)) = Trka/IFp(C “NaN-a Oa(T_Yp —T1Y-))

for any x4, x_,y+,y_ € ko. In other words, we have 7,n_o = —04(C) - C~ L.
Here we note the following lemma, which can be proved by a straightforward
computation:

Lemma 6.6. Let V =V, ® Vs be a finite dimensional vector space equipped with
isomorphisms A1: Vi — Vy and Ay: Vo — Vi If we put A := A1 & As, then we
have
det(T -idy —A; @ Ay | V) = det(T? - idy —Az 0 Ay | V7).
By this lemma, we see that the eigenvalues of [n] € Sp(k, & k) are given by the
square roots of the eigenvalues of the action of (1, 0 04) © (_n 0 04) 0N k4. As
(na © Uoz) © (n—a © Ua) = Na - Ua(n—a) = _Ua(n—ac)/<n—ac)a

the multi-set of eigenvalues of (7, 0 04) 0 (- © 04) On k, is given by

{=7(va) € ko | 7 € Gal(ko/Fp)},
where we put v, 1= 04 (1-aC)/(n-aC) € k. Hence that of [n] is given by
(1) {£(=7())* €Fy | 7 € Gal(ha/Fy)}.
Unramified case: We first consider the case where ayes is unramified.

(1) If [9] has a fixed point in Vx,, (note that this is equivalent to that v, = —1),
the multi-set (IT) is given by {£1,...,£1}, where £1 is contained [kq : Fp]-

times. We take an F)-rational maximal torus 1" of Sp(k®kq) to be Gl ol
Then [n] is Sp(kq @ kq)-conjugate to the element
ti=(1,...,1,-1,...,-1) € (F) k=] = (F,)

—_—— —— ——

Fores Fol  [Fores Fpl
by Lemma B. We utilize Proposition B33 (and Lemma B=H). We have
(ko ® ko, T;t) = 2[kq,,, : Fp]. Since any € is asymmetric and go = p, we
have x7'(t) = (—1)1%"[’“%%:&]. By letting ¢q,.. be the order of k
have

we

Qres ?

1-p. . 1-dayes 1tdayes
(—1) 77" Trerea ™ol — (—1) 73" = —(—1) 72 = —sgnys (7a)-
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Recalling that v, 1= 04 (1—aC)/(n-aC), we get

Ousa ([1]) = =[Vela|? - sgnyx (1-a ).

(2) If v, =1 (hence [n] does not have a fixed point in V), the multi-set ()
is given by {£v/—1,...,+v/—1}, where ++/—1 is contained [k, : Fp]-times.
(a) When v/—1 € F,, or equivalently, p — 1 = 0 (mod 4), we take an F,-

rational maximal torus T of Sp(ka @ ka) to be Gl Then [y] is
Sp(ka @ kq)-conjugate to the element

t:=(V=1,...,v=1) € (F)lk=F] = T(F,)

by Lemma B=. We utilize Proposition B3 (and Lemma BH). We
have l(kq @ ko, T;t) = 2[kq IF‘p}. Since any  is asymmetric and

qo = p, we have X7 (t) = /— 8 ko F) . By noting that

2 P.[ka :Fp] 1_Tp 2[kapes Fpl
A/ — — (1 /) — ) res ' p 1’
we get

Ous. ([n]) = 1.
(b) When v—1 ¢ [, or equivalently, p — 1 = 2 (mod 4), we take an F,-
rational maximal torus T of Sp(k,®k,) to be Ker(NrIFp2 JF," ResIFp2 JE, Gm —
Gu)Fe: Fel. Then [n)] is Sp(ka @ ko )-conjugate to the element

t:= (\/jl, R \/jl) € (Féz)[ka:FP] = T(IFP)

by Lemma B=. We utilize Proposition B3 (and Lemma B=3). We have
ko ® ko, T;t) = [kq 1 Fp] = 2[kares : Fp]. Since any Q is symmetric
and gq = p, we have T (t) = v/— ERa . By noting that

22 (ko Fp) _ ( ﬁ_l#)Q[karestp] _ 17
we get

Ous, ([n]) = 1.

Note that, in both cases, Oy, ([1]) can be also thought of as sgn, x (n-oC)
since sgny x (n-aC) = sgng (va) = 1.

(3) If o # %1 (hence [n] does not have a fixed point in Vi,), 74 does not
belong to k,,,. since v, € k. (otherwise, v, must be +1). Thus, if we put
ky := Fp[va], then k, is not contained in ko, , or equivalently, [kq : k]
is odd. We put kS := kq,,, Nky. As 74 € k), we also have v, € k}y In

(o)

other words, by putting ¢, := [k, | and ¢ := [k5|, we have WZ”H = 1. This

. . 9y -1 q°+1, 9971 . 2
implies that (—7.) 7 = (72" )72 =1, i.e,, =y, belongs to kX2 If
we let 0, € k be an element satisfying 2 = —v,, then the multi-set (I)
is given by {£7(d,) | 7 € Gal(ko/Fp)}. Note that, since Gal(k,/k,) acts
on 4, trivially, this set is the union of [k, : k,]-copies of {£7(d4) | T €
Gal(ky/F,)}. We take an Fp-rational maximal torus T of Sp(kq & ko) to
be

. 2\ ko i ky)
(Ker(Nrkw/kg : Resy_ /r, G — Reskg/]pp Gm)?) v
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(there exists such a torus by Lemma BH). Then [n] is Sp(kq ®kq )-conjugate
to the element

L= ((6om _504), R (5047 _504)) € (k’ly X k'ly)[ku:kW] = T(FP)
[Faiky]

by Lemma B=. We utilize Proposition B3 (and Lemma BH). We have
l(ka © ko, T;t) = 2[ka,,, : k,]. Since any Q is symmetric and gq = ¢5, we

Qres

have
e o 1445 1tdayes
XT(t) _ (Sa 5L [katky] . (_§a) 5 [kaiky] = 2
1tdayes
(here we used that [k, : k] is odd). By noting that 7o 2 = sgn () =

sgnyx (N-aC), we get
Ous. ([1]) = sgny x (N-aC)

Ramified case: We next consider the case where a,¢s is ramified. In this case, by
noting that o, acts on k,, trivially, the multi-set () is given by {++v/—1,...,+v/~1},
where +1/—1 is contained [k, : F,]-times. Hence a similar computation to the case
(2) (b) works. Consequently, we get

\/jll—TP.[ka:IF,,] if /=1 € F,,
. P [k Fp] .
(—1)lkaFs] .\ /2T 2 ©oifV-1g T,

Let us write O, ([n]) = V1" in short.

Ous. ([1]) =

6.5. Twisted characters of Weil representations: symmetric roots. We
next compute Oy, ([7]™) in the case where o € Egyy. Note that o must be
unramified by Lemma BE3. Recall that Vg, = Vp, = V, and that V, is a 1-
dimensional k.-vector spaces, which is identified with k,, by fixing nonzero elements
Xo € Vi (see Section BEI). As the order of 6 is 2, there are exactly 3 possibilities:

(1) () = « (thus I, = mg = 1);
(2) () # a and §(a) ¢ Ta (= Za) (thus I, = me = 2);
(3) 6(a) # @ and O(a) € Ta (= Xa) (thus I, =2 and m, = 1).

6.5.1. The case where §(a) = «. In this case, we have [F, : Fy,] = 2 and F, =
F, Let 7, be the unique nontrivial element of Gal(F,/Fy,), hence we have

Ta(r;) = —a. By noting that [F,, _ : Fia,..] <2 and [Fiq @ Fiq,..] < 2, we see
: F:tares] =2 and Fia = Fiares'

that [F,

Qres

F

Qres

—F,

quad | (Ta) quad | (Ta)

Fiares e Fia

The action of [n] on Vi, preserves Vi, and is k,-linear. We let 1, be the element
of kX such that n](Xa) = naXa. Then, as an element of Sp(Vr,) = Sp(ka), [1] is
given by x — n,x. Since [n] preserves the symplectic form described as in Section
B0, we necessarily have 1,7, (n.) = 1. We take an F,-rational maximal torus T" of
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Sp(ka) to be Ker(Nry, /r, : Resy, /r, G — Resy, /r, Gm). Then [n] is Sp(ka)-
conjugate to the element ¢ := 7, € k! by Lemma B4. Now we utilize Proposition
B3 (and Lemma B7FH). We have

1 vy, =
ko, Tt) = { 1 VZ:]a 0
0 if Vg, #0.
Since any 2 is symmetric and gq = qq,.. ‘= |ka,..|, we have
T 1+dayes
X () =m0 2 =sgng (na).
Thus we get
O ([1]) = IV ¥ - sy () - { -+ 1 V2 =0
wna W) = IWeal® S8R ypy 2,

6.5.2. The case where 6(a) # o and 0(a) ¢ T'ev. In this case, we have [Fy, : Flyy] =2
and F, = F,,... Let 7, be the unique nontrivial element of Gal(F,/Fy,), hence
we have 7,(o) = —a. By noting that [Fu,., : Fra..] < 2 and [Fiq @ Fia,..] < 2,
we see that [Fy, _ : Fia,..]=2and Fi, = Fy,,__.

Qres

Fares FO’
quad | (Ta) quad | (7o)
Fio,..,—— Fia

Since n? € S, the action of [n]? = [?] preserves Vi, and is k,-linear. Hence the

same argument as in the previous case works. If we let 12 be the element of kX

such that [n?](X,) = n2 X4, then we get
~1 it V7 =0,
1 ifvr £o.

—1 ifvn =0,
1 VT 400

@wza([n]2) = Sgnk}x (ni) ' |V2na|% : {
— sy (72) - Vo | - {

6.5.3. The case where §(a) # o and 0(a) € T In this case, we have [Fy, : Fly,] =
[Fo : Fy,..] = 2. Let 7, be the unique nontrivial element of Gal(Fy, /F4,), hence we
have 74(a) = —a. Let o, be the unique nontrivial element of Gal(F, /F,,..), hence
we have o, (a) = 6(«). Note that, as we have 0(a) # —« (recall that fg preserves
a Borel subgroup containing S), we must have o, # 7.

quad

F

Qres T
«@

[e3

quad | (7o) quad | (Ta)

quad

<Uu>
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The action of [n] on Vr, preserves Vro. Since [1](X,) belongs to Vya) = Vi (a)
the induced action of [n] on V,, is o,-linear (note that [n] is k,-linear on Vr,,):

Va - =, Via Xob—m— ZUGF/FQ 0(Xa)
l[n] Jt
Va ¢ ~ Vra ] 0 0a(Xa) ¢ der/ra [n] o 0(Xa)

More explicitly, if we let 7, be the element of kX such that [n] 0 04(Xs) = N4 Xa,
then [n] is given by = — n,04(x) as an element of Sp(Vry) = Sp(k,). Since [n]
preserves the symplectic form as described in Section B, we must have

(12) Trka/lF,, (CNa0a()Ta(Na0a(y))) = Trka/lb‘p(c 27 (Y))

for any z,y € k.

Unramified case: We first consider the case where a,.s is unramified. In this
case, 0, acts on k, trivially. Hence we must have 7,7,(n.) = 1 by (I2). The
multi-set of eigenvalues of [] on k, is given by {7(n,) | 7 € Gal(ko/F,)}. We take
an Fy-rational maximal torus T of Sp(k,) to be

Ker(Nry, sk, Resg, /p, Gm — Resy, /r, Gum).

Then [] is Sp(ka )-conjugate to the element ¢ := 1, € k! by Lemma BE. We utilize
Proposition B=3 (and Lemma BH). We have

1 if Vgl =0,

ko, T51) = {0 itV 0.

1+dayres

Since any Q is symmetric and go = a,.. = |ka,..|, we have xT(t) = (no) 2 = =

sgny (1a). Hence we get

Qres

-1 ifVg =0
O, = V|2 - sgnp (na) - Ta T
2 (1) = V213 - smy (1) {1 0 2o
Ramified case: We next consider the case where o, is ramified. As o, and 7,
induce the same (nontrivial) action on ko, we must have 1,74 (1.) = C/7.(C) =
—1 by (). Note that 7 and o4 act on ke ®r, Fy = L cqain. r,) Fp via
(T(Na))--multiplication and swapping the Gal(k,,.,/F,)-part and Gal(ks/F,)
Gal(ka,../Fp)-part, respectively. Thus the eigenvalues of [n] on ko is given by
the square roots of the eigenvalues of (74 © 04)% = 7004 (1a) o0 ky,... Hence, by
a similar consideration to the case where o € Zyqym and Fo/F,, . is ramified in
Section B2, we get

152 [kares Fp] :
v—172 if V-1 €T,

Ous. ([n)) = S ES T —
= (_1)[kf¥res:]FP] ) D) [kares~FP] lf —1 ¢ ]Fp-

Let us write O, ([n]) = V=1 in short.
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6.6. Twisted characters of Weil representations: summary. Now let us
summarize the computation presented in Sections B4 and B33.

By recalling that we have fixed a base point 7, we write = sp with s € §. Then
we have 1, = a(s)n and 7o = a(s)"'n__. Similarly, as n* = sfs(s)n?, we also
have 7?2 = a(s)&(a)(s)ﬂi. Noting this, we introduce a sign C, ,, for each a € = as
follows. For « € Zagym, we put

sgn.x (1) if () = «,
sg (1) if 0(a) # a, 0(0) ¢ T,
o sgnyx(n,) -sgux (—1) if 6(a) # o, 6(a) € T, Fo/Fa,,: ur,
e sgnyx (1) if 0(a) # a, 0(a) € Ta, Fy/F,,.: ram,
sgn, x (n__C) if 0(a) # «, 8(a) € —Ta, qpes: ur,
\/lea if O(a) # a, O(a) € —T@, ayes: ram.

—sgng(n,) ifb(a) =
S B O TR NPTRPE
1 —sgng(n,) if 6(a) # o, 9( ) € Ta, ayes: ur,

T

if 0(a) # «, O(a) € T, es: ram.

We also note that, for o € Sagym, its restricted root oy is

asym if 0(a) =

asym if 0(a) # a, 0(a) ¢ Sa,
asym if 0(a) # a, 0(a) € Ta,
ur or ram if 6(«a) # «, 0(a) € —Ta,

and that, for o € Egym, its restricted root e is
ur if f(a) =«
ur if 0(a) # «, () ¢ Ta,
ur or ram if 8(a) # «, 8(a) € Ta.
We introduce characters €,: S — C* for o € (G, S) as follows:
enls) i sgny,x (o a(s) )) if @ € Pueym (G, S),
“ sgny (o a(s)) if a € ®,(G,S).
Then, the computation in Sections 62 and B3 are summarized as follows:

[T €az‘(a)(5)

1 if apes 18 Tam,

if aues is asym or ur,

Ous. ([n]™) = (1) - Ca,g : ‘Vzn@(a)ﬁ : {

where o = 1 if ayes € Zy) v and e = 0 otherwise.
Therefore, by defining a constant Cy, to be the product of Cy , over a € 95\_,
we get the following (recall the description of V;, in Section B3):

Proposition 6.7. We have

II ©us.(l™) =

a€Bs\E

= 1
(—1)1Fnwrl Cy - [Vyl2 - | I
)
Qres: asym/ur

€a(8).
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6.7. Twisted character formula of the final form. Now let us go back to the
twisted character formula for toral supercuspidal representations. From now on, n
again denotes d, for a fixed elliptic regular semisimple element § € S. Recall that
1N = NN+ is the fixed topological Jordan decomposition.

For s € S, we put

e=(s) == H €a($).

ac=E
Qres: asym/ur

Proposition 6.8. If we write n = sn with an element s € S, then we have

() = 9(s) - (~)Frl - Gy - |V |2 - 2(s).
Proof. By the definition of p and its twisted character (see Sections B2 and 62),
05(n) = tr(p(s) o I2) = tr(w([s]) o 12) - 9(s).
By Corollary B3 and Proposition B2, we have
tr(w(s) o 15) = [ Oume(lm]™) = (~)F0el - Gy - |V |2 - 2(s),
a€Os\E

where s’ € S is the element satisfying ny = s'n. Since 7y commutes with 7, we
have that 7, s'n equals sn, hence 1,5’ = s. This implies that eq(s) = eq(s’) for
any a € 2 such that a,e is asymmetric or symmetric unramified. Thus we get the
desired identity. d

Lemma 6.9. We have
Vaol® - 18, (0,101 = lon 00+ 72 - lsboy | DS (X)IF - 1Dy (0],
where D**4 is as in [DSI8, Definition 2.11].
Proof. We utilize [AS0Y, Proposition 5.2.12] with (G, G’,¢,7) = (G, S%, 9, 14).
As we have [n4;x,7(+)] st Sg+, C 0+)( L) = 5% and C’é?:g)(mr) = G,,, We get
(S5, G gty 1B, (9,714
= (1% 7Da, + S5 Goses] *+ [[45% 7+, * S84 Grgoxss]
By [DSTR, Corollary 4.13], the right-hand side equals
@nsco0+ |7 < I8 |2 - IDE(X)IE - 1D (n1)| 7%

Since V,,, = (S", Gl )x,(r,s):(r,s+) (s€ Section B33), we get the assertion. O

W=

Now recall that the Fourier transform of the orbital integral depends on the
choice of Haar measures. We let [A\(,;V;L + denote the Fourier transform of the orbital
integral with respect to X™* normalized via the canonical measure of Waldspurger
(see [DSTR, Definition 4.6]). Then, by (the proof of) [DSIR, Proposition 4.26],

el _1 .G _1 F el
fial, x - = (5%, 80)x,0,0):0.00) |72 - XY = [nx00+] 2 '|5E):o+|2 e
Following [Kall9H, Section 4.2], we put
G, 1 1 .G,
ix?(=) = [DEN(X)|E - IDE()]? - foya - (-)-
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We put @z (0) := Ag',(é) -©7(6), where AIC_‘{',((S) is the fourth absolute transfer for
G in the sense of Kottwitz—Shelstad (see [KS9Y, Section 4.5]; this will be reviewed
in Section [34).

Theorem 6.10. If we write 99 = s4-1 € S for any g € G satisfying In € S, then
we have

7 (0) = Cg' (_1)|E770’ur| ) Z (sg) - €=(sg) - Q5Gg7,0 (0, 9n4) - Zgin(l()g(gézr))'
geS\G/Gy
Ines

Proof. By Theorem b18, we have
- G,
0:(6) = D> 0;('n)-16a,, (9,901)] Ba,,, (9,90) - fx2" (log(96>r)).

9€S\G/Gyy
Ines

Let us compute each summand by fixing g € S\G/G, satisfying 97 € S. By
Proposition B3, we have

05(91) = 0(sy) - (=1)Fomonl . Oy - Vi | - E2(s).

Hence, with the above modification of the Fourier transform of the orbital integral,
we see that the corresponding summand equals

& o g - -Gy
AR (07 I(sg) - (D)ol G &5 (sy) - B, (9,904) - ix 7 (l0g(905,)).

by using Lemmas 69 and I3, which will be proved later. By finally noting that
|20 00,ur| = |Eng,ur| for any g € G satisfying 99 € S, we get the desired formula. O

By using the notion of a-data and x-data, which will be introduced later, we can
rewrite the above formula in the following way.

Proposition 6.11. With the notation as in Theorem BIN, we have
©:(6) = Cy - (~1)IF0l - e(Gy,) - e(Gy) - e(Ta; ) - e(Ta;) !

~ Gy ~Gg
D lsg) - Elsg) - Ay [ahx5)(Ons) 57 (log(“85)),
geS\G/Gy
Ines
where e(—) denotes the Kottwitz sign and afg and ths are the sets of a-data and
x-data associated to the tame elliptic toral pair (S*,9|g:) of Gayy, as in Section [71.

Proof. We investigate the summands of the right-hand side of Theorem EI0. By
the proof of [DST8, Proposition 4.21], &g, (¥,74) is given by

€Gy, (79’77+)_1 ‘5Gnoyram(7fl777+) '582 (', my) - el my)

with the notation as in loc. cit. Since the depth-zero part of ny is trivial, we
have eq, (¥,7+) = 1 (see [AS0Y, Proposition 3.8]) and e (7',ny) = 1 (see
[DSTS, Notation 4.14]). On the other hand, recall that (S 1|g:) is a tame el-
liptic toral pair of G,, by Lemma B5Z. Thus, by [Kall9H, Corollary 4.7.6], the

product eq,, ram (7', 74) - €(7',11) equals

_ G
€5t ram (4 - €(Gyg ) - €(Gy) - E(TG;;O) ) E(TG;) b Ap™ [CLE9»XE9](77+)~
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Note that eg: yam (14 ) is trivial as 74 has no depth zero part. The same discussion
can be applied to any 97. Moreover, since any g € G does not change e(G,,)
e(Gy) - 5(TG%) . 5(TG77) by conjugating 7, we get the desired formula. O

7. KALETHA’S LLC FOR REGULAR SUPERCUSPIDAL REPRESENTATIONS

In this section, we review Kaletha’s construction of the local Langlands corre-
spondence for regular supercuspidal representations, mainly focusing on the case of
toral supercuspidal representations.

Let G be the Langlands dual group of G. More precisely, G is a connected
reductive group over C equipped with

e a ['-action on G,

e a I'-stable splitting splg = (B, T, {X,}Yav) of G, and

e a I'-equivariant isomorphism between the based root data \I/(G) of G and
the dual ¥(G)Y of that of G.

We put LG := G x Wk.
7.1. Kaletha’s a-data and y-data. We first recall the notion of a set of a-data.

Definition 7.1. Let S be an F-rational maximal torus of G. A family {aq }aca(a.s)
of elements a, € F) is called a set of a-data (with respect to S) if the following
conditions are satisfied:

e a_, =a;! for any a € ®(G,S), and

® 4y(o) = 0(ay) for any a € (G, S) and o € T".

Following [Kall9H, Section 4.7], for a tame elliptic toral pair (S,d) of G, we
define a set ay = {ay,a}aca(a,s) of a-data by the following (note that ay is simply
denoted by « in [Kall9h, Section 4.7]):

9,0 = <Ha7X*>7

where

e H,:=da"(1) € s(F,), and
e X* €s*  isan element associated to ¢ (see Section B72).

We next recall the notion of a set of (minimally) y-data.

Definition 7.2. Let S be an F-rational maximal torus of G. A family {xa}aca(a,s)
of characters y,: FX — C* is called a set of x-data (with respect to S) if the fol-
lowing conditions are satisfied:

® X_o=x,! for any a € ®(G,S),

® Xo(a) = Xa © o~! for any a € ®(G,S) and o € T, and

® Xal F equals the quadratic character k. corresponding to the quadratic

extension F,,/Fy, for any a € ®(G,S)sym.

Definition 7.3 ([KallUh, Definition 4.6.1]). Let S be an F-rational maximal torus
of G. A set {Xa}taca(a,s) of x-data with respect to S is said to be minimally
ramified if the following conditions are satisfied:
e Xo = 1 for any o € ®(G, S)asym,
® X, is unramified for any o € (G, S),;, and
® X, is tamely ramified for any o € ®(G, S);am-
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Following [KalTdB, Section 4.7], for a tame elliptic toral pair (S,d) of G, we
define a set x9 = {X9,a}aco(a,s) of minimally ramified x-data as follows (note
that xy is denoted by x’ in [KalT9h, Section 4.7]):

e For o € (G, S)asym, let xv,o be the trivial character of FZ.

e For a € ®(G, S)yy, let xy,o be the unique unramified nontrivial quadratic
character of FJ.

e For a € ®(G, S),am, let x9.o be the unique tamely ramified character of
F characterized by the following properties:

Xﬁ,alpia = Ra and Xﬁ,a(2a19,a) - )\a

Remark 7.4. For a general tame elliptic regular pair (S, d), Kaletha’s sets of a-data
ay and x-data xy are defined by noting the inductive structure of ®(G,S) given
by the tame twisted Levi subgroups G determined by (S,1). See [KalldH, Section
4.7] (and also [OTZI, Section 6]) for the details.

Definition 7.5. Let S be an F-rational maximal torus of G. Let a = {as}o be a
set of a-data and x = {Xa }a & set of y-data with respect to S. We define a function
Agla, x]: § — C* by

) as) —1
Sanfad)= ] ().
aced(G,S)
a(s)#1
7.2. DeBacker—Spice sign and Kaletha’s toral invariant. In this section, we
recall two invariants which play a key role in Kaletha’s construction of the local
Langlands correspondence. Let (S, ) be a tame elliptic toral pair of G.

The first invariant is DeBacker—Spice’s sign character introduced in [DSIR, Sec-
tion 4.3]. Recall that, in Section BH, we introduced a character €, of S for each
a € (G, S)asym and each a € O(G, S)y,. We define characters eg asym and €y yy of
S by taking their product over =:

€9,asym (8) = H ea(s) and ey y(s) = H €a($).

AE€EEasym Q€=

Here note that, in [DST8, Section 4.3], the products are taken over the roots satis-
fying the condition “§ € ordy(c)”, where r is the depth of ¥ and ordy(«) is the set
defined in [DSIR, Definition 3.6]. This condition is equivalent to that o € E (see
the proof of [OT21, Proposition 5.12]).

The second invariant is the character g am 0of S defined in [KalT9H, Definition
4.7.3]. As explained in [KalT9H, Lemma 4.7.4], this can be expressed as the product
of toral invariants f(g.s)(a) for symmetric ramified roots a, which are introduced
in [KalT5, Section 4.1]. We recall that the toral invariant f(g s)(a) for ®(G,S)sym
(not necessarily ramified) is defined as follows. We fix an element 7, € 'y, N\ Ty
(i.e., To € T'+q is an element satisfying 7, («) = —«). If we take an F,-rational root
vector X, € g, (Fa), then 74(X,) belongs to g_, (Fy,) and the ratio of [ X, 7o (X4 )]
to H, := daV (1) € s(F,) lies in F,. By noting that W is well-defined up
to Nrg_/p,, (£ )-multiplication, we put
[Xa: Ta(Xa)]

H,
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Then we have
6S,ram(s) = H f(G,S) (OZ)
a€®(G,S)ram
a(s)#1
valp (a(s)—1)=0

Remark 7.6. Similarly to the definition of ay and xy, for a general tame elliptic
regular pair (S, 1), the characters €y asym and €y, are defined by noting the induc-
tive structure of ®(G,S) given by the tame twisted Levi subgroups G determined
by (S,9). See [KalTUh, Section 4.3] (and also [OTZI, Section 6]) for the details.
We also note that, in [KalTUH], the product €g asym - €9,ur (r€SP. €8 ram) is denoted
by €*™ (resp. €ram)-

7.3. Review of Kaletha’s construction.

7.3.1. Regular supercuspidal L-packet data. We recall the definition of a regular
supercuspidal L-packet datum. For this, we need to review several basic facts
about embeddings of tori based on [KalT9H, Section 5.1].
Suppose that

e an F-rational tame torus S having the same rank as G and

e an embedding j: S < G whose G—conjugacy class is I'-stable
are given. Here, by noting that j(é) is a maximal torus of G, we assume that j(S)
itself equals T by replacing 7 with its conjugate.

Definition 7.7. Let j: S — G be an embedding of S into G. Since its image
S; :=j(8) is a maximal torus of G by the rank condition, there exists an element
g € G such that [g](S;) = T. We say that j is j-admissible if the inverse of the
dual to the isomorphism [g] 0j: S — T is G-conjugate to 7: S = T.

We write ij for the G-conjugacy class of j-admissible embeddings of S into G.
Then, since the G—conjugacy class of 7 is I'-stable, so is jFG (see [Kall9h, Section
5.1]). Thus, by Kottwitz’s result on the rational conjugacy ([Kof82, Corollary 2.2]),
the quasi-splitness of G implies that jg’ has an F-rational point. In other words,
there exists an F-rational j-admissible embedding of S into G. We let & denotes
the set of F-rational points of ij . For each j € J€, we get

e an F-rational embedding Zg — S;,
e a I'-stable subset ®(G,S;) of X*(S;), and
e a I'-stable subgroup Qg (S;) of Aut(S;).
Since j: S & S; is an F-rational isomorphism, by pulling back these via j, we get
e an F-rational embedding Zg — S,
e a I'-stable subset j*®(G,S;) of X*(S), and
e a I'-stable subgroup j*Qc(S;) of Aut(S).
By noting that all of these are independent of the choice of j € J&, we write
(I)(G,Si) = j*q)(G, S]) and Qg(Sj) = ]*QG(S])
Definition 7.8 ([KalT98, Definition 5.2.4]). A regular supercuspidal L-packet da-
tum of G is a tuple (S, 7, x,¥) consisting of
(1) an F-rational tame torus S having the same rank as G,
(2) an embedding j: S < G whose G-conjugacy class is T-stable,
(3) a set x of minimally ramified x-data for ®(G,S;), and
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(4) a character ¥: S — C*
satisfying the following conditions:
(i) S is elliptic in G (i.e., S/Z¢ is anisotropic),
(ii) x is Qgo(S;)(F)-invariant, and
(iii) (S,¥) is a tame elliptic extra regular pair of G.

We give a few more comments about the precise meanings of the conditions (ii)
and (iii) in Definition 8 (see [Kall9H, Sections 5.1 and 5.2] for the details). Note
that the condition (i) implies that S; is a tame elliptic maximal torus of G for any
j € J€. The condition (iii) means that (S;,9;) is an F-rational tame elliptic extra
regular pair of G for any j € J, where ¥ =190 j~1 (this is equivalent to that
(S;,9;) is a tame elliptic extra regular pair of G for “some” j € JS). We define a
subset ®(G?,S;) of ®(G,S;) by

(G, S;) := {a € ®(G,S;) | Yo Nrp/poa”(E)) =1},

where E is a tame finite extension of F splitting S. Then ®(GP, S;) is a Levi subsys-
tem of (G, S;) and associates a I'-stable subgroup Qgo(S;) of Qg (S;) canonically.

7.3.2. Construction of regular supercuspidal L-parameters. We next recall the con-
struction of regular supercuspidal L-parameters following [KalT98, Proof of Propo-
sition 5.2.7].

We take a regular supercuspidal L-packet datum (S, 7, x, ) of G. By applying
the local Langlands correspondence for S to ¢, we get an L-parameter ¢y of S,
which is a homomorphism from Wi to ©S. On the other hand, by the Langlands—
Shelstad construction ([LSR7, Section 2.6]), we can extend j to an L-embedding
Lj. from £S to LG by using the set x of x-data. Thus, by composing these two
homomorphisms, we get an L-parameter ¢ of G:

L.
b Wp 22 Lg 2, LG,

7.3.3. Construction of regular supercuspidal L-packets. We finally recall the con-
struction of regular supercuspidal L-packets following [KalT9H, Section 5.3].
For this, we need the notion of a regular supercuspidal datum:

Definition 7.9 ([Kall9h, Definition 5.3.2]). Let (S, 7, x,9) be a regular supercus-
pidal L-packet datum of G. Let JS be the G-conjugacy classes of F-rational
j-admissible embeddings of S into G (see Section Z3). Then a regular supercus-
pidal datum (over the regular supercuspidal L-packet datum (S, 7, x,?)) is a tuple
(S,7,x,9,7) where j is an element of J<.

Remark 7.10. In the original definition given in [KalT9h, Definition 5.3.2], a regular
supercuspidal datum is a tuple (S, 7, x, ¢, (G, v, z), ) which furthermore contains a

constructed in [KalT9H] consist not only of representations of G but also those of
all rigid inner forms of G. In this paper, since we focus only on the quasi-split case,
we always take a rigid inner twist (G’, %, ) in a regular supercuspidal datum to be
the trivial twist (G,id, 1), and omit it from the notation.

Definition 7.11 ([KalT9H, Definition 4.6.4]). Let S be an F-rational maximal torus
of G. A family {(a}aca(q,s) of characters (o : F; — C* is called a set of (-data
for ®(G,S) if the following conditions are satisfied:
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o (_,=¢ ! for any a € ®(G,S),
® (o(a) =Caoo ! for any o € (G, S) and o € I, and
. §Q|F§ =1 for any a € ®(G, S)sym.

For a set ¢ = {(,} of ¢-data for ®(G,S), we define a character (g: S — C* by
¢si= I G
Saed(G,S)
where
o we put Cgq i= (y 0 if Sa € (G, S)asym and
o we put Csa to be the composition S % F1 = FX/FX, <% CX if Ya €

é(G, S)ur (here, F! denotes the kernel of the norm map Nrg, /., and the
middle isomorphism is Hilbert 90th theorem)

(see [Kall9H, Definition 4.6.5]).
Remark 7.12. When we have two sets of y-data X = {Xa}aca(a,s) and X' =

{X4}aca(a,s), we can produce a set of (-data by taking the ratio of {X{,}aca(a,s)
to {Xa}taca(a,s)- We let ¢/, denote the (-data defined in this way:

Cx’/x = {Cx’/x,a}ozeb(G,S)) Cx’/x,a = X:x : Xc_yl'

Definition 7.13 ([KalT39H, Definition 5.2.5]). An isomorphism between two regular
supercuspidal L-packet data is a tuple

<L7 g? C) : (S’ j? X7 19) % (S/7j/7 X/’ /19/>
consisting of
(1) an F-rational isomorphism ¢: S — S’ of tori,
(2) an element g of G satisfying joi = [g] o 7, and
(3) aset ¢ = (Coc’)o/efb(G,S},) of ¢-data for CI)(G7 S;‘/) given by xaro = X/o/ *Cov
satisfying the equality
(ot -9 or=1.

Remark 7.14. We give a remark on the condition (3) of Definition ZT3. Thanks to
the condition (2), for any F-rational 7'-admissible embedding j': S’ < G, we can
check that j'or: S < G is an F-rational j-admissible embedding. This implies that
we have an identification ®(G,S}) = (G, S}/) = ©(G,S;.,) = (G, S)) given by
o'+ o ou. If we transport the set of x-data x from ®(G,S;) to ®(G,S/) via this
identification and write ¢, (x) for it, then the set of (-data ¢ in the condition (3) is
nothing but ¢, (y)/,s With the notation as in Remark T2

Definition 7.15 ([KalTdH, Definition 5.3.3]). An isomorphism between two reqular
supercuspidal data is a tuple

([/79’ C? f): (S7j’ X7,l97.]) % (S/7j/7X/719/7j/)
consisting of
(1) an isomorphism of regular supercuspidal L-packet data
(t,9:0): (8,0, x,0) = (8.7, x',¥'), and

(2) an automorphism f of G given by a G-conjugation satisfying j' o1 = foj.
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Remark 7.16. In the original definition of an isomorphism of regular supercuspidal
data given in [KalT98, Definitions 5.3.3], the fourth parameter f of a tuple (¢, g, ¢, f)
is taken to be an isomorphism of rigid inner twists. As explained in Remark 10,
in this paper we always take every rigid inner twist to be trivial. Then, since any
automorphism of a rigid inner twist is given by a rational conjugation ([Kallf, Fact
5.1]), we may suppose that f is as in Definition [T3.

Let us investigate the isomorphism classes of regular supercuspidal data over a
fixed regular supercuspidal L-packet datum. Let (S, 7, x,¥) be a regular supercusp-
idal L-packet datum. If (¢, g,¢, f): (S, 7, %, 9, 4) = (S,3,x,9,4') is an isomorphism
of regular supercuspidal data (j,j’ € J%), then ¢ is necessarily the identity map
by [KalT9H, Lemma 5.2.6]. In particular, the equality j' o ¢ = f o j in Definition
[[13 implies that 7 and j' are G-conjugate. Conversely, whenever j and j’ are
G-conjugate, two regular supercuspidal data (S, 7, x, 9, j) and (S, 7, x, 9, j') are iso-
morphic. Hence, the isomorphism classes of regular supercuspidal data with a fixed
regular supercuspidal L-packet datum (S, 7, x, ) are parametrized by the set

J§ = TG/~ = {j-admissible F-rational embeddings S < G}/~¢,

where ~¢ denotes the equivalence relation given by the G-conjugacy. In the fol-
lowing, we often regard jg as a subset of JC by fixing a set of representatives as
long as there is no risk of confusion.

Now we explain Kaletha’s construction of regular supercuspidal L-packets ([KalT9H,
1153-1154 pages]). Let (S, 3, X, 9, j) be a regular supercuspidal datum with j € J§.
Then (S;,9;) == (j(S),90;7!) is a tame elliptic extra regular pair of G by the
definition of a regular supercuspidal datum. We define a character €y, of S; by

€9; ‘= €9;,asym " €Y;,ur * €S; ram-
As in the manner of Section [, we get a set xy, of x-data for ®(G,S;). Via the
identification ®(G,S;) = ®(G,S;), this induces a set xy, of x-data for ®(G,S;),
which is independent of the choice of j. By comparing xy, with the set of x-data
X contained in (S, ], x,7), we get a set of (-data (,, /, (Remark I2). We define
a tame elliptic regular pair (S;,9’;) of G by putting the character ¥: S; — C* to

be
/. —1 c—1
V=€, - (U Xﬂj/x,S) oj .
Then we get the regular supercuspidal representation T(S;,0%) of G associated
with the tame elliptic regular pair (S;,?’) (see Section E). Note that the G-
conjugacy class of (Sj,ﬁg) is independent of the choice of a representative of 7,

hence so is the isomorphism class of T(S;,9%)" We put
G . . G
g = {W(Sj,ﬂ;) |j€Jdgt

7.4. Regularity and torality on the Galois side. In fact, the L-parameters of
G obtained from regular supercuspidal L-packet data can be characterized in the
purely Galois-theoretic language.

Definition 7.17 ([KalT9h, Definition 5.2.3]). We say that an L-parameter ¢: W x
SLo(C) — LG is regular supercuspidal if it satisfies the following:

(0) @lsLy(cy is trivial and ¢ is discret?, ie., 83 :=Zg(0(Wr))° C Zg,

(1) ¢(Pr) is contained in a torus of G (note that then M :=Zg(¢(Pr))° is a

Levi subgroup of G)
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(2) C:=1Zg(o(IF))° is a torus (note that then 7 := Z(C) is a maximal torus
of M. We put S to be the T-module 7" with the T-action given by [¢(—)]).
(3) If n € No((T) maps to a nontrivial element of Q¢(S)", then n ¢ Ze(o(IF)).

Proposition 7.18 ([Kall9H, Proposition 5.2.7]). Kaletha’s construction gives a
bijective correspondence between the isomorphism classes of reqular supercuspidal L-
packet data of G and the equivalence classes of regular supercuspidal L-parameters

of G.

Moreover, the torality of the regular supercuspidal representations can be also
interpreted on the Galois side.

Definition 7.19 ([KalT98, Definition 6.1.1]). We say that an L-parameter ¢: Wg x
SLy(C) — £ G is toral supercuspidal (of depth v > 0) if it satisfies the following:
(0) @lsL,(cy is trivial and ¢ is discretel Le., 53 :=Zg(o(Wr))° C Zg,
(1) Zg(o(If)) is a maximal torus of G containing ¢(Pr), and
(2) ¢ is trivial on I,.", that is, ¢(0) = 1 x o for any o € I,

Proposition 7.20 ([Kall9H, Proposition 6.1.2]). Kaletha’s construction gives a
bijective correspondence between the isomorphism classes of regular supercuspidal
L-packet data of G giving rise to toral supercuspidal representations and the equiv-
alence classes of toral supercuspidal L-parameters of G.

8. FRAMEWORK OF TWISTED ENDOSCOPY

8.1. Endoscopic data treated in this paper. We introduce a structure of a
twisted space on the L-group “G following [KS99, Section 1.2] and [Wal(R, Section
1.3]. The automorphism ¢ and the fixed splitting splg define an automorphism 6 of
G; namely, 0 is the unique splg-preserving automorphism of G which is compatible
with 6 under the isomorphism ¥(G) = ¥(G)V. Since f commutes with the action of
I on G, we can extend it to an automorphism 26 of LG by L6(z, w) := (6(z), w) for
(r,w) € LG = G xWp. We define a twisted space on the dual side by “G := LG4.

We next review the notion of endoscopic data following [KS9Y, Section 2.1] and
[WalOR, Section 1.3]. We call a quadruple (H, H, s, é) endoscopic data for the triple
(G,0,1) if

e H is a quasi-split connected reductive group over F,

e H is a split extension 1 — H- H— Wr — 1 such that the induced
action of W on H coincides with the action of Wy on H induced from the
F-rational structure of H up to inner automorphisms of I:L

e s € G such that the automorphism [s] 00 is quasi-semisimple, and

° é : H = I'G is an L-homomorphism (i.e., continuous and commuting with
projections to Wr) satisfying the following conditions:

~sJobBod =
- élI:I I:I = GSLQ = ZG(SLQ)O.
When a set of endoscopic data (H,H,s,é) is given, by replacing it with an
equivalent data (see [KS9Y, Section 3.1] for the definition of the equivalence relation
on endoscopic data), we may suppose that

e s belongs to T which is the torus contained in splg, and
e (Bu,Ty) := ¢ 1(B,T) is a I-stable Borel pair of H.
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In this paper, we assume that
‘H in the endoscopic data (H,’H,,s,é) is equal to “H.

Let us fix such an endoscopic data (H,“H, s, é) in the following.

We note that, the absolute Weyl group Qg of H can be identified with a subgroup
of that Qg of G (see Section BZ). In particular, our assumption that p { |Qg|
implies that p 1 |Qul.

8.2. Norm correspondence in twisted endoscopy. Let us briefly review the
notion of a norm in twisted endoscopy. (See [KSY9, Section 3] for details.)

We fix a Borel pair (Bg, Th) of H defined over F' so that the Langlands dual
group H of H is equipped with an 1som0rphlsm \II(H) ~ Y(H)V. In particular,
we have isomorphisms X*(Tg) = X,.(Tw) and X, (Ty) & X*(Tw). Since the
restriction of f to Ty induces

£|THZ TH = Th (Z: TG’O),
by taking the dual of é |TH’ we get an F-rational isomorphism
£: Ty = Tx.

By abuse of notation, we often write £ also for the homomorphism T — Ty AN Ty.

In the following, as long as there is no risk of confusion, we simply write (g and
Qg for the Weyl groups Qg (T) and Qu(Th), respectively. Via the isomorphism
¢, Qp is identified with a subgroup of QY (see [KS3Y, Section 1.1]). Therefore 1
induces a surjective map

(13) Ty /Qu — To/Q%.

Note that Tg/Qm and Tp/Q% parametrize the semisimple conjugacy classes of H
and G, respectively. Moreover, the map (I3) is ['-equivariant.

We let G (resp. Hgs) denote the subset of semisimple elements of G (resp.
semisimple elements of H). For v € Hy and § € Gy, We say that ~ and §
correspond if the conjugacy classes of 7 and § correspond under the map (I3).
We say that v € Hgg is G- strongly regular if it corresponds to a strongly regular
semisimple conjugacy class in G. Note that if v € Hy, is G-strongly regular, then it
is strongly regular. We let Gars (resp. Hg ) denote the subset of strongly regular
semisimple elements of G (resp. G—strongly regular semisimple elements of H).

For two F-rational elements § and 8 of Gy (resp. v and v of Hg ), We say
that they are stably conjugate if they are conjugate by an element of G (resp. H).

When an F-rational element v € Hg . corresponds to an F-rational element
o€ ésrs, we say that v is a norm of 6. We define D to be the subset of Hg % Gars
consisting of pairs (7, d) such that + is a norm of 4.

-STI'S

8.3. Transfer factor. We have a function
AH’GZ Hgogrs X C~:srs - C

called the (geometric) absolute transfer factor of Langlands—Kottwitz—Shelstad (in-

troduced in [CSR7, KSUY, KST7]). When the groups H and G are obvious from

the context, we often omit the subscript from the notation and simply write A

for AH’(}. Instead of reviewing its precise definition, we give several comments on
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the basic properties in the following; we refer the readers to [KS99, Sections 4, 5],

(1)
(2)

3)

For any (v,9), A(v,d) # 0 if and only if (v, ) € D, i.e., «y is a norm of 4.
The transfer factor A(v,d) depends on the choice of a #-stable Whittaker
datum of G. In this paper, we choose a f-stable Whittaker datum to of G
determined by the fixed #-stable splitting splg of G (see [KSYY, Section
5.3] for how to produce w from splg).

The transfer factor A(v,d) is defined to be the product of the ratio of root
numbers &(T9) - e(Tw)~! and four factors Ar(y,6), Au(y,6), Am(v,9),
and Aryv(v,d). Among these factors, Ar(v,d), An(v,9), and Am(y,0)
depend on the choice of a-data and y-data for the restricted root system
of T® := Zg(Zg(0)) (this is an F-rational maximal torus in G) although
the whole product does not. For this reason, we write Aq[a, x](7,0d) when
we want to emphasize the dependence on a and x (e € {I,II, IIT}).
Following [KalT9H], we let A denote the transfer factor A without the fourth
factor Ary.

The ratio of absolute transfer factors

A(y,057,0") = A(v,0) /AR, ")

is called the relative transfer factor. We also define the relative versions of
A, for e € {I,IIIII, IV} in the same way.

The definition of the transfer factor given in [KSYY] must be modified as
announced in [KSTY] (see also [Wal(4, Section 2] or [Kal2TH, Appendix]).
We adopt the modified version “A’” which is compatible with the classical
normalization of the local class field theory (hence consistent with, espe-

to be the product of A"~ AKS AEIS’_l, and AKP (and also the epsilon
factors), where AV is the factor defined in [KST?, Section 3.4] and AKS)
AKS and AKP are the factors defined in [KSY9]. We note that AV equals
the factor AKS defined in [KS99] when there is no restricted roots of type
2 or 3. in this paper, we let Ay, A, App, and Ay denote A?ew’d? AKS,

Aﬁls’fl, and AR, respectively.

9. ANALYSIS OF 6-STABLE REGULAR SUPERCUSPIDAL L-PACKETS

9.1. #-twist of regular supercuspidal L-packets and L-parameters. Let
(S,7,x,9) be a regular supercuspidal L-packet datum of G. Let ¢ be the L-
parameter of G associated to (S, j, x, ), i.e., ¢ :=Lj, o ¢y.

We put 3: T — S to be the dual isomorphism of j. Recall that J& :=
{j-admissible F-rational embeddings S < G}. Let us investigate the j-admissibility
condition. By definition, an embedding j: S < G is j-admissible if and only if there
exists an element g € G such that [g]oj(S) = T and the inverse of the dual of [g]oj
is G—conjugate to j. Since the image of j is assumed to be T, this is equivalent to
that there exists an element W € Qg := QG(T) such that [¢g] o j and [W] o ] are
dual to each other. By letting w € g be the element corresponding to w € Qga,
this condition is equivalent to that [g] o j = [w]™! 0 571. Therefore, we see that the

J-admissibility condition simply says that j and 5~

L are G-conjugate.

The following lemma follows from this observation.
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Lemma 9.1. If we put =1 o JG := {071 oj|j € TG}, then we have
= to TG = {é o j-admissible F-rational embeddings S — G}.
Recall that x = {xa}a is a set of x-data for ®(G,S;) = ®(G,S,) (for any
j € JE). As we have ®(G,S;) = ®(G,Sp-1,;), we can transport x to a set of x-
data for ®(G, Sy-1,;), for which we write #(x). Then we get a regular supercuspidal
L-packet datum (8,60 j,0(x),9).
The following lemma can be also found in [Zha2(, Lemma 4.9].

Lemma 9.2. The L-parameter “6 o ¢ corresponds to the reqular supercuspidal L-
packet datum (S,0 0 7,0(x),9).

Proof. By tracking the Langlands—Shelstad construction ([ILSX7, Section 2.6]) of
the L-embedding %j,: 'S — LG, we can check that ©6 o L, is nothing but the
L-embedding obtained by applying the Langlands—Shelstad construction to the
embedding 6o 7: S — G with the x-data 6(x). In other words, the L-parameter
Lg o LjX o ¢y is associated to the regular supercuspidal L-packet datum (S,é o

3,6(x), 9). 0
Lemma 9.3. The L-packet H?Oo(b consists of reqular supercuspidal representations
whose regular supercuspidal data are given by (S, 6037, 0(x),9,0" Lo j) forje JS.
Proof. This simply follows from that the equality of Lemma &1
010 JC = {9 o j-admissible F-rational embeddings S — G}
induces an identification
0~ 0 J§ = {0 o j-admissible F-rational embeddings S < G}/~¢.

O

Lemma 9.4. Let 7 € Hg be a reqular supercuspidal representation whose reqular

supercuspidal datum is (S,3,x,9,7). Then its O-twist 7% := 7 0 § arises from the
reqular supercuspidal datum (S, 60 j,0(x),9,0~ o j).

Proof. We first note that, for any tame elliptic regular pair (Sg, o) of G, the O-twist
wf)so, 90) of the associated regular supercuspidal representation (g, 4,) is equivalent
t0 T(9-1(8,),0000)- (This can be easily checked in the same way as in Section B2,
where the toral case is treated.) Thus we have

0 0 ~
=00 = T(071(S;),900) -
Here recall that ’; is a character of S; = j(S) given by
/. —1 c—1
ﬁj =€y, e (0 - Cxﬂj/st) °7 -
On the other hand, the regular supercuspidal representation associated to the
datum (S,00j,0(x), 9,0~ 0 j) is given by T(0-1(8,).0'_,_)» where
1o,
/9’10j =€y, (19 ) C;ﬁlg ,A/G(X),S) © (9_1 Oj)_l'

By the definition of the character €, we easily see that €y, 00 = €y,09. Moreover, it
can be also easily checked that ¢, /, s equals (., /g(y) s- Hence we conclude that
J 6o0j )

the characters 9, 08 and ¥,_, . are equal, which implies that 7% = 7 y-1(5.y ¢ .
J 0—1loj ( (85), 9710j)
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Lemmas B3 and B4 imply the following:

Proposition 9.5. We have HG 0f = HLG60¢

9.2. Structure of #-stable L-packets. Let us keep the notation as in Section
B0, Thus ¢ denotes the L-parameter attached to a regular supercuspidal L-packet
datum (S, }, x,9), i.e., ¢ = Lj, o ¢y. In the following, we suppose that ¢ factors
through the L-embedding &: “H < LG. As we have [s]oZfof = ¢, this assumption
implies that we have [s] o “§ 0 ¢ = ¢. In particular, the L-parameters “6 o ¢ and
¢ are G—conjugate and the conjugation is given by s. Thus, by Lemma B33 and
Proposition [T8, there exists an isomorphism between the regular supercuspidal
L-packet data (S,7,x,9) and (S,é 07,0(x),?¥). Let us investigate how such an
isomorphism can be constructed explicitly.

In the following, we put ¢ := Lo ¢, 7 := 6o}, and \’/ =0(x). We may and do
assume that the image of j is given by T We define an automorphlsm SofS by
g = 7lojf =510 6o 7. Let Og be the automorphism of S which is dual to Os.
Note that és and fg are involutive.

Lemma 9.6. The automorphism O ofS 1s I'-equivariant, hence Os is F-rational.

Proof. As the I'-actions on S and T factor through a finite quotient, we may discuss
the equivariance for Wp instead of I'. Recall that we have ¢ = Lj, o ¢py. As
b9 Wp = LS = S x Wr is an L-parameter of S, the Wg-action on S is described
by o(t) = [pg(0)](t) for any o € W and ¢t € S. By noting that %j,: £S < LG is
an L-embedding extending j: § = T, this implies that jo o(t) = [¢(c)] o j(t) for
any 0 € Wp and ¢t € S. Similarly, we also have 7 o o(t) = [¢/(0)] o j/(t) for any
o € Wp and t € S. Hence, by noting that [s] o ¢’ = ¢ and that [8]|4 = id4, we get

bsoo=7"o[s]ofooc=7"o[s]o[d (o) o]
— o lplo)]ols]lof = oj T ols]of = ols.
This completes the proof. (I

We define a set ( = (Ca)aca(a,s) of (-data for ®(G,S) by ¢ := (o . (y)/y (see
Definition T3 and also Remark [T4).

Proposition 9.7. The tuple (0s,1,() gives an isomorphism of reqular supercuspi-
dal L-packet data:

(0s,1,0): (8,7, x,9) = (8,7.,X',9).

To show this proposition, we recall the following property of a set of (-data, which
is essentially discussed in [Kall94], especially in the proof of [KalT9a, Theorem 3.16]:

Lemma 9.8. Let x1 and x2 be sets of x-data for ®(G,S;). Let ¢y, )y,: Wr — S
be the L-parameter of the character (y, /y,.5: S — C*, which is regarded as a
1-cocycle. Then we have %5y, = (70 ¢y, /vs) = xa-

Proof of Proposition I—]. Our task is to check that the condition (3) of Definition

[[13 is satisfied, i.e., the equality (Cgl 1) 0 g = ¥ holds. With the notation as

in Lemma B3, the L-parameter of Cgl -¥ is given by ¢,/ 95, (y) + ¢v. Thus, by

the functoriality of the local Langlands correspondence for tori, the L-parameter

of (Cgl -19) o fg is given by “fg o (Cy'/8s..(x) - Po)- We have to show that this is
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equivalent to ¢y as L-parameters of S, or equivalently, ¢,/ /a5 | (y) - ¢v and Lhg o ¢y
are equivalent. By putting s’ := j~1(s), let us check that [s'] o (e /s (x) * Do) 18
equal to “fg o ¢y.

Since Ljés,*(x) is injective, it suffices to show the equality after composing them

with “jj_ _(x)- By using Lemma BH, we have

Bits .0 © [ 0 (cxr o5 . o) - P9) = [s] © Mg . ) © (exr 65 . (x) - )
=[s] o bjy 0 pg = [s] 0 ¢'.
On the other hand, by noting that j, = Ljés.*(x) o I'fg (this is essentially the same

identity as Lj;(/ = 1§ o Lj,, which was used in the proof of Lemma H2), we have

Ljés,*(x) o tfs0py ="jy 0y = 0.
As we have [s] o ¢/ = ¢, we get the assertion. a

Since we have 0 o ¢ = ¢, Proposition B3 implies that Hg of = Hg. The effect
of f-twist on Hg can be described more explicitly as follows.

Proposition 9.9. Let w be the member of Hg labeled by (S,7,x,9,7) forj € T§.
Then its O-twist 70 is labeled by (S, ], x, 9,07 0 j o fs).

Proof. When r arises from (S, 3, x, 9, j) for j € J§, by Lemma B4, 7% arises from
the datum (S, o3, 0(x), 9,071 04). On the other hand, the isomorphism of regular
supercuspidal L-packet data (0s, 1, () introduced above induces an isomorphism of
regular supercuspidal data

(6s,1,¢,1): (S,5,x.9,5") = (S,003,0(x),9,5 00g")
fo )

°J,
for each j/ € J§. Thus the datum (S,6 o 3,0(x),9,0~! o j) is isomorphic to
(SvjaX71970_1ojOOS)' U

Corollary 9.10. Let m be the member of Hg labeled by (S, 3, x,9,7) forj € jc(:}'

Then the following are equivalent:

(1) 7 is O-stable, i.e., T = 79,

(2) j equals 0=1 o jobs in Jg', i.e., 01 ojoflg and j are G-conjugate.

9.3. Embeddings of twisted tori. We introduce several notions related to twisted
maximal tori of G. Suppose that (S, S) is a twisted space over F' whose S is a torus.
Let 0g be the automorphism of S given by S, i.e., for any s € S and n € S, we have

0s(s) = [n](s).

Definition 9.11. We say that an embedding j: S — G is an F'-rational embedding
of a mazimal torus if j is F-rational and S; := j(S) is a maximal torus of G.

Definition 9.12. Let (j,7): (S,S) < (G, G) be an embedding of a twisted space,
ie, j:S < G and j: S < G are embeddings such that, for any si,ss € S
and t € S, we have j(s1tso) = j(51)7(t)j(s2). We say that (j,7) is an F-rational
embedding of a twisted mazimal torus if the following conditions are satisfied:

e j is an F-rational embedding of a maximal torus and j is F-rational;

e (S;,S;) := (4(S),7(S)) is an F-rational twisted maximal torus of G.
We often simply write “(j,7): S < G is an F-rational embedding of a twisted
maximal torus”.
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Remark 9.13. Let (j, 7): S < G be an F-rational embedding of a twisted maximal

1 ~

torus. For any n € S, as we have g = [n], we have 7' o [j(n)] o j = Os.

Note that if (j,7): S < G is an F-rational embedding of a twisted maximal
torus, then (j,js): S— Gis again an F-rational embedding of a twisted maximal
torus for any s € S, where j, is defined by j(n) := 5(s)j(n) for n € S. The following
lemma says that the converse of this fact is also true:

Lemma 9.14. Let (S,S) be a twisted space defined over F. Let j: S < G be
an F-rational embedding of a mazimal torus. If (j,j1) and (j,j2) are F-rational
embeddings of a twisted mazimal torus S — G, then there exists an element s € S
satisfying ja(n) = j(s)j1(n) for any n € 8.
Proof. If we fix an element 1’ € S, then we have

G o i) oj =0s =i o [ja()] 0]
by Remark ET3. This implies that j»(n') ™" - j1 (') belongs to S;, hence there exists

an s € S such that J2(n') = §(8)71(n’). From this, we can see that ja(n) = j(s)71(n)
for any n € S. O

For two F-rational embeddings (j1,71) and (ja, j2) of a twisted maximal torus
S — G, we write (j1,j1) ~ (j2,j2) when j; = jo (this gives an equivalence relation
on the set of F-rational embeddings of a twisted maximal torus). Note that, by
Lemma OT4, the image Sj of j depends only on the equivalence class of (j,j)
When (4,7) is an F-rational embedding of a twisted maximal torus, we often let j
denote the equivalence classes of (7, 3) by abuse of notation. Also, if we simply say
WE S < G is an F-rational embedding of a twisted maximal torus”, then it means
that we have an F-rational embedding of a twisted maximal torus (7, 5) and j is its
equivalence class.

As in the untwisted case, we define the stable/rational conjugacy for F-rational
embeddings of a twisted maximal torus as follows:

Definition 9.15. Let (j,7) and (j’,j') be F-rational embeddings of a twisted
maximal torus S < G. We say that (j,7) and (5/,5") are G-conjugate (resp. G-
conjugate) if there exists an element © € G (resp. x € G) satisfying j' = [z] o j.
In this case, we write (j,7) ~a (j',7') (resp. (j,7) ~a (5',7')). When j and j’
are equivalence classes of F-rational embeddings of a twisted maximal torus, we
say j and j' are G-conjugate (resp. G-conjugate) if some (or, equivalently, any)
representatives (4, 7) and (j/,j") are G-conjugate (resp. G-conjugate). In this case,
we write j ~qg j' (resp. j ~g j').

9.4. Parametrization of #-stable members of a f-stable packet. Let us go
back to the setting of Sections B and B2. Recall that (S, 7, x,9) is a regular
supercuspidal L-packet datum whose L-parameter satisfies [s] o 10 o ¢ = ¢. In
Section B2, we introduced an F-rational involutive automorphism fg of S. We
consider the twisted space S := S6g associated to the pair (S, 0g).

Proposition 9.16. Let 7; be the member oquC;' labeled by (S, 3, x,9,7) forj € T§.

Then the following are equivalent:
(1) mj is O-stable, i.e., mj = ﬂ?,
(2) j extends to an F-rational embedding of a twisted mazimal torus S — G.
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Proof. We first show that (2) implies (1). Suppose that j extends to an embedding
(j,7): S < G of an F-rational twisted maximal torus. Then, putting 7 := j(fs) €
G, we get [] 0 j = j ofg. In other words, if we write n = °0 with 1° € G, then
we have [°] 0 oj = jofg. In particular, #~! 0 j o fig and j are G-conjugate. This
implies that 7; is f-stable by Corollary B10.

We next show that (1) implies (2). Again by Corollary B10, we may suppose
that we have an element x € G satisfying §~! 0 j o g = [z] 0 j. Then, by putting
j(0s) = 0(z)0 € G, the argument in the previous paragraph shows that (. 7)
defines an embedding of a twisted space (S,S) into (G, G), which is defined over
F. Hence our task is to show that the image (S;, gj) is an F-rational twisted
maximal torus of (G, G) In other words, we have to find a Borel subgroup which
contains S; and is preserved by [j(fs)] = [0(z)] o 6 (see Lemma BH).

Recall that we put 7: T = S to be the dual of 7: S = T and that g is defined
to be the dual of 77! o 6o j. Hence we have g = j060 05~ !. The embedding j
is given by [y] 0 37! for some y € G by the j-admissibility (see the beginning of
Section E). Thus we get

jobs=[los ogofog =yhy)obolylos Tt = [yhy) M obo .
As we also have 6! o j o fg = [z] 0 j, or equivalently, j o 9 = [f(x)] o foj, we get
[y0(y)~ ofoj=[0(x) oboj. Thisimplies that 6(x) 'yf(y)~* € 6(S;). Let us

write 6(x) ~lyf(y)~! =t with t € 6(S;).

Since we have S; = YT, the Borel subgroup ¥B contains S;. Let us check that
YB satisfies the desired condition, i.e., [#(z)] o §(YB) = YB. By noting that B is
stable under 6 and that t € 6(S;) C (YB), we have

[0(z)] 0 6(YB) = Y@)g(vB) = v0W) "t g(vB) = ¥ W) ' 9(yB) = ¥4(B) = VB.
g

Now let us recall that
IS ={j: S < G| jis F-rational and j ~g 77 '}/~g
(see the discussion at the beginning of Section E). We put
JS :={j: S G |jis F-rational and j ~g 77 '}/~a,

namely, jg is the set of G-conjugacy classes of equivalence classes of F-rational
embeddings of a twisted maximal torus which are G-conjugate to 7~ '. Note that the
canonical forgetful map jg — jé} : (4, 7) + j is injective. Thus, in the following,
we regard jg as a subset of Jg. By Proposition B8, the set jg parametrizes the
f-stable representations in Hg'. More precisely, for each j € J§, the corresponding

member ; is f-stable if and only if j belongs to jc(:;

Remark 9.17. Recall that Shahidi’s generic packet conjecture predicts that every
tempered L-packet contains a unique to-generic member. If Hg' satisfies the generic

packet conjecture, then the unique to-generic member of Hg (say my) is O-stable.
Indeed, the O-twist 7 is again tv-generic since v is -stable. As we have H(c; of =
Hg', both 7, and 7¢ belong to Hg'. Hence the uniqueness part of the generic packet

conjecture implies that m, and 7, are isomorphic. (We note that the generic packet
conjecture is proved in [KalT9H, Lemma 6.2.2] for toral regular supercuspidal L-
packets, on which we will eventually focus in this paper.)
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9.5. Descended regular supercuspidal L-packet. We keep the notation as in
the previous subsections. Recall that ¢: Wr — G factors through ¢: “H — £ G.
Let ¢ be the L-parameter of H such that ¢ = £ o ¢yy.

Proposition 9.18. The L-parameter ¢y is regular supercuspidal.

Proof. Let us check that the four conditions of Definition T4 for H are satisfied.
We first consider (0). Obviously ¢|sy,(c) is trivial, hence so is ¢rlsr,(c). Since

Zy(¢0(Wr))© is contained in Zg (¢(Wr))°, we have Zy (0(Wr))° C Zg NHC Zyg.
We next consider (1). Since ¢ = LjX o ¢y and S is tamely ramified, a torus of G

containing ¢(Pr) can be taken to be T. Thus ¢y is contained in £~ (T) = Ty.

We consider (2). Since we have Zy (¢(Ir))° C Zg(o(IF))° N H and Ze(o(Ir))°
is a torus, Zg(¢(IF))° is also a torus.

We finally consider (3). We put My = Zg(¢(Pr))°, Cu = Zy(o(IFr))°,
and Tg = Zmy (Ca). Then we have N, (Ti) € N (7) and this inclusion
induces a I'-equivariant inclusion of Weyl groups Qi (gH) — Q M(S) Thus,
if n € N, (Ta) maps to a nontrivial element of Qg (Sg)', then we have
n % Zé(d)(lp)) This irnplies that n ¢ Zﬂ(¢(IF))

O

Proposition 9.19. If ¢ is toral supercuspidal, then so is ¢y.

Proof. Let us check that the three conditions of Definition 19 for H are satisfied.
The condition (0) is already checked in the proof of Proposition EI8. The condition
(2) for ¢y is clearly deduced from the condition (2) for ¢. Thus let us consider (1).
By the torality of ¢, Zg(¢(I)) is a maximal torus of G containing ¢(Pr) . Since
we have ¢(I5) C T (by the construction of ¢), we have Ze(o(I3)) D ZG(T) =T.
Thus we get Zg (0(I7)) = T. This implies that 75 := Zg(o(Ip)) is equal to
HNT = Ty, which is a maximal torus of H and contains ¢(Pr). O

By applying Proposition I8 to the descended L-parameter ¢y, we obtain a
regular supercuspidal L-packet datum (S, Ju, xm, ¥u) of H and hence a regular
supercuspidal L-packet HEH of H. In particular, we may and do assume ¢y =
LjXH 0 ¢y, Where LjXH denotes the Langlands—Shelstad extension of jg to an L-
embedding via the set of y-data ym:

L-
(14) WF%SNWFC%GNWF

Dogg J\i

L: R
SH X WFCL Hx Wg
Let us investigate the relationship between (S, j, x, ) and (S, ju, xu,%H)-

As we saw in the proof of Proposition T4, the image of jy is given by jH(SH) =
Zy(o(Ip)) = HN'T = Ta. Recall ‘El}at jo?g = erAj' This implies that the
embedding 7 induces an isomorphism S%-° = T¢.° = §(TH). Thus, by combining
it with é and jg, we get an identification of Sy with Sfs-°:

As discussed in the proof of Lemma T8, we have jo o(t) = [¢p(0)] o j(t) for any
o€ Wrandt € S. Similarly, we also have jproo(t) = [¢p(0)|oju(t) for any o € Wp
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and ¢t € Sy. Therefore, since we have ¢ = £ o g, the isomorphism j~*

I'-equivariant. Thus, by taking dual, we get an F-rational isomorphism

St = Sys.
Proposition 9.20. The restriction 9|s,, of ¥ to Soy coincide with a pullback of
the restriction Vg |sy ., of Y to S04 through the map Soy — Spg,0+ = SH,0+-

ofojy is

Proof. By abuse of notation, we again write ¥y for the pullback of ¥y along the
canonical map S — Sy = Su. Then our task is to show that the depth of the
character ¥~ -y of S is zero. Since the local Langlands correspondence for tame
tori is multiplicative and preserves the depth (see, e.g., [Yu09]), the depth of 9! -
equals that of qﬁgl @9y Here ¢51 @9y denotes the product as 1-cocycles.

We note that the following diagram is commutative since every object is tamely
ramified (more precisely, T'-actions on S, Su, G, and H are trivial on [ F+ and the
set of y-data y and xg are minimally ramlﬁed)

L.
S x I%*% G x IpH

3
N Liy -
Sp 3 IpF 0 Hox I10F
Thus, by taking into account the commutativity of the diagram (Id), we see that
the following diagram commutes:

¢0\Io )

I — s S x Iyt

¢0Pk4 ]\

SH X IO+
This implies that depth of the L-parameter d);l - 9y 18 zero. [l

Now let us suppose that ¢ is toral of depth r > 0. Recall that, as proved in
the proof of Lemma IR, we have (§§1 -¥) ofs =19. As (s is tamely ramified, this
implies that 9|s,, ofs = ¥|s,, . This implies that we can take a fg-invariant element
X* € 5% realizing ¥ls,, ., (see Lemma B3). By Proposition B0, we furthermore
have the following (note that sj_ is identified with the fs-fixed subspace of s*):

Corollary 9.21. We can take elements X* € s and Y™ € sgy _, realizingJ|s,, ., ,
and Y45y, ..., » Tespectively, so that Y* maps to X* under the natural map sy =
Spg > 5.

Remark 9.22. We caution that the diagram

gXIWFC#GNWF

]

SHXJWF(AI:IXIWF

is not commutative in general although it is commutative at the positive depth level
as observed in the proof of Proposition B20. The non-commutativity of this diagram
is crucially related to the computation of the transfer factor (Section [@—2H).
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10. TWISTED VERSION OF KALETHA’S DESCENT LEMMA

10.1. Waldspurger’s diagram. We recall the notion of a “diagram”. This was
introduced by Waldspurger in [Wal(OR, Section 3.2] first . Then, a slightly modified
definition was introduced in [MWIH, I1.1.10]. Here we follow the latter version.

Definition 10.1. For (¢,71) € Hyx Gy, a diagram associated to (e,n) is a quadruple
D = (B”, T?, B¢, T?) satisfying the following:
T’ is an F-rational maximal torus of H,
(B”, T%) is a Borel pair of H which is [¢]-stable,
T? is an F-rational maximal torus of G,
(B®,T?) is a Borel pair of G which is [n]-stable,
The Borel pairs (B”, T”) and (B, Tg) induce a unique isomorphism &, : T> =
Ty given by H-conjugation. Similarly, (B¢, T¢) and (B, T) induce a
unique isomorphism &, : T¢ =5 T given by G-conjugation. Then the com-
position oo &¢ is defined over F. (We write {p for this composition.)
e If welet g € G be an element such that [g] = &, then 7 belongs to [g] =1 (T).
(We put T := Ty and write £, for the map [¢]: T® — T.)
e Let vp € T be an element such that [g](n) = vpd. Then we have {(vp) =
& (e). (We write pup for this element.) In other words, if we define a map
£p: TO = T by p =& ' o&o((—) - 671) 0 &y, then we have {p(n) = e.
IR A, G ; &0

17
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For (e,n) € Hy x Gss, let D(e,n) denote the set of diagrams associated to (e, 7).

Remark 10.2. (1) We often simply write v and u for vp and pp, respectively.

(2) The condition that (B®, T”) is [¢]-stable is equivalent to that ¢ € T, which
is furthermore equivalent to that T” C H,.

(3) Let D = (B”,T°,B®,T®) € D(e,n). Then (T<>7’i‘0) is an F-rational
twisted maximal torus of (G, G) by Lemma B®. In particular, T := T"°
is a maximal torus of G,, and T is recovered from T by T¢ = Zg(T?)
(see Proposition B73).

(4) If the set D(e,n) is not empty, then the stable conjugacy classes of € and 7
correspond in the sense of twisted endoscopy (see Section B3).

(5) In general, even if the stable conjugacy classes of € and 7 correspond, the
set D(e,n) might be empty. See [MWT6, 1.1.10].

(6) When e is strongly G-regular semisimple and 7 is strongly regular semisim-

1.1.10, Lemme]. Furthermore, a diagram associated to (e,7) is essentially
unique. We will investigate these facts later (Lemma [I4) in detail.

Remark 10.3. Recall that the map £: T — Ty = Ty induces an identification

of the Weyl group Qg (Tx) of Ty in H with a subgroup of Qg(T)?. For any

diagram D = (B’, T, B, T®) € D(e,n), the maps & and & induce isomor-

phisms Qg (T°) = Qu(TH) and Qg(TC) = Qg(T), respectively. The image of
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Qp, (T°) C Qu(T’) is contained in the image of Qg, (T%) C Q2 (T?), hence we get
an identification Qg (T”) — Qg, (T%). Since {p is F-rational, this identification
is F-rational.

Lemma 10.4. Let D € D(e,n). Then the map §~D 18 F'-rational.

Proof. Any element of T< can be written as tn with t € T. Then the image of tn
under f p is given by &p(t)e. In other words, the map § p equals the composition
((=)-€)oépo((=)-n~t). Since 1, ¢, and £p are F-rational, so is £p. O

10.2. Equivalence relation on diagrams. Let (e,7) € Hy X GSS. We introduce
an equivalence relation on D(e,n) as follows:

Definition 10.5. We define ~ to be the equivalence relation on D(e, 1) gener-
ated by the following two equivalence relations: Let D = (B’,T°, B¢, T?),D =
(B”, T°, B®, T¢) € D(e, ).
(i) (H¢, G,)-conjugacy: We say that D and D are (H,G,)-conjugate if
there exists elements h € H, and g € G, such that

D= (th7th,gB<>’gT<>)_

(ii) Qu-conjugacy: We say that D and D are Qg (T?)-conjugate if there
exists elements w € Qg (T") such that

D= (“B",T",*“B®,T°).
Here, w is also regarded as an element of Qg (T<) (see Remark [I3).

We write D(e, n) for the set D(e,n)/~ of equivalence classes of diagrams associ-
ated to (e, 7).

Remark 10.6. When G is untwisted (@ is trivial) and H, is quasi-split, the set
D(e,n) is nothing but the set =(H, G,) used in the proof of [KalT9H, Theorem
6.3.4].

Lemma 10.7. If (e,n) € D, then the set D(e,n) is a singleton, i.e., any two
diagrams associated to (e,m) are equivalent. Moreover, the maps £p and Ep are
independent of a diagram D € D(e, n).

Proof. The non-emptiness of D(e,n) follows from [KSYY, Lemma 3.3.B] (with the
argument in the final paragraph in 29 page of [KSY ‘4]) See also [MWIH, 1.1.10,
Lemme].

We show that any two diagrams associated to (e,n) are equivalent. Let D =
(B*, T°,B®,T®),D = (B’,T°,B®,T®) € D(¢,n). Since € is strongly regular
semisimple, we have T? = H, = T°. Similarly we have T? = G, = T (recall
that both T% and T? are maximal tori of G, and that G, is a torus by the strong
regularity of 1). As we have T = Zg(T?) and T® = Zg(T?), we get T = T?.

Since both B” and B’ are Borel subgroups of H containing T?, there exists
an element w € Qg (T?) such that “B” = B’. Hence, by replacing D with its
Qp(T?)-conjugate diagram (*B°, T”, * B¢, T®), we may suppose that B® = BP.

Let g € G be an element satlsfylng (gB<> IT?) = (B T). Similarly, let g € G
be an element satisfying (7B, 9T®) = (B, T). Since {p(n) = € = £p(1), we get

& ot 07 =& o(Tn-07).
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In other words, 91 -0~!,9n-0~! € T map to the same element of Ty under the
natural quotient map T — Tjy. Hence we can find an element ¢ € T such that
In-0~t =t-(In-071)-0(t)"!, equivalently, 9 = t- (9n)-t~1. Thus g~ 'tg belongs to
the (full) centralizer G" of n in G. By [Wal08, Section 3.1], the strong regularity
of 7 implies G" = Z{, G,, = Z T%. In particular, we can take an element z € Zg
such that zg~'tg belongs to G,. If we put ¢ = 2§ g € G, then we have
(9'B®,9'T) = (B®, T). Hence D and D are (H, G,)-conjugate.

Finally, noting that H, and G, are tori, we see that (H,, G,)-conjugacy does not
change the maps £p and é p. We also see that Qg (T”)-conjugacy does not change
¢p and £p. Hence £p and &p are independent of the choice of D € D(e,n). O

Lemma 10.8. Let D = (B", T°, B®, T?) ¢ D(e,n). For any F-rational elliptic
mazimal torus T° of He, there exists a diagram (B", T°, B®, T®) € D(e,n) which
is equivalent to D.

Proof. Let g € G be an element satisfying (YB®,9T¢) = (B, T) (i.e., & = [g]).
Similarly, let b € H be an element satisfying ("B’,"T”) = (Bg, Trn) (i.e., & = [h]).

Since both T” and T” are maximal tori of H., there exists an element h e H,
satisfying "' T" = T". We put h := hh/~! (hence "T° = Tyg). We define a Borel
subgroup B containing T” by B’ :=» "By (hence "B’ = By).

Let us construct T. For this, we first take a quasi-split inner form G;, of Gy
and an inner twist ¢,,: G, — GJ. Since G} is quasi-split, the maximal torus T of
G, transfers to an F-rational maximal torus T of G} (see, e.g., [Kallyh, Lemma
3.2.2]). More precisely, by composing a Gj-conjugation with 1, if necessary, we
may assume that 1), |s : T - T8 = wn(Th) is an F-rational isomorphism. Then
the inner twist v, induces a I'-equivariant isomorphism QGU(Th) = Qg (T).

Since we have "' T” = T? and b’ € H,, the map o — [o(h/)~'1/] gives a 1-cocycle
of T valued in Qg (T?). Then, by the I'-equivariant identifications of Weyl groups
Qn, (T°) = Qg, (T*) (see Remark M33) and Qg, (T%) = Qa; (T%), we may regard
o = [o(h)7'W] as a 1-cocycle of T valued in Qg:(T*). By applying [Kof=7,
Lemma 2.1] to (Th*,(};;)7 we take an element g* € Gj such that [o(g*)""g*] =
[0(h')~1R'] (note that the quasi-splitness is necessary for this fact). We put T :=
9"T%. Then the map

o 17 s Y e po S0, o W,
is defined over F.

Note that the maximal torus T is elliptic in G;,. Indeed, the above homomor-
phism T% — T® is locally isomorphic (isomorphic at the Lie algebra level) since
T? is the identity component of the [n]-invariant of T and the map T¢ — T”
induces an isomorphism between the [n]-coinvariant of T and T°. Thus, since
T’ is elliptic in H and the center of H is smaller than that of GJ, T is ellip-
tic in G (later, we will review a description of the relation between these cen-
ters; see Section IT2). Therefore T transfers to G,, (see [Kot86, Section 10] or
[Kall9h, Lemma 3.2.1]). In other words, there exists an element g*' € G; such
that ¢, o [g*]: T — T8 := ¢yt o [g7](T%) is an F-rational isomorphism. Note
that then, by putting ¢’ := ¢, '(g*'g*) € G, we have T! = 9'T%,
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We define T by TO := Zg(T?) = 9T9. We put B® = 9B?. Let D :=
(Bb7 T, B?, T<>). By construction, it can be easily seen that the map {5 deter-
mined by D, which is given by [h'] 0 £p o [¢/] 71, is F-rational.

—1

IR T 2 o

J[g’] l{g*} [h’]J l{g’]

A ;10[ */] B _ B

T~ o T T°
D

Moreover, since b’ € H, and ¢’ € G,,, we have £p(n) = e. Thus D is a diagram
associated to (¢,n) and (Hc, G,)-conjugate to D. O

10.3. Kaletha’s descent lemma. Suppose that we are in the situation of Section
b. In particular, we have the sets jé} and JH parametrizing the (f-stable) members
of our L-packets Hg and HgIH.

Let 3: T — S and jg: Ty — Sy be the duals to j: S—T and jg: SH — TH,
respectively. Since both T and S are F-rational, for any ¢ € I', the map a,, :=
o ()" !0y is an automorphism of T. Hence we get a 1-cocycle a,: I' — Aut(T): o
a,. We define a 1-cocycle a,,, : I' = Aut(Ty) in a similar way.

Recall that any j € jGG can be written as j = [g] o y7! for some g € G. If we
define a 1-cocycle a;: I' = Qg by 0 — a;, := [0(g)"'g], then this does not depend
on the choice of g € G. Similarly, for any jg € Ji, we can define a 1-cocycle
Qg I'— QH

Lemma 10.9. For any jg € \71{,{ and j € jGG’, we have a; = a; = Gy = Ay
Here, we naturally identify Qu, Qa, and Aut(Th) as a subset of Aut(T) so that
the equalities make sense.

Proof. Let g € G be an element satisfying j = [g] 0 97!. As j is defined over F,
for any o € T, we have o([g] 0 771) = [g] 0 37!, which implies that a,, = a;,,
hence a, = a;. Similarly, we also have a,, = a;,. Thus it is enough to show
that a, = a,,. By construction, the map S — Spg = Sy (say {s) is the dual to
77 lo f o 711, hence given by 75 0 £ 0 771, Since &g is F-rational, for any o € I, we
have o(gi 0 €097 Y) = g 0 £ 0 571, which implies the desired assertion (recall that
the identification Qg C Q% is given through ). d

For a semisimple element 1 € Gss, we define jgn to be the set
jgn :={j: S < G |jis F-rational, j ~g 77!, and 7 € S'j}/NG",
i.e., the set of G, -conjugacy classes of F-rational j-admissible embeddings j of a

twisted maximal torus satisfying n € 5']-.
Similarly, for a semisimple element € € Hg,, we define j}II{ to be the set

jlli '={ju: Sg — H | jg is F-rational, jg ~g ];11, and € € Sj, }/~H.,

i.e., the set of H.-conjugacy classes of F-rational jg-admissible embeddings of Sy
into H satisfying € € S, (or equivalently, S;,; is contained in H.). Here, to make
the notation lighter, we write S;,; := Su_j; = ju(SH).

In the following, we fix a semisimple element n € G.. Let $Hy C Hg be a
set of representatives for the stable conjugacy classes of semisimple elements of H
corresponding to 1 such that H, is quasi-split for any y € $,,.
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Now we define a map

tan: | | D(y,n) x T, = IS,
YyEN,
in the following manner. Let D = (B’,T°,B®,T®) € D(y,n) for y € $Hy and
ju = [h]ogg' € J}II{/ (h € H). Since the torus S,y is elliptic in H, we may assume
that T” = S, by replacing D with its equivalent diagram by Lemma ITIS. We take
an element b’ € H and ¢© € G such that & = [h"] and &, = [¢], respectively.
Then nyg; := h’h € H belongs to Ni(Tx). We take an element n € G%° such that
[n] € Q% is equal to [nm] € Qm C Q& (we can take n from G%°; see [KS9Y, Section
1.1]). We define an element tean(D, jg) of jé;] to be the following embedding (7, 7)
of (S, 8) into (G, G):

“Itolmlos™, j=1[g% " om]og

where j771: S — T is given by sfg — 57 (s)6 for any s € S.

-t [9°]

s 7 T s T
Jo e
S s T T T

BT mw Wy 8

Proposition 10.10. The above procedure gives a well-defined map. In other words,
(1) (4,7) is an F-rational embedding of a twisted mazimal torus,

(2) j and 7% are G-conjugate,
(3) neS;, and
(4) the G,,-conjugacy class of j is independent of the choices of auziliary data.
Proof. The assertion (2) is obvious by construction.

Let us check that j is F-rational. For any o € ', we have o(j) = j if and only
if [o(g®)] " o fo(n)]oa(s) ™! = [g®] " o [n] oy, or equivalently,

(15) a(9) " tog=lo(m)] " olo(g®)e[g%] " o n].
If we put jiy := [nm) o 5 = [h°] o ju, then we have

o(jun) o it = lo(nen)] 0 o (gr) ™ o gpr o [nm] Tt = [o ()] 7 o [,

hence a(jH)*lo]H:[ (nu)] " o [o(h*)] "t o [R°] o [ng). Since we have
* o) " 0) =y = Gpo = o(gm) " 0 g (Lemma IITT),
o [n]7! = [nu] ™" and [o(n )] ' = [o(nu)] 7", and
e [o(6®)]0 [g°]~" = [o(A*)] o [1°] " (by the Frationality of &p),

(all the equalities are considered in Qg C Q%), we get the equality ().

By noting that n is f-invariant and D is a diagram associated to (y,m), we see
that S] = ](S) contains 7 € G. Combined with the F-rationality of j, this shows
that S, is F-rational and (S}, S;) is an F-rational twisted maximal torus of (G, G).
Hence we get the assertions (1 ) and also (3).

We consider (4). As long as D and jyz are fixed, the embedding (7, j) is obviously
independent of the choices of ng, n, h’, and g©. Moreover, it is also easy to see
that (j,7) does not change even if we replace D with a Qg (T”)-equivalent diagram.
Thus our task is to show that, if we take
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e another embedding jy € ng which is H,-conjugate to ji and
e another diagram D = (B°,T°,B®,T®) € D(y,n) which is (H,, G,)-
conjugate to D and satisfies T’ = S;

JH?
then j and j (which is constructed from D and jg) are G,,-conjugate.

We take h, € H, such that ju = [h,]oju (hence ju = [h]ogg', where h = hyh).

Let ' € H, and ¢’ € G, be elements such that

("B, "' T 9 B? 9 T?) = (B’ T", B®, T?).
Then the element A’ := h’h’ € H satisfies § = [h°]. Similarly, the element §© :=
g%g" € G satisfies £, = [§¢]. We take an element 7 € G?° such that [n] € QF is
equal to [Ag] € Qu C Q&, where fig := h’h € Ng(Tw). Then, by construction, j
is given by [g® o [n] oy~ .

In the following, we simply write » and u for vp and pup associated to D,
respectively (see Definition IICD). As we have g¢ := ¢g®¢’ and ¢’ € G, j is G-
conjugate to [¢g¢]7! o [p] o 7. Since j = [¢¢] o [n] o g7, it suffices to show
that [g¥]7 o [71] o [n] 7! o [¢¥] € Aut(T?) is realized by an element of Qg, (T*) C
Qc(T?). Since & = [¢°] induces an identification Qg, (T%) = Qg,,(T°), it
is equivalent to showing that [n] o [n]™! € Aut(T) is realized by an element of
Qc,,(T?°) C Qg(T). By noting that Qp, (Tw) is identified with a subgroup of
Qga,,(T?%°) (both regarded as subgroups of Qg (T)), let us show a slightly stronger
statement that [7] o [n]~* € Aut(T) is realized by an element of Qg,(TwH). By

construction, we have [n] = [ng] = [h’h] and [7] = [ag] = [A°h] = [A’A’hyh]. Thus
we get [] o [n]~' = [A°] o [Why] o [R°]~1. Since &, = [A°] induces an identification
Qm, (T?) = O, (Tw) and [h'h,] belongs to QHy(T"), we get the assertion. O

6.5]:

Proposition 10.11. For each y € $y,, the restriction of tean to D(y,n) x »7}}117, s a
mo(HY)(F)-torsor onto its image. Furthermore, tean induces a bijective map

tean: | | (D(y,n) x T, ) /mo(HY)(F) = IS,
YEN,

Proof. We first show the surjectivity. Suppose that an element j = [g]os™! of jé;, is
given, where g € G. We take an(y) element ji = [h]o g of JE, where h € H. We
put T¢ :=§; = 9T and B¢ := 9B. Then, by putting [¢g] ' () = v € T, p := £(v),
and e := [h](u), we can check that e € Hy, and that D’ := ("Bg,"Tw, B¢, T?) is
a diagram associated to (e,7) (note that S;,; = "Tg and use Lemma [ to check
the F-rationality of {p/). By the definition of the set £),, there exists a unique
element y € £, which is stably H-conjugate to e. Since H, is the quasi-split inner
form of He, the maximal torus "Ty of H. transfers to H, (see, e.g., [KalT3h,
Lemma 3.2.2]). More precisely, we can find an element A’ € H such that [h'](e) =y
and [h/] gives an F-rational isomorphism from "Tg to " Ty. Hence, by putting
T? := "2y and B” := "'"By, we get a diagram D := (B?, T?, B¢, T?) associated
to (y,n). If we put ji; := [A'] o ju, then ji; belongs to ng. Furthermore, by going
back to the construction of the map tran, we can easily check that tran(D, j;) = J.

We next investigate the fibers of tran. For this, let us take two diagrams D =
(B°,T°,B®, T®) € D(y,n), D = (B®,T°,B®, T®) € D(g,n) for y,7 € H, and two
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embeddings ju € Jif,, ju € J4, satistying tran(D, ju) = tean(D, ju). We may
suppose that T® = S and T = S;, by Lemma MIR. Let h € H and h € H be
elements satisfying jig = [h] o jﬁl and jg = [h] o ]ﬁl, respectively. By replacing
D with its G -equivalent diagram if necessary, we may suppose that (D, jg) and
(D, ju) produce exactly the same embedding j. (Note that then T¢ = S; = T?.)
We take h* € H, g© € G, and n € G%° (which corresponds to ng := h’h) for D as
in the definition of tran. Similarly, for D, we take i’ € H, §® € G, and 71 € G?°
(which corresponds to gz := h°h) for D as in the definition of tran. Then we have
[9%] T o[l = [g9] L o @] 0 L.
Thus we have [nn~!] = [¢¢§%~!], which is an equality as elements of the Weyl
group Qg C Qg. We write w for this element. Recall that [h’] and [§®] induce
an identifications Qg (T”) & Qg and Qg (T) = Qg. If we put w” € Qu(T®) and
w® € Qg (T?) to be the images of w € Qg under these identifications, respectively,
then w” and w® are identified through ¢p (see Remark MI3). By replacing the
diagram D with its Qg (T?)-equivalent diagram (“’bBb,T",wOBO,TO), we may
assume that (B¢, T¢) = (B, T®). Note that then we have g = g and [n] = [7].
Recall that vp € T (resp. vp € T) is the element such that [¢¢](n) = vp8 (resp.
[3°](n) = vph), hence we have vp = vp. This implies that up = up. As we have
[R°](y) = pp and [R°)(§) = pp, we get [W~'A°](§) = y. Note that the equality
[n] = [n] is equivalent to the equality [h*~'h°] = [hh~']. Since [hh~!] = ju o jg'
gives an F-rational isomorphism from T” to T? (i.e., stable conjugacy between T
and T?), this implies that y and 7 are stably conjugate. Thus the definition of the
set $), implies that y = . We also get hh~' € HY. Therefore, by putting hy ==
hh~' € HY, we get (B”,T°, B¢, T?) = ("B®,"»T" B®, T®) and ju = [hy] © ju.

Thus the remaining task is to show that, by replacing D with its Hy-equivalent

6.5]). O

Remark 10.12. Note that jgy is not empty for any y € §,. Hence, in particular,
Proposition M implies the following;: jgn is empty if and only if D(y, n) is empty
for any y € 9,

11. WALDSPURGER’S DESCENT THEOREMS ON TWISTED ENDOSCOPY

In this section, we review a part of Waldspurger’s framework “I’endoscopie tordue
n’est pas si tordue”.

Note that, in the following of this paper, we need to require that our exponential
map is invariant under conjugation. However, this property might not be satisfied
by a mock exponential map in the sense of [AS0Y, Appendix A]. So, from now on,
we furthermore assume that

p2(2+€F)n7

where ep is the ramification index of F/Q, and n is the minimum dimension of a
faithful representation of G. It is known that the “traditional” exponential map
converges on the topologically nilpotent loci under this assumption, thus we can
choose it as our exponential map (see [[DR0Y, Appendix B] and also [WalO8, Ap-
pendice B]).
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11.1. Non-standard endoscopy. Let us start with recalling the formalism of
non-standard endoscopy following [WalOg, Sections 1.7, 1.8].

Let G; and G3 be quasi-split semisimple simply-connected groups over F'. For
each G, we fix a Borel pair (B;, T;) defined over F. Let ; denote the Weyl group
of T; in G;. We write ®; and @) for the set of roots and coroots of T; in G,
respectively. Suppose that we have an isomorphism j,.: X, (T1)g — X.(T2)g. Let
§*: X*(T2)g — X*(T1)g denote the dual to j.,.

Then the triple (G1, Go,j.) is called a non-standard endoscopic triple if the
following conditions are satisfied:

(1) There exist bijections 7V: ®) = ®Y and 7: &3 — ®; and functions
bY: @Y — Q¢ and b: Py — Q50 such that
(a) af =7V(1(ag)Y) for any ag € ®y;
(b) we have j.(aY) = b¥(a) - 7V () for any o) € @) and j*(a2) =

b(az) - T(ae) for any ag € Ds.
(2) The isomorphisms j, and j* are I'-equivariant.
For a non-standard endoscopic triple (G1, Ga, j*), the isomorphism j, induces
an isomorphism between the Lie algebras t; := Lie T; and t; := Lie Ts:

t = X (T)@p 25 X,(To)@5 = ty,

which induces a bijection
(t1/90)" = (82/)".

Thus, through this bijection, we can define a bijective correspondence between the
sets of stable conjugacy classes of semisimple elements of g; and go, which preserves
the regular semisimplicity.

11.2. Decomposition of twisted endoscopy. We next briefly review Waldspurger’s
decomposition result on twisted endoscopy established in [Wal08, Section 3].
Let (y,n) € Hys X Ggs. In the following, we assume that

e the connected centralizer H, of y in H is quasi-split, and
e the set D(y,n) of diagrams associated to (y,n) is not empty.

We fix a diagram D = (B”,T°, B¢, T®) € D(y,n). In [Walls, Sections 3.5 and
3.6], Waldspurger constructed a quasi-split connected reductive group H over F
equipped with

e standard endoscopic data (H,#H, 5, &) of Gy .sc, and
e a non-standard endoscopic triple (Hy’sc, H.., j«),

where the subscript “sc¢” denotes the simply-connected cover of the derived sub-

group. Here we emphasize that the construction of these objects depends on the
choice of D € D(y,n).

é descent G

A Gy —— Gy e

‘ standard endoscopy

twisted endoscopy H+——H,

‘ non-standard endoscopy
> Hy Hy,sc
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Let us review how the stable conjugacy classes correspond under this picture
([WallR, Section 3.8]). We first consider the decompositions of the Lie algebras

8, = 8, ®3a, = Lie Gy @ Lie Za,,
[_) = [_)sc Qi = Lie I:IsC @ Lie ZI:Iﬂ
by = by ®3u, = LieH, o & LieZy, .

For any X € g,, Y € b, and Y € b, we write X = Xy + Xz, V = Yo + Yy,
and Y = Y. + Yz for their decompositions according to the above direct sum
decompositions, respectively. We note that we have an F-rational isomorphism
3H, = 3m D jq, (see [WallR, Section 3.8]).

For our convenience, let us introduce the following terminology:

Definition 11.1. . We say that (Y, X) € by 01 X gy,0+ is & D-norm pair if
e nexp(X) € G is strongly regular semisimple,
e yexp(Y) € H is strongly G-regular semisimple,

and there exists an element Y € b satisfying the following:

e Y €hisanormof X € On,sc in the sense of standard endoscopy,

e the stable conjugacy classes of Y. € ESC and Y. € by s correspond in the
sense of non-standard endoscopy (see Section IT),

e Yz € 3m, corresponds to Y+ Xz €35g® 3, under the identification

3u, =%a Pic,-
The following is a part of [WalOR, Section 3.8, Lemme]:
Proposition 11.2. For any D-norm pair (Y,X), (yexp(Y),nexp(X)) € D.

11.3. Descent of transfer factor. We write AP for the (absolute or relative) Lie
algebra transfer factor for the pair (I:I,G,,,SC). Note that we put the symbol D
on the exponent in order to emphasize that the endoscopic structure of (H, Gy sc)
depends on the choice of a diagram D € D(y, 7).

Theorem 11.3 ([Wal(R, Section 3.9, Théoreme]). There exists a neighborhood 0
of 0 in by o4 such that, for any D-norm pairs (Y, X), (Y, X) € U X g, 04+, we have

A(yexp(Y),nexp(X);yexp(Y), nexp(X)) = AP(Y, Xo; Y, X,o),

where Y and Y are the elements of b associated to (Y, X) and (Y, X) as in Defini-
tion I, respectively.

Corollary 11.4. The absolute Lie algebra transfer factor AP (—, —) can be normal-
ized so that there exists a neighborhood U of 0 in by o4 such that, for any D-norm
pair (Y, X) € U X gy o+, we have

A(yexp(Y),nexp(X)) = AP (Y, X,.).

11.4. Transfer of Fourier transforms of orbital integrals. In this section, we
summarize the results on the transfer of the Fourier transforms of orbital integrals
on Lie algebras, which were established by Waldspurger and Ngo.

For any connected reductive group J over F' equipped with an invariant sym-
metric non-degenerate bilinear form Bj on j = Lie J(F'), we let v(j) denote the Weil
constant of (j, Bj) with respect to the fixed non-trivial additive character ¢ of F'
(see [Wal41, Section 3.1]). We note that hence v(j) depends on the choices of Bj and
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¥ although the notation does not contain these symbols. For regular semisimple
elements X € j and X* € j, we put

D% (X) :=7() - &%+ (X).
J

Here, i*.(X) is the normalized Fourier transform of the orbital integral of X* (see
Section B7; note that X* is regarded as an element of j* via B;). We also put

D' (X)= > Di.(X),
X*’NJX*/NJ

where the index set is over the J-conjugacy classes within the stable conjugacy class
of X* in j.

11.4.1. The case of standard endoscopy. Let J be a connected reductive group over
F and J' a standard endoscopic group of J. We fix an invariant symmetric non-
degenerate bilinear form Bj on j. Then Bj induces an invariant symmetric non-
degenerate bilinear form on j’ (see [Wal93, Section VIIL.6]). Let us write Bj for
this bilinear form. We remark that these bilinear forms satisfy the following con-
sistency property on the maximal tori. Let Ty and Ty be maximal tori of J and
J’ belonging to the (implicitly fixed) pinnings of J and J’, respectively. Then the
endoscopic structure of J’ in J gives an isomorphism £3: T3 = Ty, which induces
an isomorphism £3: t; = t3» on the Lie algebras. With these notation, for any
X, X' € ty, we have Bj(X, X') = By ({&3(X), & (X)).

For a strongly J-regular semisimple element Y* € j’ and a strongly regular
semisimple element X € j, we put

Dys(Y*,X):= > Ays(Y",X")D%.(X),
X*(—)Y*/NJ

where the index set is over the J-conjugacy classes of strongly regular semisimple
elements of j which correspond to Y*, and Ay 5(Y™*, X*) denotes the Lie algebra
transfer factor without the fourth factor. We also put

Dys(y*,X):= Y ApsY,X)Dy(y),
Y’<—>X/NJ/

where the index set is over the stable conjugacy classes of the elements of j’ which
correspond to X.
With these notation, the following holds:

Theorem 11.5 ([Wal97, 1.2. Conjecture]; [Wal06],[Ngo10]). We have
Dy 3(Y*,X) =Dy 5(Y*,X).

11.4.2. The case of non-standard endoscopy. Let (G1,Ga,7*) be a non-standard
endoscopic triple. We fix an invariant symmetric non-degenerate bilinear form
B; on g; for each i such that we have By(X,X’) = By(j.(X),j.(X")) for any
X, X' ety.

Theorem 11.6 ([Wal(R, Proposition 1.8]). For any regular semisimple elements
Y1 € g1 and Ya € go which correspond (resp. X € g1 and Xo € go which corre-
spond), we have
Gis Go,
D$ (1) = DG (Va).
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11.4.3. The case of isogeny. Let J be a connected reductive group over F. We
fix a J-invariant symmetric non-degenerate bilinear form B; on j. Then we get an
identification j = j* which also induces identifications js. = ji, and 33 = 33.

Lemma 11.7. For a strongly reqular semisimple element X € j with decomposition
X = Xic + Xz € jsc B 33 and a strongly regular semisimple element X™* € j with
decomposition X* = X, + X7 € jsc @ 33, we have

DR (X) = 6a) - w(B(X, Xz)) - DY (Xie):

Proof. According to [Wal97, 4.4 (1)], we have
In general, for the orthogonal sum Vi @ V5 of any finite-dimensional quadratic spaces
V1 and Va, we have v(V; @ Vo) = v(V7) - v(Va). Hence we have v(j) = v(jsc) - v(33)-
This implies that

DY (X) = 5(31) - (B (X5, X2)) - DY (Xeo).

For any X'* € j with decomposition X* + X € jsc ® 33, X'* is stably J-conjugate
(resp. J-conjugate) to X* if and only if X* is stably J-conjugate (resp. J-conjugate)
to X and X7 = X}. Thus we get the assertion. O

11.4.4. Combined form. Now let us go back to our situation; H is a twisted endo-
scopic group of G. Suppose that we have (y,7) € Gy X Hgs satisfying y € $y (see
Section M) and that we have a diagram D € D(y, 7). Then we get the associated
group H as in Section II2. We fix invariant symmetric non-degenerate bilinear
forms By, on g,, By on h, and By, on g, such that the restriction of By, to 3m, is
identified with the orthogonal sum of the restrictions of By, to 3g, and By to 35
through the isomorphism 3u, = jc, © 3ag-
We take
e a strongly regular semisimple element Y* € b, o4 with decomposition Y* =
1/;; + YZ* € I'Jy,sc D Kl = )
e a strongly regular semisimple element Y € by 04 whose stable conjugacy
class corresponds to that of Y, and
e a strongly regular semisimple element X € g, 04+ with decomposition X =
Xsc + XZ € 9n,sc D 3G,,~
Let Y7 = 372* + X7 € 3 © 3q, be the decomposition of the center part Y; € 3, .
We put Y* := Y + Y3,

Proposition 11.8. With the above notation, we have
Y. AW XQDYT(Y)= Y APV X)DRN(X),
Y8X/~m, x*8By*/~a,
where

o the left sum is over the stable conjugacy classes of strongly reqular semisim-
ple elements Y of by o4 such that (Y, X) is a D-norm pair (}7 is the element
associated to (Y, X) as in Definition II), and

o the right sum is over the G, -conjugacy classes of strongly reqular semisimple
elements X* of g, 04 such that (Y*, X*) is a D-norm pair.
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Proof. Let Y € b, o4+ be a strongly regular semisimple element with decomposition
Yse +Yz € by ® 3|, Suppose that Y. corresponds to the stable conjugacy class
of a strongly regular semisimple element Yy, € hg.. Also suppose that Y, equals
Yz + X}, under the isomorphism 3H, = 31 ©3c,- Then, by definition, (Y, X) is a
D-norm pair if and only if Y := Y, 4+ Y7 is a norm of X, and X', = Xz. Hence,
by noting that two strongly regular semisimple elements Y7,Ys € b, are stably
conjugate if and only if Y; ¢, Y2 sc € By sc are stably conjugate and Y7 z = Y5 7z, we
see that the left-hand side of the desired identity equals

(16) Z 7(3Hy) : ¢F(Bby (YZ*’YZ)) Z A1)(}_/7AXSC)l)g’z'smﬂ(}/sc)

Yz€3m Yier Xsc/~Hy o0

by Lemma [T (transfer for isogeny) for H,. Here, the second sum is over the

stable conjugacy classes of strongly regular semisimple elements of b, ¢ such that

Yic+Y is a norm of X, where Yz, € ESC is an element whose stable conjugacy class

corresponds to Yi.. Note that the index set {Yz € 35} of the first sum is infinite,

but only finite of them have a nontrivial contribution because of the second sum.
By Theorem ITA (transfer for non-standard endoscopy), (IH) equals

(17) Y Gm,) Ur(By, (Y2,Y2) D APV, Xu)DPr (Yo,
YZ €3g YSCHXSC/NI:ISC

where the second sum is over the stable conjugacy classes of strongly regular
semisimple elements Yy, € by such that Yy + Yz is a norm of X € gye. By
rearranging the sums, we see that ([C4) equals

(1) ST Alm,) e (B, (V5.Y2)) - AP(V, Xee) D (),
YHXSC/NFI -

where the sum is over the set of stable conjugacy classes of strongly regular semisim-
ple elements of h which are norms of Xs. € g,s. By noting that v(3u,) =

Y(3c,) - ¥(3m) and that Yp(By, (Y, Yz)) = ¢r(Bg(Y;,Yz)) - ¥r(By, (X2, X2)),
Lemma [177 (transfer for isogeny) for H implies that (IR) equals

(19) VGa,) ¥r(Bg, (X5, Xz) Y. APV, X )Dy(Y).
Y(—}XSC/NI:I
Finally, by Theorem IT3 (transfer for standard endoscopy), (I9) equals
* A "k * Gn,sc
(200 2Geg,) - ¥r(By, (X7, Xz)) > AP(Y*, X3 D™ (Xso),
X:CHY*/NG7],SC

where the index set is over the Gy sc-conjugacy classes of strongly regular semisimple
elements of g, sc which correspond to Y*. Then the same argument as in the proof
of Lemma T2 implies that (E0) equals

(21) S AP, XL)DSI(X).

X:(J_}Y*/NGW

We recall that (Y*, X*) is a D-norm pair if and only if X, corresponds to Y* and

the center part of X* is given by X7, which determined by Y*. Thus we see that

the index set of the sum in (E1) is nothing but that of the sum on the right-hand

side of the desired identity. [
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12. TORAL INVARIANTS FOR RESTRICTED ROOTS

12.1. Root systems. Let 1 € Gy and y € $,) (see Section II3) such that D(y,7)

is not empty. Note that y and n correspond in the sense of twisted endoscopy.

Let us recall how ®(G,,T% and ®(H,, T") are described in terms of the re-

stricted roots following [WalO8, Section 3.3]. In the following, we fix a diagram

D = (B°, T°,B®, T) € D(y,n) and simply write v for vp (resp. u for up).
Recall that, with the notation as in Section BZ3, we have

(Gro, T = {p*(a) | @ € B(G, T); N(a) (1) = 1} € Bres(G, T),
8¥(Go, T%) = {N(a") | 0¥ € 8¥(G,T); N(a) () = 1} C BY(G,T)

(note that now we assume that ®,.5(G,T) does not contain any restricted root of
type 2 or 3). The sets ®(H,, Ty) and ®"(H,,, Ty) are given as follows:

®(H,,Tu) = {N(a) | @ € ®(G,T); N(a")(s) = 1, N(a)(v) = 1} € X*(T)’ = X*(Tn),
©Y(Hy, Th) = {p.(a”) | a” € 2Y(G,T); N(a*)(s) = 1, N(a)(v) = 1} C Y.(T) = X.(Tn).

We define an injective map iV: ®V(H,, Tg) — ®Y(G.e, T?) by i¥(p«(aV)) =
N(a"). Then we can regard ®V(H,,, Tg) as a subset of @V (G, T?) via i".

Now we transfer this discussion to ®(G, TO) by using the fixed diagram D. Via
the map &, @EZS)(G,TO) is identified with (I>§eVS)(G,T). Moreover, ®)(G,, T%)
is mapped to ®)(G,g, T?) by this identification. Similarly, via the map §&,,
®(V)(H, T) is identified with ) (H, Tg), and &) (H,, T’) is mapped to @) (H,,, Tg).
By combining these bijective maps with the previous injective map iV, we may iden-
tify ®V(H,, T") as a subset of ®V(G,, T%). Accordingly, we may also may identify
®(H,, T") as a subset of (G, T?).

Let (Y, X) € by,04 X @y0+ be a D-norm pair. Let us fix bilinear forms By, on
gy, By on b, and By, on b, as in Section I4. Then X € g, (resp. Y € b,) can be
identified with an element X* € gy (resp. Y € by).

Lemma 12.1. Let o) be an element of ®¥(H,, T") which is identified with an
element a, of ®V(G,, T%). Let oV € ®V(G,T®) be the coroot satisfying oy =
p«(a¥) € X.(T°) and o) = N(a¥) € X.(T%). Then we have

lo - (dovy (1),Y*) = (doy (1), X*).

Proof. Since (Y, X) is a norm pair with respect to D = (B”, T”, B®, T?), we may
suppose that X € 2 and Y € € and &p: t© — ¢ maps X to YV (cf. the argu-
ment in the proof of Lemma IM¥). Hence, by our choice of bilinear forms, X*
is identified with Y* under the dual isomorphism t#* = * to ¢ =~ . Thus
we can see that, under the identification &p: t8 = ¢, we have (day (1), X*) =

Sitoldlm (@)Y (1), X*) = la{da (1), X*) = la(day (1), Y*). =

12.2. Analysis of ramified restricted roots. Let us next suppose that we have
an F-rational twisted maximal torus T< of G and topologically semisimple elements
n,n € T¢. We investigate the relation between the ramified roots of ®(G,, T%)
and those of ®(G,, T%). For convenience, let us introduce the following notation:

Dres(G, T = {Ores € Pres(G, TO)o | a € B(G, T), },
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where o, % € {asym,ur,ram}. By fixing a Borel subgroup B¢ containing T and
stabilized by the action of T, we take an element g© € G satisfying [¢®](B®, T®) =
(B, T). Let v:= [¢°](n) and v/ := [¢°](n'). We simply write 6, for the involution
O1o of T determined by its twisted structure.

Lemma 12.2. For any ayes € Pres(G, T<>)§Zfr}llln), we have tues € (G, T if and
only if yes € ®(Gyy, TH).

Proof. For any ayes € @res(G, TO)Esz), the following hold:
e F,=F,and F, = F,

Qres)

o Fy../Fia,.. and Fy,/Fy,,. are quadratic ramified, and
o O5(a) € —Ta; let 7o, € T' be an element satistying 7, () = —0¢ ().
Fures Fa
quad | ram

quad
Fj:ares Tam +a

By the description explained in Section 2, it suffices to show that N(«)(v) =
N(a)(v'), which is equivalent to a(n?) = a(n’?). (Here, in the first equality, we
regard a as a root of T and again write « for it.) Since both a(n?) and a(n'?) are
of finite prime-to-p order, it is enough to show that a(n?) = a(’?) (mod px).

Let t € T be an element satisfying 7’ = tn. Then we have 2 = (tn)? =
t-0¢(t) - n?. Since t is F-rational and 7,(a) = —60¢ (), we have

alt - 0o(t) = a(t) 0o (@) (t) = a(t) - Tala(t)) .
By noting that F,,../Fia,.. is ramified, we have a(t) 7o (a(t)) ™' =1 (mod pz). O

Lemma 12.3. For any ques € @reS(G,TO)ESQ, we have Oues € @(GU,T“) if and
only if aes € ®(Gyy, TH).

Proof. For any ayes € Pres(G, TO)EEQ, the following hold:

o F,/Fi, and F,/F,
o F,

Qres

.. are quadratic unramified, and
/Fia,.. and Fyo/Fy,,.. are quadratic ramified.

quad

F

Qres ar

Fo

quad | ram quad | ur

quad
ram +a

F:tares

We let 04,74 € T" be elements satisfying o, () = 0¢(a) and 7, () = —a, respec-
tively. With the same notation and arguments as in the proof of Lemma 23,
it suffices to show that a(t) - 6o (a)(t) = 1 (mod pz) for any t € T. Since ¢ is
F-rational and 7,(a) = —a, we have

Nrg, /r.. (@t) = a(t) - ma(a(t)) = at) - a(t) ™ = 1.

Similarly, we have
Nrp, /P, (@) = a(t) - ga(a(t) = a(t) - 0o (a)(t).
Since both F,/F,,..

a(t) - 9o(a)(t) = Nrg, s, (a(t)) = Nep . (a(t) = 1 (mod pg).
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Lemma 12.4. For any e € @res(G,TO)g?nm) with 1, = 2, we have apes €
®(G,), T if and only if ayes € ®(G,y, T?).

Proof. Suppose that o € ®(G, T?) is a symmetric ramified root with I, = 2. In
this case, the following hold:

o F,/Fi, and F,

Qres

e F,/F,. . and F,

res Ores

/Fia,.. are quadratic ramified, and
/Fia,.. are quadratic unramified.

quad

Fo

Qres ur

quad | ram ram | quad

ur

— F
quad *o

Fiares

(Indeed, since O¢ (o) # —a, we cannot have F, . = Fi,. If Fio/Fi,,. is a
quadratic ramified extension different from F,, ., then F}, must contain a quadratic
unramified extension of Fi,, ., hence we get a contradiction. Thus Fly,/Fiq,..
must be quadratic unramified.) Let 7, € T' be an element satisfying 7, (o) = —a.
Then 7, restricts to the nontrivial element of Gal(F,,../Fia,..). Let 0o € T be an
element satisfying o, (o) = O ().

With the same notation and arguments as in the proof of Lemma [23, it suffices
to show that a(t) - 0o (a)(t) =1 (mod pg). Since t is F-rational and 7, () = —a,

Nrg, /p., (a(t) = a(t) - 7a(a(t) = a(t) - a() ™' = 1.
As F, /Fy, is ramified, this implies that o(t) = £1 (mod px). Thus we get

a(t)-e () (t) = a(t)-oa(a(t)) = Nrp,/r,,, (a(t) = Nrg,p,,  (£1) =1 (mod pg).
(]

12.3. Descent of toral invariants. Let us keep the notation as in Section TZ2.
We next investigate the relation between the toral invariants for (G, T%) and those
for (G, T%). Before we start our discussion, we note that the roots in the ©-orbits
Oa of a € ®(G,T) are orthogonal to each other and that, for any root vector
X, € g,, we have 0l (X,) = X, (these are true since we are assuming that there
is no restricted root of type 2 or 3; see [KS99, (1.3.5-1.3.7)]).

Let t € T be the element satisfying 1’ = tn.

Proposition 12.5. Let ayes € Dres(G, TO)EZS;X“‘). Suppose that cues € @(GW,T”),
which is equivalent to ares € B(Gyy, Th) by Lemma T2Z3B. Then we have

f(G,,,Th)(Oéres) = f(Gn,,Tﬂ)(areS) “€a(t).
Proof. We use the notation as in the proof of Lemma 2. We take an element

Xo of g,(Fa). Then X, = Xo + [7](Xo) belongs to g, . (Fa,..) (note that

Qres Qres

F,... = F,). Thus, by the definition of the toral invariant (see Section [[2),
X ? 7 X res;
f(G,,,,Th)(Oéres) = Koy, ( [ aresmHoz( a 71)} )
_ ([Xm [n)(7a(Xa))] + [[n}(Xa)’Ta(Xa)U
- Hared H

Qres
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(note that 7o (@) = =04 (a)). Since we have [n]([Xa, [7](7a(Xa))]) = [[M](Xa), 7a(Xa)]
and H,, , = Hy + [n](Ha), we get

f(Gn,Th)(O‘reS) = HQres(

By the same computation, we get

f(Gn,,Tﬂ)(O‘reS) = Kare:;(
Hence, we get

f(Gn/,Th)(areS) = f(G,,,Th)(O‘reS) Koy (Ta((1))).

Since K, is the quadratic character of Fl, . corresponding to the extension
Foy../Fsa,.., by noting that a(t) belongs to O, , we conclude that

Ko (Ta(a(t))) = Sg1y, x (W) = €a(t).
O

Proposition 12.6. Let oo € @res(G,TO)gg. Suppose that ayes € ®(G,, TH),
which is equivalent to ayes € ®(Gyy, T%) by Lemma IZ3. Then we have

f(Gn,Th)(ares) = f(Gn/,Th)(ares) ) Ea(t)-

Proof. We use the notation as in the proof of Lemma IZZ3. We take an element X,
of g,(Fa). Then X, ., = Xo + [7](Xa) belongs to g, .. (Fa). To compute the
toral invariant f(q, ¢)(res), let us scale Xo, ., so that it is Fy,  -rational. Let
C, € FJ be the constant determined by o,(Xs) = C), - [7](X4). Note that then
oa(M(Xa)) = Cy - X,. Indeed, since 1 is F-rational, we have

Ua([nKXa)) = [n](oa(Xa)) = [77](077 ) [n](Xa)) = Cn : a(nQ) cXo = Cn - Xa.
Thus we have
oo (Xa) = 0a(Cy - [N(Xa)) = 0a(Cy) - Cp - Xo =Nrp, /r,  (Cy) - Xa.
On the other hand, since o2 belongs to 'y, 02 fixes X,. This implies that
Nrg, /p,,..(Cy) = 1. Hence, by the Hilbert 90th theorem, we can find an ele-
ment z, € FJ satistying C,, = x, /0 (x,). By putting X, » = 2y - Xaye,,n» We
get an F,,,  -rational root vector Xo, . » € 8y a...(Fore.)-

res

Now let us compute the toral invariant using X, _ »:

T N e )
I (G SR AR A L)
Qres H .

Qres

By the same argument as in the proof of Proposition IZ3, this equals
< [a:,,Xa, Ta<$nXa)] )
Qres Ha .
By the same computation, putting C,y € F* and z, € F in the same manner,

[xn’XaaTa(fcn/Xa)])
H, ’

f(Gn/,Tb)(O‘reS) = h:ares(
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Thus we get

f(Gn/,Th)(O‘res) = f(Gn,Th)(O‘res) * Rayes ((xnlxn 1) : Ta(xn/l';l))-
We put y = zpya; " € F, hence fa,,, (22 ")  Ta (@ 231)) = Koy, (¥ Ta(y). As
Cp - (Xa) = 0a(Xa) = Cy - ](Xa), we have Cyy = a(t)~1C,. Hence we have
y/0a(y) = a(t)~!. Here we note that, since F,/F,, _ is unramified, we can choose
z, and 2, to be elements of O, , hence y € Of, . We note that the composition

== Nrka/kia ~
kb — kX kX KXo/kE2 2ot y/oa(y) =y y-Taly)

defines the unique nontrivial quadratic character of k.. Hence we get

Fane (Y Ta(y)) = sgnyy (a(t) ™ = ealt).
(]

Proposition 12.7. Let qes € @rCS(G,TQ)g%n). Suppose that Qres € @(Gn,Th)
and oyes € ®(G,y, T%). Then we have

f(Gn/,Th)(O‘res) Zf F, = F()éresy
f(Gn/,Th)(O‘res) ca(t) if Fo # Fa,,-

Here, in the latter case, we have a(t) = +1, hence regard a(t) € {£1} C C*.

f(Gn,Th) (ares) = {

Proof. We first consider the case where F,, = F,

[ ] Fa/Fioz and Fares
o Fio=Fiq,..

In this case,

res*

/Fia,.. are quadratic unramified, and

Qres FOC
quad | ram ram | quad
Fio,.. —— Fia
Let 7, € T be an element satisfying 7, («) = —«. Then 7, restricts to the nontrivial

element of Gal(Fy,../Fia,..)-

When 04 (a) = a, we get fia, 18)(Qes) = fg,To)(@) simply because we can
use the same root vector X, both for computing fiq, r+)(cres) and figro)(a).
When 64 (o) # o, by taking X, and X, , in the same way and applying the
same argument as in the case where a,es € (G, S)ﬁg‘;}am, we have

f(Gn,Tﬂ)(arcs) = Ky, ( [Xarcsm?};@ (Xarcsvn)} )

. ([XmTa(Xa)] + [[ﬁ](Xa)vTa([ﬁ](Xa))])
Qres H

Qres

= KQ(W) = fiaro) ().

Hence we get fiq, 1) (tres) = f(q,To)(a) regardless of whether 6¢, (o) = o or not.
Since f(Gn,,Th)(Oéres) = f(g,To)(a) for the same reason, we get f(GmTh)(ares) =
f(Gn/,Th)(ares)-
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We next consider the case where F, /F,,__ is quadratic. We use the same notation
as in the proof of Lemma 2. By the same usage of notation and arguments as

in the case where a € (G, S)E.;‘:?mm, we get

f(G, /,Tﬂ)(ares) = f(G ,T”)(O‘reS) Koo (Y Ta(Y))-

Recall that y € Opx is an element such that y/o.(y) = a(t)~t. In the present

case (where F, /Fia is ramified), since a(t) € Ker(Nrg, /g, ), we have a(t) = £1
(mod pg). Then we can check that k... (y - 7a(y)) equals +1 or —1 according to
a(t) = +1 or a(t) = —1. Hence we get

f(Gn/,Th)(ares) = f(G,,,Th)(ares) 'a(t)~

13. SOME COMPUTATION OF TRANSFER FACTORS

In this section, we establish some formulas on transfer factors which will be
needed in our proof of the twisted endoscopic character relation.

Let (7,6) € D and we fix D = (B”, T?, B®, T) € D(y, §), which is unique up to
equivalence by Lemma T2, Note that, in particular, we have v € T” and 6 € T.
We also fix a set @ = {aq,., }a,.. Of a-data and a set x = {Xa,o. fase. Of minimally
ramified x-data for ®,.(G, T?) (in the sense of Kaletha; Definition [3).

Let us suppose that § € T< is elliptic strongly regular semisimple with a normal
r-approximation § = dpdt,. 6>, (recall Definition BTH). Then, by using the maps
£p and £p, we can associate a decomposition y = Y0vE,v>r to v by transferring
the decomposition § = §o6L, 0>,

Lemma 13.1. The decomposition v = ’YO’YIH’ET gives a normal r-approximation.

Proof. This follows from that ®(H,T") is identified with a subset of @, (G, T?)
(Section M) and that p # 2. O

). We also put vZ, = £,(0%,) and

We put v := ¢ () - 0~ and vy = (6
) >r-

Vsyp = £ (0>r). Thus we have v = (10 '<"+

13.1. First factor Aj.

Lemma 13.2. For any (7,0) € D satisfying 5 € T" and 6 € T, we have
Aia, X](7,6) = Atla, x](7,9).

Proof. By definition (see [KSY9, Section 4.2]), the first factor Ar(¥,5) depends
only on the F-rational (twisted) maximal tori of H and G containing 5 and 4,
respectively. Thus we get the assertion. O

13.2. Second factor Ay. For any element ' € T, we put

M) = T e (MY,

. a/ res
res €D res (G, T?) “
N(a)(v))#1

where 1/ € T is the element such that £ (8") =
The following is the twisted version of [K alwt Lemma 4.6.7].
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Lemma 13.3. If we put

x00) =[]  Xow(la),

Ores E‘b(Géo 7Th)

then we have
é G G5o
Atila, x](6) = Arla, x](60) - Ay [a, x](0+) - x(do).
Proof. By definition, we have

” N(a)(v) ~ 1
Aﬁ'[mx](éo) = H Xares(ai )
O‘rese‘iDres(G,To) Qres
N(a)(vo)#1

and

A0 = T e (M=)

. Geyyes
aresqu(GSO;Th) re
Qres(v4)#1

Let es € ®res(G, TC). Note that we have

la—1

N@)wo)® = (] @) = [ @)00) = a(w00)?).
1=0 =0

As g0 is of finite prime-to-p order modulo the center and p # 2, we see that
N(a)(vp) is a root of unity of prime-to-p-order in F'. Since we have

N(a)(v) = N(a)(v) - N(a)(v1) = N(a)(vo) - a(vs)'=,
and vy is pro-unipotent, N(«a)(r) # 1 holds if and only if exactly one of the
following holds:
o N(a)(o) £1, or
e N(a)(rp) =1 and a(vy )l # 1 (the latter condition is furthermore equiva-
lent to a(v4) # 1 as I, is prime to p).

When N(«o)(vp) # 1, by noting that x,,.. is tamely ramified, we get

N@@) -1y (N@)m) -1}

aares a'ares

When N(a)(rp) =1 and a(vy) # 1, we have
o (M Z1) NG 1

aares a/are:;

As we have N(a)(vy) = a(vy)le and [, is prime to p, we have
N(a)(vy) = 1= (a(vy) = 1) ()t 4+ +1) € (a(vy) = 1) Lo - (1 +pp,).
Hence again the tamely-ramifiedness of x,,.. implies that
N(a)(vy) —1 a(vy) —1
Xotres (M) = Xayes (i> * Xatres (la)'
Qorres Aavres

Recall that ®(Gs,, T?) is identified with the subset of ®,5(G,T®) consisting of
restricted roots ayes satisfying N(«)(vp) = 1 (see Section B3). Thus, by noting that
§ is strongly regular semisimple, hence no root a € ®(Gs,, T?) satisfies () = 1,

we get the assertion (see Lemma BIH). O
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The following will be a crucially important ingredient in our proof of the twisted
endoscopic character relation.

Lemma 13.4. The constant x (o) in Lemma L3 does not depend on &y € T,

Proof. Recall that x(dp) is defined to be the product of xq,.. (la) over the set ayes €
®(Gy,, T?). Since x is minimally ramified, Xa,..(ls) can be nontrivial only when
Qres is ramified and [, # 1. However, the set of such restricted roots does not
depend on §y by Lemmas I, I3, and 24, O

Lemma 13.5. For any su]fﬁciently large positive integer m € Zsg, we have

2 m

Anla, ) (ver -8, 0<r 02 ) = Anla, X (Yar - 5 Gr - 051).
Proof. By Lemma 33, we have

AG[a, ¥ (<, - 5>T> AG[a,X](%0) - A [a, XI(8%, - 65r) - x(60),
A§lax](0<, -8 A& (e, ¥](%0) - AG [, x(0E, - 0% ) - x(60).

V)=
According to the proof of [KalT9h, Lemma 6.3. 3] we have

2m

A a, XI(6%, - 85,) = A a, X](8%, - 62"

for any sufﬁmently large positive integer m € Z~g, hence get AH [a, x](0<r - 05p) =

Ag[a x](0<r - 5>7‘ ). Similarly, we have Affa, x](v<r - 72r) = Affla, X](v<7 - 7>rm)~
Since the second factor Ajfa, x](v, ) is defined to be the ratio of AIC'I"[a, x](9) to
AHla, x](7), we get the assertion. O

13.3. Third factor Ajj. Since we assume that G is quasi-split (and also fix a
f-stable splitting of G), we have the absolute third factor Aryla, x](v,d) given
according to the manner of [KS9Y, Section 5.3], which satisfies

Amla, X](v,8;%,0) = Amila, X](7, 6) /Ama, X](7, 6)
for any (7,6) € D. We review the construction of Arla, x](v,d;7,0) following
[KS9Y, Section 4.4]. We fix a diagram D = (B”, T, B, T?) € D(7, ).
The relative third factor is given by using the following Take-Nakayama pairing
for hyper-cohomology of tori (see [KS99, Appendix A]):

(22) (—, =) HY(F, Uy =% So) x H (Wp, Sy =% U,) — C*.

Let us recall the definitions of the tori Uy and Sg.
We first note the following lemma, which is a rephrase of [KSY94, Lemma 3.3.B]:

Lemma 13.6. There exists a 0-stable F-rational maximal torus Ty and a 0-stable
Borel subgroup By containing T such that the isomorphism T — T given by the
Borel pairs (B¢, T®) and (Bo, To) is F-rational.

In the following, we fix (Bg, Tg) and (Bg, To) as in this lemma for (B<> T?)
and (B¢, T®). We then get canonical isomorphisms To = T and To >~ T (not
necessarily I'-equivariant). We 1dent1fy TO and TO with T via these isomorphisms

but keep using the symbols T, and To in order to emphasize that their Galois

actions are not the one coming from the I'-action on T C G. We take g; € Gg. such

that [g1](BY, T¢) = (By, Ty), ie., [g1]: T® — Ty is the F-rational isomorphism
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as in Lemma I3@. Similarly, also for (B¢, T¢), we take g; € G realizing the
F-rational isomorphism [g;]: T — Ty.

In the following, the subscript “sc” denotes the preimage in the simply-connected
cover G of the derived group of G and the subscript “ad” denotes the image in
the adjoint group G,q of G. We use a similar notation also for G. We define
F-rational tori Sy and Uy by

(23) SO = (TO X To)/A_ZG =Ty x TO,ad3 (t,{) g (t{, Ead)

(24) UO = (T07SC X TO,SC)/A—ZGSC = TO,SC X TO,ad: (t,??) — (tf, Ead).
Here, A_Zg ., ={(z,27") | 2 € Zg,., }- Thus the dual tori are given by

So =Ty x Tose and Ug = Toaq X Tosc.

We consider the homomorphism 1 — §: To — Tg: t — t/0(t) and also its lift to
Tosc. We define homomorphisms of Sg and Uy, for which we again write 1 — 6, to
be the one induced by (¢,%) — ((1—0)(t), (1—6)(f)). Then we get homomorphisms
1—6on Sy and U,. Accordingly, the hyper-cohomology and the Tate-Nakayama
pairing as in (22) makes sense. The relative third factor is defined by

AIH[av X] (7? 857, 5) = <1nV(77 857, ) >

(Note that the right-hand side is inverted according to [KST2].) Thus let us next
explain the constructions of inv(y, d;7,0) and A.

We first consider inv(vy,d;7,5). By putting v, := g1 - o(g1)~! and o, : a1
a(g1)~ 1, we get a 1-cocycle V: T' — Sg which maps o to the image of (v, !, v, )
ToxTp in Sg. On the other hand, we put 66 := [g1](8) and Jp x 6 := [gl]( ) (thus
80,60 € To). We define an element D € Sy to be the image of (60, 5o e Ty x T
in Sg. Then (V, D) forms a 1-hyper-cocycle. We let inv(y,d;¥,0) be the hyper-
cohomology class of (V, D).

We next consider A. We introduce two kinds of L-embeddings Lj}( and L])EI

(1) Let LG := G! x W, where G! := G?°. If we put T1 := T%°, then G! is
a connected reductive group whose root system @(él, Tl) is regarded as a
subset of ®res(G,T) (see Section B3). Since we fixed sets of a-data and x-
data for ®,.(G, T), we also have sets of a-data and y-data for @res(é, ’i‘)
which is equipped with a I-action derived from that of ®,.s(G, T<). Hence,
by the Langlands—Shelstad construction [LS87, Section 2.6], we obtain an
L-embedding % : T! x Wr < LG!. Here, we emphasize that the T-action
on T! is imported from that on To through the isomorphism Ty =~ T.
Thus T! x W is nothing but the L-group of the #-coinvariant Tq ¢ of Ty.

(2) On the other hand, as ®(H,T”) is regarded as a subset of ®,.(G,T?)
(see Section MX), the fixed sets of a-data and y-data also induce those for
®(H, T"). Hence, by the Langlands-Shelstad construction [LS87, Section
2.6], we obtain an L-embedding jH Lrb y LH.

Now we note that the homomorphism épolg]™t: Tg — T is F-rational and
induces an isomorphism Tq ¢ = =~ T”. Thus we can compare two L-embeddings “j 1

and © T H through this identification Tg g = T and 5. IH — I'G. We define a map
92



‘T — T!: 0 — at,,o by
£o (1% 0) = aryo - Hix(1 % 0),

then at, is regarded as a 1-cocycle I' — T, under the identification Ty = T. We de-
fine a 1-cocycle ap, : I' — T, in the same manner and put A= (at,,ar,/a1,): T —
So. On the other hand, we take an element sg. € TSC having the same image in
Tad as s € T and write sT, and s, for its images in TO sc and To sc, respectively.
We put sg, 1= (5Ty,ad> 57T,/5T,) € Up. Then (A™1,sg,) forms a 1-hyper-cocycle.
We let A be the hyper-cohomology class of (A™1, sg, ).

The following proposition and its proof are inspired by [MezI3, Lemma 17].

Proposition 13.7. Let (7, 8) € D be another pair such that D = (B”, T’, B, T?) ¢
D(#,6). Then we have

AIII[ aX](’Yv(; v ) <5/6 aT<>> TN-

Here, the pairing on the right-hand side is the Tate-Nakayama pairing for T and
ar, 1is the 1-cocycle transported from ax, via the identification [g1]: T¢, — To.

Proof. We examine the construction of Arla, x](7,d;7%,0) explained above by as-
suming that D = D. We note that, under the identifications (23) and (24), we have
Vo = (V5 /U0, Vo,ad) and D = (50/60, 0. d) Hence, as we have v, = 7,, we see that
V and D are given by

Viowr (1,v50d) and D= (50/50,5(;id).
On the other hand, A and sg, are given by
A: o= (ar,,1) and sg, = (S1g,ads 1)
We have the following commutative diagrams which are dual to each other:

1-6
TO,SC TO

prlT prlT
1—

Y 0 Y
Up = Tosc X Topaa —> S0 =2 Ty X Toad

To,ad TO

ilJ/ ill
oA A 1—0 & ~
Up =2 Tpad X Togc ¢ S0 =Ty x Toec

Here, pr; and i; denote the first projection and the injection to the first en-
try, respectively. We note that (47!, ss,) is the push-out of the 1-hyper-cocycle
(ar};, 5Ty .ad) along the map i;. Thus, since (pry (V), pry(D)) = (1,80/d0), the func-
toriality of the Tate—Nakayama pairing (see [WalO8, Section 6.3]) implies that

(inv (v, 657, 5)7 A)rn = ((V, D), (Ailv SS0)>TN =((1, 50/50)7 (a’z‘i7 STO,ad)>TN,

where the last pairing is the one for (T s i, To, Ty 19, To,ad).
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We next note the following commutative diagrams which are dual to each other:

{1} —— Ty {1} +—— 1T,
J{ idl T Tid
1-6 - 1—0 =~
Tosc — To To,aa < Ty

Since (1,80 /d0) is obtained by the push-out from 1 — Ty and the image of (ar}i, 5Ty,ad)
in Ty — {1} is (a}i, 1), again the functoriality of the Tate-Nakayama pairing im-
plies

((1,00/00), (ag}, s10,00)) T8 = (d0/80, g, )TN,

where the pairing on the right-hand side is the one for ({1} — Ty, To — {1}),
which is nothing but the usual Tate-Nakayama pairing for Ty (see [KS9Y, A.3.13]

assertion. 0

Lemma 13.8. For any positive integer m € Z~q, we have

m

Arila, X](v<r - Y2y, 0<r - 02,) = Amla, X] (7, 0)-
Proof. Tt suffices to show that the relative factor Aypfa, x](v<r - Y2, d<p - 62057, 6)
is trivial. By Proposition 373, this relative factor equals (5@7,_1_,aT<>>TN._ Since
we assume that x is minimally ramified, the character (—, aT<>_>TN of T is tamely

ramified. Thus we get (62!, apo)rn = 1. U

13.4. Fourth factor Apy. Recall from [KSYY, Section 4.5] that the fourth factor
Ay (7,9) is defined by

Arv(7,8) == A§(8)/ AR (v),
where

A (5) = |det(|5] — 1| g/t*)2 and  AR(3) = |det(ly] - 1| b/¢)[2.

Recall that, since we are assuming that ®,.(G,T<) does not contain a restricted
root of type 2 or 3, we have

ARG = JI N -1z
a€¢res(G7T<>)

(see [KS9Y, Section 4.5]). By noting this, we extend the definition of AIC\"/ also for
any semisimple element &’ € T by

~ 1
AR = I  IN(@@)-1]Z,
QEP;es (G, T?)

N(a)(v)#1

where v/ € T is the element such that £, (8") = v/6. We define AH (y/) for any
semisimple 4/ € T” in a similar way.

Lemma 13.9. We have
A . G N 1 N 1
AR (0) = AR (0<r) - AR/ (02r) = [DES (n4)]7 - |DE (log(621))|2,

no
H
A{\I/(W) = ARI/(VQ) AR (Y2r)-
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Proof. We consider only Alé\;, (8) since the formula for AR () can be showed by a
simpler argument. By noting that the valuation of N(«)(v<,) — 1 is smaller than
r when N(a)(v<,) # 1, we have

_ {IN(a)(Vq) - 1% if N(a)(vey) # 1,
IN(@)(v=p) — 1% if N(a)(veyr) = 1.

Since {a@ € ®es(G, T) | N(a)(v<,) = 1} is identified with the set ®(Gs_,, T?)
(Section B3) and

IN(@)(v2r) = 1% = la(vzr)' = 1% = |a(vs,) — 1%

(use that I, = 1,2 and p # 2), we get A%(&) = A%(5<T) . Aﬁf“ (0>r).

By applying the same argument to A, (6<,), we also have a decomposition
A%(éq) = Ag‘,(éo) . AIC\;,‘SO((SZ). However, we have |N(a)(vp) — 1| = 1 when-
ever N(a)(vy) # 1 since N(a)(vp) is of prime-to-p order. Hence we get Ag',(é) =
A0 (62,)- A< (8,). This can be rewritten as AS () = 1D (4 )|2-[DEd(85,)|2
by [DST8, Remark 2.12]. By also noting that |DE?S(5Z7')| = |D£§f(log(527.))|, we
obtain the assertion. (]

[N(a)(v) -1

i

Lemma 13.10. There exists a constant d € Z>q determined by 6, such that, for
any positive integer m € Z~q, we have

AIV(’Y<T : '712)7:75<r : 51;:) = |P|%d . AIV('Y<T CY>r, 5<r : 52r)~
Proof. By Lemma I3, we have A%(é) = Alé\},(5<,«) : A§,5<"'(627.) and Af\;,(5<,. .
61;:) =A% (6<r) -AS,JO (5;7:) On the other hand, by [Hal93, Lemma 3.1], we have

G m (G ’ G S
AIV‘;“(&;) = |p|;| (Gacr TN, Ay <" (6>,) when p > ep + 1, which is assumed

to hold (see the beginning of Section I). Similarly, we have AF (vo, - v5,) =
m m H m
ARI/(V«) : AR/(VZTL Af\lz(’kr '7&) = AR](’YO) : A%(Vgr% and AIV7<T<'7§r> =

o(H b H . .
‘pg' (Hyep T ‘AL <" (y>r) when p > ep+1. By putting all of these into together,
we get the assertion. O

13.5. Tail-scaling lemma on the full transfer factor. By combining Lemmas
332, 35, 38, and 310, we get the following proposition, which is the twisted
version of [KalT9H, Lemma 6.3.3].

Lemma 13.11. For any sufficiently large positive integer m € Zsg, we have

o 2m 2m o
Ay<r 'Ygr N 5§r ) =A(v<r Vo0 - 6>p)  and
A(yar - AZ Gy 68) = [P A(Yar - Yo, 0y - 0
(7<r V>pr 2 0<r 0>, ) |p|F ('Y<r Y>r, O<r zr)
with constant d as in Lemma [L3T0.
An important consequence of this lemma is the following.
Proposition 13.12. With the notation as in Theorem I3 and Corollary T14,
for any D-norm pair (Y, X) € by 0+ X @y0+, we have
A(y exp(Y),neXp(X)) =AY, X,.) and

A(y exp(Y), UeXP(X)) : AIV(Z/, 77) = AD(Yv Xsc)
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Proof. By Lemma 3T, we have
A(yexp(Y),nexp(X)) = [p|z2™* - Ay exp(p®™Y), nexp(p™™ X))

for any sufficiently large m € Z~(. By taking m to be a sufficiently large integer so
that p?™Y belongs to the set U as in Corollary T4, we get

A(yexp(p*™Y),nexp(p”™ X)) = A (p*"Y , p*" Xc)
by Corollary . By the homogeneity of the Lie algebra transfer factor, we have
AP (p*™Y, p*" X)) = [plZ? - AP(Y, Xio) (see [Waldd, Section 2.3] and [Hald3,
Section 10]). Thus we get the first equality.
By Lemma I3, we have Ary (7, d) = Ay (y, 77)~AIGV" (62,,)~A;I,y (y>r)"t. Hence,
by noting A7 (§5) - ALY (75,) 71 = AR, (Y, X..), we get the second equality. [

14. TWISTED ENDOSCOPIC CHARACTER RELATION

14.1. Twisted endoscopic character relation. We assume that (S, j, x,¥) in a
toral supercuspidal L-packet datum of G whose L-parameter ¢ factors though the
L-embedding ¢ for an endoscopic data (H,ZH, s, €) (i.c., we are in the situation as
in Section B2). Here, by replacing (S, j, x, ¥) with its isomorphic data if necessary,
we may assume that x = xy, (see Section [Z33). As in the manner of Section
O3, we get a toral supercuspidal L-packet datum (S, ju, xm, Um). Similarly, we
may assume that xu = xv,,. Let H(c; (resp. H;IH) denote the associated toral
supercuspidal L-packet of G (resp. H).
The aim of this section is to establish the following in some special cases:

Expectation 14.1. For ecach 7 € Hf there exists a constant A € C such that
the following identity holds for any elliptic strongly reqular semisimple § € G:

H 2
S aree. = 3 WA T 6,0,

G (5)2
TrEHg YEH /st AIV(d) ﬂHEHgH

or equivalently,

(25) STOAPCD(0) = > A(M8) D Bry(7),

G H
mEIG YEH /st T €I

where the first sum on the right-hand sides is over the stable conjugacy classes of
strongly G-reqular semisimple elements of H and we put ®z(8) := A (8) - ©z()
and Oy (7) = ARG (Y) - Oy (7)-

14.2. Several preliminary considerations.

14.2.1. Initial observation on the index sets. In the following, we fix an elliptic
strongly regular semisimple element § € G and also fix a normal r-approximation
§ = 606%,0>, in the sense of Definition B3 (recall that we can always find a
normal r-approximation by Proposition BT4). We let 1 denote ., € Ges. We take
a set ), C Hg as in Section L3, i.e., ), is a set of representatives for the stable
conjugacy classes of semisimple elements of i such that y corresponds to n and H,
is quasi-split for any y € 9,,.
Recall that the #-stable members of Hg are parametrized by

jg = {j: S G | j is F-rational and j ~g 77'}/~q.
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More precisely, for each j € jGG , the corresponding member is given to be the toral
supercuspidal representation (let us write ;) arising from the tame elliptic regular
pair (S;,9}) of G (see Section Z33). According to the twisted character formula
(Theorem BM), the twisted character ®x,(d) is expressed by a sum over the set

{9 € S;\G/G,, | 9 € S;}. For each j € J§, we put
jgn(j) = {k:S < G| k is F-rational, k ~¢ 7, and 7 € Sk}/wcn.
Lemma 14.2. We have a bijection
{9 € S\G/Gy | n € 83} 5 TE,(): g+ [97 ] 0 j.

Proof. Tt suffices to check that the surjective map from {g € S;\G | 97 € S;} to
{k:S < G | k is F-rational, k ~¢ j, and n € Si} given by g — [g]7! 0 j is in fact
injective. (Then we can get the assertion by taking the quotient by G,.) Let us
suppose that two elements g and ¢’ of G map to the same element, i.e., we have
[g] 7t oj =1[¢g']7*oj. Then ¢g’g~' belongs to S;, hence g and ¢’ belong to the same
double coset. Hence the map in the assertion is injective. O

By this lemma, the G-side Znenf ASP(p )0z (d) of the twisted endoscopic
character relation (Z3) can be written as a double sum over the sets 7§ and jgn ()
(for j € J§). We rearrange this double as follows. We first combine J§ and jgn ()
(for j € jg' ) into the following single set:

jgn :={k: S G| kis F-rational, k ~g 7%, and n € Sk}/NGn-
Then we again divide j& into the sets jg’n and jgn" (j) (for j € jg‘n), where
o jg'y :={j: S G |jis F-rational, j ~g 77 *, and n € Sj}/NGn,
. j&"(j) :={k: S — G | k is F-rational, k ~a, J,and 1 € Sk}/NG".

In the following arguments, we fix representatives of these sets and loosely identify
these sets with the fixed sets of representatives.

& G _Jg,
I8 G I
/

Jé

n

G G,

Gy T

Keeping this observation in mind, let us first consider the case where
D(y,n) = @ for any y € 9,,.

In this case, by Proposition I (and Remark [T37), jgn is necessarily empty.
This implies that the G-side of the twisted endoscopic character relation contains
a sum over the empty set, hence equals 0. On the other hand, we see that also the
H-side equals 0 by the following lemma:

Lemma 14.3. If D(y,n) = @ for any y € $y,, then there is no norm of § in H.

Proof. For the sake of contradiction, let us suppose that there exists a norm v € H

of 6. Then we have a diagram D € D(v, ) associated to (y,d) by Lemma [

If we put € := £p(n), D is also a diagram associated to (e,n). Then, by the

same argument as in the proof of the surjectivity part of Proposition I, we can
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construct a unique y € §, and a diagram D’ associated to (y,n) by modifying D
via H-conjugacy. Thus we get a contradiction. (]

Therefore, in the following, we focus on an(y) elliptic strongly regular semisimple
element § € G such that

D(y,n) # @ for some y € $,,.

Remark 14.4. This argument shows that if there does not exist an elliptic strongly
regular semisimple element 6 € G such that D(y,n) # @ for some y € §,, then
there is nothing to prove anymore. In this case, we simply put ASP¢(¢, ) := 0 for
any m € Hg.

14.2.2. Head-tail stratification of the endoscopic index set. When v € H is a norm
of § € G, we take a diagram D € D(v,d) and consider the associated map §~D.
According to Lemma [, such a diagram always exists uniquely up to equivalence
and the map {p is independent of the choice of D. By noting this, we put v; :=
¢p(0;) for i € R>p. Then we get a normal r-approximation v = v<, - v>, (see
Lemma [3). Note that the r-approximation to v induced from that to § in this
way is consistent with respect to the stable H-conjugacy. More precisely, for any
norms v € H and 4 € H of § which are stably conjugate by h € H (say 7 = "),
we have 7; = "v;.
For each y € 9,), we put

H,[5], = {z € Hy oo yz € H is a norm of 6, }

y - z is the fixed normal r-approximation to yz

Lemma 14.5 ([KalT5, Lemma 6.4]). The map

|_| Hy[6],/~n, = {7 € Has | v is a norm of 6} /~u: 2z — yz
YEN,
is a mo(HY)(F)-torsor on each disjoint summand H,[0],/~n, (onto its image).
Furthermore, the induced map

|_| (Hy[6]r/~m,)/mo(HY)(F) = {y € Has | v is a norm of 6}/~m: 2z — yz
YEN,
is bijective. Here, ~p, on the left-hand side (resp. ~u on the right-hand side)
denotes the stable conjugacy in H, (resp. H).

Proof. The well-definedness of the map is obvious.

We first show the surjectivity of the map. Let v € Hg be a norm of §. Then,
according to Lemma [, there exists a diagram D € D(v,d) unique up to equiv-
alence. We put € := gD(n). Then, by the definition of §,), there uniquely exists a
y € 9, which is stably H-conjugate to e. Let us take an element h € H giving this
stable conjugacy, that is, [h](¢) = y and o(h)"'h € H, for any o € I'. Then the
map [h] gives an inner twist between H. and the quasi-split connected reductive
group H,. Since any maximal torus defined over F' transfers to the quasi-split
inner form, we may suppose that the map [h]: H. — H, induces an F-rational
isomorphism from H,, (this is a maximal torus of H.) to a maximal torus of H,.
Then z := [h|({p(0>r)) is an element of H, such that yz = [h](7). This means that
the map in the assertion is surjective.

We next investigate the fibers of the map. Suppose that we have z € Hy[d],
and zZ € Hyld], for y,7 € 9, such that yz and 3z are stably H-conjugate. Let
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h € H be an element giving the stable conjugacy, i.e., [h](yz) = §Zz. As we took the
normal r-approximations to be consistent with the stable conjugacy, this implies
that [h](y) = y. Then, by the definition of $,, we get y = g, hence h € HY. Since
we also have [h](z) = z, we know that z and Z are conjugate under the action of
mo(HY)(F) by [Kalli, Lemma 6.3]. O

Lemma 14.6. We put X := log(0>,) € g,. Let z € Hy[0], and we put Y =
log(z) € b,. There exists a diagram D € D(y,n) uniquely up to equivalence such
that (Y, X) is a D-norm pair.

Proof. By the definition of the set H,[d],, yz is a norm of § and y - z is the fixed
r-approximation to yz. Hence, according to our choice of normal r-approximations,
there exists a diagram D = (B?, T, B¢, T®) € D(y, n) satisfying §~D(77) =y and
¢p(6>r) = z. This implies that (Y, X) is a D-norm pair.

To check the uniqueness of D, let us suppose that (Y, X) is a D-norm pair for
another diagram D = (B?, T”, B<> ,T¢) € D(y,n). Then, by replacing D with its
equivalent diagram approprlately, we may assume that Tb =T and T® = T and
that £p(exp(X)) = exp(Y) = p(exp(X)) (cf. the argument in the proof of Lemma
MIN). This implies that both D and D belong to D(yexp(Y),nexp(X)). Thus,
by Lemma 4, D and D are equivalent in D(yexp(Y),nexp(X)), hence also in

D(y,n). O

By the invariance of the logarithm map, Lemma IZ8 implies the following.

Lemma 14.7. The association z — log(z) induces a bijection
1:1 D
Hy[0},/~n, — |_| {Y < X}/~n,,
DeD(y,m)

where the left-hand side denotes the set of H,-conjugacy classes of elements of
H,[6], and the right-hand side denotes the set of H,-conjugacy classes of elements
Y € b, which constitute a D-norm pair with X :=log(d>,) (over D € D(y,n)).

14.2.3. Lie algebra transfer: revisited. We introduce the sets JE, jf};, «71—}111, and

J II;y Y to rearrange the index sets on the H-side of (23) in a similar manner to Section
2.

i§ G _JE, H _JH,
n ll

Recall that, by Proposition I, we have a bijective map
tean: | | (D(y,n) x T, ) /mo(HY)(F) = I§,.

YEN,
Suppose that D € D(y,n), ju € jH ,and j € «7(; satisfy tean(D, ju) = j.
We also recall that, in Section M, we fixed X* € 5* and Y* € S§y, which are the
elements realizing the toral characters 9 and ¥y, respectively (see Corollary B221).
In the following, for k € J&, we put

X} = (dk*)"HX*) € 5 — g
(note that dk: s = si, hence dk*: s} = s*). This can be also thought of as an

element of s; representing the character Iilsy., = Y%4ls,..,.. Note that when k
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belongs to jGGn, we also have an element X, € 55: <> gy, which can be thought

of as the image of the above X} under the natural map s; — si*. Similarly, for

kg € JH, we put
Yy o= (dkfy) N (Y") €55 = b"
By the construction of the map tran, the maps £s and £p coincide under the
embeddings j and jg, i.e., £p o j = jg o s. This implies that d{E(Y];) =X7 €
(t0*)fo.

Lemma 14.8. (1) Theset{Yy, |ku € j;/y (ju)} represents the H,-conjugacy
classes within a stable H,-conjugacy class.
(2) Theset{X}|ke jg;" (4)} represents the G, -conjugacy classes of elements

of @n.0+ constituting a D-norm pair with Y for a(ny) ku € iny (jm).

Proof. The assertion (1) is obvious by the definitions of Y;;, and J, Ilfy Y (ju). Since
we have d{h(Y},) = X7, (Y;{J(;‘) is a D-norm pair. Noting that all elements
of g,,04 constituting a norm pair with Y;* are G,-conjugate, the assertion (2)

follows. O
Lemma IZ8 enables us to rewrite Proposition T8 as follows:

Proposition 14.9. We have
AD H DG
Z AD(YvXSC) Z DYI;H (Y) = Z AD jH7Xk %c) X; (X)

YBX/mm, k€5 (ju) keJE (3)

14.2.4. a-data and x-data for restricted roots. In our computation of the transfer
factor carried out later, we need to fix sets of a-data and x-data for the restricted
roots. We explain our choice in the following.

We first discuss the G-side. Suppose that j € jé;n For any k € jgc;” (),
we get an n-stable (hence also ng-stable) tame elliptic toral pair (Sg,?,) of G.
Then we have the set ®.5(G,Sy) of restricted roots. We define a set a}® =
{a}es }aresebres(G,Sk) of a-data for ®@,.5(G, Sk) by

[
Ttvges = (Honeos X5),

k,Qres Olres?
where
hd Hares ° dares( ) e 52:(FCK)7 a‘nd

o X; ¢ s,uC _, is an element associated to 19;C as in Section [Z23.

We define a set X} = { X} o,.. Fares€®re(G,8,) Of X-data for pes(G, Si) as follows:
o For aues € Pres(G, Si)asym, let Xk oy, D€ the trivial character of F*

Qres”
e For aes € Pres(G, Si)ur, let Xre‘ be the unique unramified nontrivial
quadratic character of F*
o For ayes € Pres(G, Sk)ram, et X o, P€ the unique tamely ramified char-

acter of F;' characterized by the following properties:

— Ko, and S (2015) = A

J,Ores k,ares

res
Xk ,Qlres

Qres *

LE.
Remark 14.10. We can check that the above conditions uniquely specify the tamely
ramified quadratic character x;7%,  for ayes € @res(G,Sk)ram in the same manner

as in [KalT9h, Section 4.7]. Indeed if we let Cores € Gal(Fy, . /Fia,..) be the unique
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nontrivial element, then we have o, (Ha,..) = Ty, (Ao (1)) = dog,.. (%) (1) =

—dojes(1) = —Ha,,, and 0, (X}) = Xji. Hence oo, (a7, ) = —¢if,, . This
implies that the valuation (normalized with respect to Fy,.) of @},  is odd.

We note that, by restriction, (Sg,?,) induces a tame elliptic toral pair (Si, 19;5)
of Gy, where 19;5 = V) |g: (Lemma B4). Then, by the construction of Kaletha
k

(see Section [T), we have a set Gy = {aﬁ/u a}aeé(Gno,S,ﬂ) of a-data and a set

X = {Xﬁgj,a}aeé(cm,Si) of x-data for ®(G,,, S? ). We shortly write (a?wxi) for

(agyr, Xg)- As explained in Section T2, the set (G, S %) can be regarded as a
k k

subset (root subsystem) of ®,.5(G, Sg). By construction, we have the following:

res res )
5 .

Xk
We next discuss the H-side. Suppose that D € D(y,n), ju € ij’ and j € j(cfn

Lemma 14.11. The sets of a-data and x-data (ai, xi) are restrictions of (aj;

satisfy tvan(D,jg) = j. For any kg € j;/y, we get a tame elliptic toral pair
(Ske» Vyy) = (SH kus Va1 y,) of Ho By applying Kaletha’s construction (Section
) t0 (Sky Uy, ), We get the sets ag, = ag, of a-data and xpy = Xy, of
x-data with respect to ®(H, Sy, ). Suppose that Yy € Sky. Then, as explamed in
Section I, the set ®(H,, Sy, ) can be regarded as a subset (root subsystem) of
®(G,,S%), which is a subset of ®(G,,,S%).

Lemma 14.12. Suppose that oy, € ®(H,, Siy,) is identified with o, € O(G,,, S;:)

res
Then, we have ly - Gy 0, = A}, o

Proof. By definition, we have ajy,a, = (Ha,, Yy,,) and a5, = (H,,, X}). Since
(Y., Xj) is a D-norm pair (Lemma [ZS) and we have Hay = day (1), Ha, =
da,vl(l), we get the equality Iy - Gy .0, = afﬁez by Lemma 2. (I
14.2.5. Twisted character formula of a normalized form. In the following, for each
j € J§, we fix a set of elements {gx € G | k € j&,(j)} such that {[gx]™* 0 j}
is a (fixed) set of representatives of jgn (7). (Note that this set also represents
{9 € S;\G/G,, | I € S;} by Lemma [Z2.) Moreover, we fix a base point n; of the
twisted space S For each k € jG (7), we fix a base point n, of the thsted space

Sk by m,, = ] 71 (1,)-

For any k € jgn, we define a character €3 of Sy by

&.5)=J[ eals)

a€Z(G,Sy)

Proposition 14.13. Let j € j(? For each k € jgn (j), we write n = s, ‘n, € Sh.
Then we have
@7, (8) = Gy, - (~1)F0] - 0(Gyy) - €(Gy) - 2(Tasy, ) - (Tey) !
Gy, r r ~G
Z Ur(sk) - €syram(sk) - €5, (sx) - A" [0, X571 (n4) - Ix7 (log(d>7)),
keJ&, (4)

where a}>® and X} are the sets of a-data and x-data for ®(G,,, SEC) as in Section
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Proof. By Proposition B, we have
Pz, (0) =C, - (—=1)Frol . e(G,,) - e(Gy) -¢(Ta;, ) .e(TG:)—l

—J
- G .Gy,
Do ilsig) - Elsig) - Al X (O - 152 (log(“6,)),
gES;\G /Gy
InES;
where s; 4, € S is the element satisfying 97 = 85970, Recall that 9'(s; ) = €v, - U,
(Section 33). Here we caution that we took the initial regular supercuspidal
packet datum such that its y-data is equal to xy,, hence the zeta character contained
in 19; is trivial. As we have €9, = €9, asym * €9, ur * €S, ram and €z is the product of
€o’s for a € = such that ayes is asymmetric or unramified (see Section B21), we get
V(85,9) - €2(85,9) = V;j(8),9) - €5;,ram(8,9) €5, (8).9)-

By our choice of base points, when g = gi, we have n; = ggk, hence s; 4 = 9sp.
Thus we get U;(sj4) = 0(j7 (s5,9)) = V(" o [gl(sk)) = I (k™ (sk)) = Vn(sk)-
Similarly, we have €s; ram(8j,g) = €s; ram(?5k) = €5, ram (k) €5,(5),9) = €, (Ysk) =

.G Nel Ne!
€5, (sx), and LX;"(log(g(szr)) = Lgf’lX; (log(d>r)) = ix+ (log(6>,)). Moreover, by
noting that ﬁ;h and 195- give rise to the same a-data and y-data (Section 1) and
using Lemma 211, we have AI(I;Q”U [afy , Xfy](gmr) = AI(I;"O [ai%, ;2% (n4 ). Thus we
J J
arrive at the claimed formula. O

14.2.6. Third factor Apr: revisited. We next rewrite Proposition 372 in a form
suitable for our purpose. Suppose that D = (B®, T”, B¢, T®) € D(y,7), ju € J}I;Iy,

and j € jg'n satisfy tean(D, jg1) = j. Hence, we may and do assume that T” = S
and T¢ = 8;. Let k € J5" (j).
We introduce the following character according to [Kall9a, Proposition 5.25]:

JH

Definition 14.14. Let (gesc: Sk — C* be a character given by

Gese(s) = J[ el ] eals)
A€Dyym (G,Sk) a€dy (G,Sk)
Qres: ramified Qres: ramified

Our aim here is to show the following:

Proposition 14.15. Suppose that (,0),(y,6") € D are such that D € D(¥,0)
and D € D(¥,0"). Then we have
o W)
res  resl/= S.~! SI\ __ / — /=)
Arn[ap™, xi®] (7,059, 0") = GIE0] *Gaese(0/0") + Cyres s 850 (T/7)-

Recall that we introduced a 1-cocycle ag, which measures the difference between
Ljifces and € o nges in Section [33A. Let us write a[ngkes / Lj}@es] for ag, .

On the other hand, we also have L-embeddings Lij : LS, — LG and LjXH : LSjH —
LH obtained by applying the Langlands-Shelstad construction to the y-data xg
and xjy, as in Section 24, We define a 1-cocycle a[%jy, /%ix.] by a[%iy;. /Tixi]-

L; _ ¢{oLg
Ixe =& ° Uxiy
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We furthermore introduce one more L-embedding Ljinf(xll;es): LS, — LG. For
this, we first define a set of x-data inf(x}**) of ®(G,Sy) by inflating the set of x-
data X} of ®res(G, Si) along the natural restriction map (G, Si) - Pres(G, Si)
(see [KalT9a, Definition 5.14]) and then apply the Langlands—Shelstad construction.

We define 1-cocycles a[Ljinf(XZes)/Lij], a[Ljifces/Ljinf(X;es ], and a[LijH /Lj%eﬁ] in
a similar way to a[LijH /Y-

3
) S Te ta— e

. . L;1 L. . L.
LJX;‘H]\L];%S ineSJ\ Jinf(XfS)J\ Ix

LS — L (Skps, ) Sy

Lemma 14.16. For any s € Sk, we have

(1) <37 a[LijH /LijDTN = ﬁk/ﬁjH (s);
(2) <8a a[Ljinf(st)/LijDTN = Cdesc(s)_la

(3) (s, al%xres /Miim (e )T = 1.
Proof. We first consider (1). Recall that we have 1, o ¢y = o Lj e © Gogy (see
Section I, especially, (d)). Since we assumed that x = x», and xu = Xxv,,
(see the beginning of Section [A=2), this identity can be rewritten as j,, o ¢y, =
o LijH o ¢y, - This implies that ¢y, = a[LijH /il - ¢v,,, - Hence we get the
identity (1).
We next consider (2). We note that the set y; of x-data is minimally ramified,

which is obtained by the “minimalization” of inf(x}**) ([KallUa, Definition 5.24]).
Therefore the claimed identity is a direct consequence of [Kall9a, Proposition 5.25].

to 1, which can be checked by looking at the proofs of Lemma 22 and [23).
It is a routine work to check the assertion (3) by going back to the Langlands—
Shelstad construction. O

Proof of Proposition [Z-1J. By Proposition 370, we have
Arnlai®, xi)(3,8;7",6) = (8/8", alMyges Hres N
We note that a[LjX].H /Yy, ] is equal to
%y /Tigee] - albiges [ Fires] - albises it o] - it ey /i)
Hence, Lemma 218 implies that
i /05 (0/8") = Gy om0, (V/A) - Artlai™, X313, 85758) - Caese (6/8') 7
Thus we get the assertion. O

14.3. Appearance of the spectral transfer factor. We start with rewriting the
endoscopic side of (23). We put @;I’St = ZWHGH;IH ® ... By Lemma [273, we have

@) Y AGOR) = Y e Y Aol e)

YEHgs/~u YEN, zeHy[é]T/NHy
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In the following, we put X := log(d>,) € g,. Let z € Hy[d], and we put ¥ :=
log(z) € b,. By Lemma I8, there exists a unique D € D(y,n) such that (Y, X) is
a D-norm pair. Therefore, by Proposition 312, we have

{A(ya 8) - Arv(y,n) for a unique D € D(y, 1),
0

AD (Ya Xsc) = .
otherwise.

Thus, by also using Lemma 272, we see that the right-hand side of (E8) equals
AD /<7 —15H,st
@D D ] Hy T 2 2 AV XJAnn) el (v)
YyENH, DeD(y,n) ygx/NHy

Now we utilize the character formula ([KalT9H, Lemma 6.3.1]):
H,s — H,
(I)¢ t(yz) = 5(TH)5(THU) ! Z A%_Il[ajH7XjH}(y)19jH(y) Z LY* (Y)’
eIy, ku €Ty (ju)

where aj,; = ay,,; Xju = Xv,,, (see Section [Z4). Note that the above formula
is simplified compared to [Kall98, Lemma 6.3.1] because now H,, is quasi-split and
(inv(jH w5, km), 1) = 1 since the groups S;FH is abelian. Thus (E4) equals

(28) ZE(’;};) > Anym)”

YEN Deb(y,n) jueJ,
o _ ’\H’I/
Ao Xl @5 () Yo AV X)) Y iyt (V).
Y&X /o, €Ty (ja)

According to Proposition I, the first three index sets with 1/|m(HY)(F')| are
combined into one index set j(c;;n. Hence we can rewrite the above sum as

(29) Z g(TH)g(THy)ilAIV(yvn)ilA{II[aijXjH](y)ﬁjH (y)
ieJs,
Yo AW X Y i (Y).
YBX/~u, €Ty (ju)
Here, for each j € jcc;i,a we let y € 9, and jg € jflly denote the unique (up to

7o (HY)(F)-action) elements determined by Proposition . By applying the Lie
algebra transfer for twisted endoscopy (Proposition [279):

AD /T H, DS
Z AD (Y? XSC) Z DYk*H (Y) = Z AD( Ju’ Xk 50) (X>
Y8BX/~n, k€T (ju) KETGT (5)
to the last double sum of (E9), we see that (E9) is equal to
(30) Z E(’I‘H)E(’I‘Hy)_1AIV(:’J7 n)_lA%_II[CLjHa XjH](y)’l?jH (y)
ieJgs§,
_ G,
’Y(gn)'y(hy) ! Z AD( jH7XkJ SC)LX* (X)
keJG: (7)
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(recall that D} ! (Y) = y(hy)bw (¥) and DS2(X) = 7(g,)i%4(X)). Again using

Proposition IIZ:IZ this equals

(31) Z 5(TH)€(TH;,)71A{II[G’J'H3 XjH](y)ﬁjH (y)

ieJs,

Yenr(y) ™t D Alyexp(Vy,) mexp(X))i%H(X).

KETGT (5)

By definition, A s given by the product of ¢(Tq,)e(Tu)"!, A1, Ay, and Apy.
In the following, we choose the a-data aj® and x-data x;° as in Section IZ2Z34 to
compute these factors. Then, in summary, the H-side (BI) equals

(32) Z E(TG0)€<THy)_1 : A%_Il[ajrn XjH](y),lng (y)’Y(gn)V(hy)_l
jejgn
Z AI,H,III[ak ’Xfces](yexp(y )WeXp(Xk))Lx*(X)-
keJGﬁ(J)

Now we are reduced to comparing the above to the G-side of (25). Let {A3""}c 7o

be any family of constants such that AJ’S® =0 for any j € JE IS . By Propo-
sition 213, Zjejg AP @z (9) equals

(33) Z AZI?;CC'QJ_(—1)‘E"’”’“"le(Gno)e(Gn)€(TG;0)€(TG;)71
jed§
Gy r res G
D O(sk) - espram(se) - €5, (s1) - A [l i () - 157 (X).
keJ§, ()

By putting A/ := ASPCCC’ for any k € JG (4), (B3) equals

(34) Z Z ASPeC . l)lEnoyurl . e(GnO)e(Gn) . g(TG;O )g(TG;)fl
jeITS keJGGn ()

* G res res "G7
Uk (sk) - 6S;c,ram(&c) " €9, (k) - Ap™ la™®, X" (ny ) - Lxlf (X).

Therefore it suffices to prove that, for every j € jccfn, the contribution of each
ke jgn” (j) to the H-side (B2)

(35)  e(Ta,)e(Tr,) ™"+ Al Xoua (V)95 (y) - ¥(8)7(by) ™
'AI,H,IH[CL;C 7XZCS](2/9XP(Y ) nexp(Xk))
(other than the Fourier transform of the orbital integral ¢ XZ (X)) is equal to that
to the G-side (B2)
(36) AYL - (~1)Fnrle(Gy,)e(Gy) - e(Ta;, )e(Ta;) ™
* G res res
“Uk(sk) - €y ram(8k) - €5, (5k) - Apr " [ak™, X1 (1)
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under an appropriate choice of AP’/ such that A% is constant on k € jgn ().

Hence let us just define A%, or equivalently AZPZC, so that (B3) equals (B8):

e(Tay) - e(Tu,) ™" (8)7(0) " Alaj, Xl ¥)
e(Gy) AL a3, X (n4)
¢(Tg,)  &(Tg; )"
e(Gy) - (—) B0l e (st €5, (sk)

L Al G (rexp(Y) mexp (X)),
Then the problem is that this quantity heavily depends on n and y. What we have
to do now is to check the well-definedness of AZ{’ZC; in other words,
(1) AJ)S is constant for k € jgn (7), and
(2) A7) is independent of 7.
We first recall the following formula of Kaletha—Kottwitz:

(37) A =

Proposition 14.17 ([Kalld, Lemma 4.8, Theorem 4.10]). Let J be a connected
reductive group over F and Sy an F'-rational maximal torus of J. We fix a J-
invariant symmetric non-degenerate bilinear form B; on j. Then we have

e89)e(Ty ) =e@G) [ FalBia)™
a€d(J,S5)sym

where Ty« denotes a minimal Levi subgroup of the quasi-split inner form of J and
Bjo = Bj(X,,Ys) € FY, for any elements X, € jo(Fan) and Y, € j_o(F,)
satisfying [Xo, Yo] = Ho(:= daV (1)).

Lemma 14.18. We have
e(Ta;) - e(Tr,) " - 7(8)7(0,) " AL a0, i (exp(Y},)

B G"I res res * ’
e(Gy) A ag, xi®) (exp(X3))
Proof. By Proposition T4, we have
e(S})-e(Tey) ' =eG(e) I #e,(Bopa,)
an€d(G,8% )eym

£(Sju) - e(Tw,) ! = 7(hy) 11 Fory (Boyay) "
oy € (Hy,S ;5 )sym

(note that e(H,) = 1 since H,, is quasi-split). Hence, by noting that X*(S;,)c =
X*(S,i)@, the left-hand side of the assertion is equal to

(38) H K’an (Bgnvan) H K:O‘y (Bbyvay)il'
(IWG’J')(GT,,SEC)Sym a’ye(i)(Hy:SjH)ﬁym

This can be computed by the same argument as in the final paragraph of the
proof of [KalT9H, Theorem 6.3.4] as follows. For any «,, € ®(G,, Si)sym, we have

i Co(Exp(@*" X)) —1
1m o =
m—0o0 p
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where X € g; is regarded as an element of g, via non-degenerate bilinear form
By, on g,. By noting that By, is an invariant bilinear form, we have

<Han7XI:> = Bgn (Xlthan> = Bgn(X;7 [Xan7YanD = Bgn([X;,Xan],Yan).

Since we have [X}, X, | = doy,(X})X,,, we get (Ha,, Xj) = day(X}) - B
Hence, as we have aj;, = (Ha,, X}), we get

gn,0n

ko
. [ap(exp(X})) —1 . [ay(exp(P®™X})) — 1 _
i, (ST ) g, (ST ) s (B, ,) 7
sQy o™

res

where we used that x}** is minimally ramified in the first equality.
Similarly, for any o, € ®(Su, Hy)sym, we have

2m\/ *
lim oy (exp(p*™Y})) — 1

m—»00 p2m

=day(Y},) = (Ha,,Y),) - By "

Ay S JH by,ay”

. _ *
Since we have ajy .0, = (Ha,, Y}, ), we get

ay(exp(Yj ) — 1) _— <ay(exp(p2ij;)) —1

Ajyr, 0y

XjH7ay < ) = K’ay (Bhy7ay)_1'

aijoéy
Therefore we see that (BS) is given by the ratio of A;I" [@jsrs Xju) (exp (YY) to
AIC;'" [a;%, X5%] (exp(X})) as in the right-hand side of the assertion. O

From Lemma D418 and the descent properties of the second transfer factors
(both in the twisted and untwisted cases, Lemma [33 and [KalTdh, Lemma 4.6.7]),
we see that (B7) equals

; Aff (@ Xgu) (y exp(Y,))
39 AG ares7xres n _Xres no) - II 1%a> Ay JH
( ) 11 [ k k ]( 0) k ( 0) A%—II [G/Zes, X;;es] (y eXp(Y;;))

e(Tg,) ¢(Tg; )"
6(G7lo) : (71)|E"0’ur| : ESk,ram(Sk) ’ Egk (Sk)

Vju(y) e
H A res . res v P
D1 (55) i [ai, i) (y exp (Y, ), nexp(X7)),

where X5 (np) is as in Lemma [323:

res

XS = [ ()
ares€d>(G,70 7Sh)c)
Since x}7%(no) is independent of 7y by Lemma I3, let us write Xﬁfs(S,i) for x3°%(no)
in the following.

Lemma 14.19. The quantity AS’[G?S,XZQS](UO) is given by

res rresr-&-é Jur
foar * (=) [Eno H f(c;n07si)(are5) ' H Adress
Ores €D (G ,SE ) ur Ores €Prea (G, Sk)sym
N(a)(vo)#1

res .__ . res __ .
where we pUt rkvur T Zareseéres(Gask)ur €ares and )\k,ur - Hares€q>res(Gvsk)l\r Aarcs !
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Proof. By definition, we have

G, res . res res N(Ot)(l/o) —1
A§laim = [ e (M=)
Qe €bres (G.S1) Fares
N(a)(vo)#1

Since 10 is topologically semisimple, the valuation of N(a)(v9)—1 is zero whenever
N(a)(vg) # 1. Hence, for any ayes € Pres(G, Si) such that N(«)(vg) # 1, we can
compute each factor as follows (cf. [Kall9H, Lemma 4.7.1]):

The case where o, is asymmetric: Since X}, is the trivial character
sQres
of F_in this case, we have

(N 1y

k,ares res

U, 0tres

The case where o, is symmetric unramified: Since ;> is the unique
JQlres

nontrivial quadratic unramified character of F,; and
valp(a),..) = valp ((Ha,,., X)) = r € valp(F7 ),

we have

N(a)(vg) —1
(YO

Bk ycrres

The case where a,¢ is symmetric ramified: Since 10 is topologically semisim-
ple and N (a)(1p) belongs to the kernel of the norm map Nr: F  — FY, |
we have N(a)(vo) = —1 (mod pp, ) whenever N(a)(rp) # 1. By noting
that x;7%,. . is tamely ramified, we get

res (N(a)(Vo)—1>_ s (_ggros—1)

= —4a .
k,0res ares k,ares k,Qres
k,ares

res

As We2 have Trr, /ry.. (aharef) = 0, we have Nrp, /g, (a
arcS, . HGHCG Xres (72arcs,— ) — Xz(—“jzreg(2ares ) — )\ares'

k,ares k,0tres k,ares k,Qtres

Therefore, we get

ATy, xi™] (o) = II (—1)feres” II Adtres

res ) —
k,ares

s €Pres (G,Sk ) ur res €Pres (G,Sk)ram
N(a)(ro)#1 N(a)(ro)#1
i U (G Mo
Ores e‘ires(Gysk)ur areseq')res(GHSk)ram
N(a)(vo)=1 N(a)(vo)#1

We compute (—1)e” for apes € Pres(G,Sk)ur satisfying N(a)(vy) = 1 by
noting whether ayes € Z,, (i.e., ayes appears in the Heisenberg quotient of Gy,

with respect to (x, 5)) or not. When aues € Z,,,, we have

T —1 . -
2 € eareSZ lf f(Gnoysi)(ares) - +1,
% = e;rles (Z + %) if f(Gnovsi)(ares) = -1,

by [Kall9h, Proposition 4.5.1]. This is equivalent to that

€ayee” =0 (mod 2) if f(G,,O,Si)(areS) =+1,
€a,.” =1 (mod 2) if f(GnO»Si)(areS) =-1
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By noting that these conditions are simply swapped when oyes ¢ E,,, we see that

(_1)€(yresr — {f(Gﬁ[)aShk)(ares) — {_f(GﬂoaShk)(ares) ' )\Oéres if Ores € ET]O,

_f(GnovSi) (ares) f(Gno’Slﬂc)(ares) : >\ams if Olres ¢ Eno

= —1 since F,

Qres

(recall that A\,

H (71)6%057, = (71)|Eno,ur| H f(Gno»Sbk)(ares) : /\ares'

Ores ei’res(c‘:wsk)ur Qres etbres(G;Sk)ur
N(e)(vo)=1 N () (vo)=1

/Fta,.. is unramified). Thus we get

Again noting that A\, = —1, we have

__ yres
H /\Otres — Nkur ’ H )\ares'

Ores €Pres (G,Sk )ur Otres €Pres (G,Sk ) ur
N(a)(ro)=1 N(a)(vo)#1
Recalling that @(Gno,Si) = {res € Pres(G,Sk) | N(a)(vp) = 1}, we get the
assertion. O

Lemma 14.20. We have
b -1 _
e(Sp)-e(Ta; )™ = e(Gyy) H f(G,,O,s”k)(O‘res) “Adres
Ares €P(Gryg S} )ym
Proof. This is a variant of the formula of Kaletha—Kottwitz (Proposition [Z717),
which is stated in [KalTlH, Corollary 4.11]. O

By noting that {ayes € Pres(G, Sg) | N () (1) # 1} = Bres (G, Sg) ~ (G, SL),
Lemmas 219 and imply that (B9) equals

40) xSy - (0 e A I A I fla, s (0res)

no'~k
Ores€Pres (G,Sk)sym  res €P(Gry,S% ) ram

A%_Il[ajH7XjH](yeXp(Yj:)) ) e(Tq,) 'E(S?C)_l

ARar, x5 (yexp(Y},))  €syram(sk) - €, (sk)

Viu () S res
. H .A res res Y* X* .
e (1) rilai™, xi ™ (y exp(Yj, ), nexp(X}))

We put

GCSi) = T ).

Cres €D (H,Spy)

Lemma 14.21. We have
AT @ X (Y exp(Yiy)
Afflar, ;= (y exp(Y}r,)

Proof. Since yexp(Yj’;{) is regular semisimple in H, we have

ares(yexp(Yiy)) — 1 >

Ajpr,0nres

= Care /xS (Y XP(Y50)) - X5 (S )

Ml Gdwep0i) =TT v

O‘r@«se'i)(I_IijI.I )

Affla, il exp(@®Y;)) = ]
Ores €P(H,Spy)
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By Lemma [AT3, we have a5, = lo - @jy 0, Thus we get

Ag[ajl—n XjH](y exp(Y;{)) - AHMJH?XJ’HKZ/ eXp(YH)) ) H res
AH

res . res * - res * Xk (la)‘
Afflares, ;=1 (y exp(Y}E,) Haj, Xi®)(y exp(Yi,) LS,

~—

Here, on the right-hand side, the ratio of two second transfer factors is given by
G /o=, 85,, (W exp(Yy, ) by[Kall9H, Lemma 4.6.6]. Thus, by noting that both x;j*®
and xj* induce the same set of x-data on ®(H, S;,, ), we get the assertion. O

Now recall that Proposition [T associates to j € jé;n a unique element y € §,,
and (D, ju) € D(y,n) x ._71? . Also recall that we have fixed an element n, € S;.
We put Y, é (n ) . Then, by Lemma [ and Proposition I4TH, we have

Armap®, xi](y exp(Y ), nexp(X}))
Armlay, X3y exp(Y, ), n, exp(Xy))

J
~ Or(sk)
- G )G 0,

(41)

(Recall that n = sg7, .) Therefore, by using Lemma 221, we see that (E0) equals

(42)  XE=(S5) - X5 (Sju) - (— 1) - N5, e(Tg,) - (S]) 7!
Ve (Y,) - G /.85 (U P(Vi)) - Arm[ag™, X (y; exp (Vi ), 1y exp (X))

. 5Sk,ram(5k) . Eﬂk (Sk) . Cdesc(sk) : H f(G (ares)a

. 770’
tres €D(Gng,SE ) ram

res  _ .
where we put )‘k,ram - HarcseérCS(G,Sk)ram )‘Olres'

Now let us examine the factors contained in (B2). The factor e(Tg,) obviously
independent of j. Let j' € jcci, and k' € jg:’ (j') such that k and k' are G-
conjugate. Suppose that g € G be an element such that ¥’ = [g] o k and Ny =91,
Since the F-rational isomorphism [g]: Sy — Sy gives a I-equivariant isomorphism

®(G,Sk) — @(G,Sy) compatible with twists, we get r%, = 7%, Aifam =

A rams and e(Sh) = €(Si,) Lemma 34 implies that X“*(S,;/) X (Omo) =
st(no) = Xi*(Sk). It is a routine work to check that the factors xj*(S;y),
Ve (y ) g /X Sy (Z/ exp(Y}y,)), and A; III[GZCS,XZCS](ZJJ exp(Yj,).n, exp( )
do not change even if we replace (7, k) with (5, k).

We summarize our discussion so far. We obtalned

JH
X*
k

res

(43) AR = (81 X (Siu0) - (1) Al £(T,) - 2(8) ™" - 00 ()

res

H
Qe 5 (Y5 P (Vi) - Arilai™, x| (y; exp(Yiy ), 1y exp(X))
’ Esk,mm(sk) ’ ng (k) * Cdesc(sk) - H f(G Su)(ares).

. n0°
res €D (G S8 ) ram

Moreover, we checked that all factors contained in the first and second lines of the
right-hand side of (£3) depend only on the G-conjugacy class of k and, of course,
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are independent of 7. In other words, our remaining task is to check that

(44) €sy,,ram (Sk) * €, (Sk) * Cdesc(Sk) - H f(c;no,si)(ares)-
arese(i)(Gﬂovsi)ram

depends only on the G-conjugacy class of k and is independent of 7.

We note that all the factors in (B4) are products over sets of ramified (restricted)
roots. Thus, there is nothing to prove if (G, Si) and P,s(G, Sy) do not contain
a ramified symmetric element. For example, a sufficient condition for this is that
S splits over a finite extension E of F' whose ramification index e(E/F) is odd.
Indeed, we have the following diagram:

F,.. ¢ F, C E
U U

F - Fj:ares C Fi,

Hence, if e(E/F) is odd, then the extension F,/Fy, and F, __/Fyi,, . cannot be
quadratic ramified. Let us record this observation here.

Theorem 14.22. The spectral transfer factor AY is well-defined if S splits over
a finite extension E of F whose ramification index e(E/F') is odd. In particular,
the twisted endoscopic character relation (E3) is satisfied.

What we will do in the rest of paper is to show that (E4) indeed depends only
on the G-conjugacy class of k£ and is independent of 7 in the case where G = GL,,.

Remark 14.23. Recall that the members of Hg are parametrized by the set JS.
In the case of standard endoscopy, in [KalT9H, Section 5.3], Kaletha introduced the
paring

(= =) TS % 71'0(5(2) = C*; (4,8 — (inv(jw, j), s)
(see [Kall9H, 1155 page] for the details). This is nothing but the spectral transfer
factor in the sense of this paper in the untwisted case. In other words, we have

ALY = (v (], jiw)s 5)

when 0 is trivial. We may understand that Kaletha’s proof of the standard endo-
scopic character relation ([KalT9H, Theorem 6.3.4]) contains this explicit determi-
nation of the spectral transfer factor in the standard case.

15. GL,, CONSIDERATION

In the following, let G := GL,, and 6 := J,,'(—)~1J !, where n is even. (Recall
that this assumption is harmless for our purpose; see Remark B1).

15.1. Twisted elliptic maximal tori of GL,. Let us assume that (S,S) is an
F-rational twisted maximal torus of G whose S is elliptic. Then (S, S) is elliptic by
Remark B3. It is well-known that there exists a finite extension E of I of degree
n such that S is isomorphic to Resg/p G-

Lemma 15.1. There exists an element 19 € Autp(E) of order 2 such that 0s(s) =
19(s)~! for any s € S = E*.
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Proof. Note that fg is of the form x!(—)~*x~! for some x € GL,(F). Since 0s
preserves S C GL,(F), the map X +— x!Xz~! preserves s C gl,(F). As the map
X — 2! Xz~! is an involutive F-algebra homomorphism on s & E, it is given by
an element 79 of Autp(E) whose order is either 1 or 2. In other words, we have
Os(s) = m9(s)~! for any s € S = EX.

Let us show that 7y is not trivial. For the sake of contradiction, we suppose that
T is trivial. Then the automorphism fg of S is given by s + s~! on S = E*.
Hence we have St(F) c S%(F) = §% = {+1}. On the other hand, since (S, S) is
a twisted maximal torus, there exists an element g € G such that 9S = T and g
is mapped to §|p. This implies that the torus S? is isomorphic to T?° over F. In
particular, the rank of S is given by n/2. However, there is no F-rational torus
whose rank is nonzero such that the set of F-valued points is of order at most 2.
Hence we get a contradiction. (I

In the following, we let 79 € Autg(F) be the element as in Lemma I51. Let Fy
be the fixed field of 7y in F.

15.2. Roots of elliptic maximal tori of GL,. We next recall a description of
the set of roots of S in GL,, following[TamT#, Sections 3.1 and 3.2] (see also [T,
Sections 3.2 and 5.1]). First we fix a set {g1,...,9n} of representatives of the
quotient I'/T'g such that g; = id. Then we get an isomorphism S(F) = []"_, F*
which maps x € E* 2 S(F) to (g1(x),...,gn(x)). Then the projections

n

§:S(F) STIF - F" (#1,...,20) — 2
i=1
form a Z-basis of X*(S). The set ®(G,S) of roots of S in G is given by
ng} =6, — 0, lgi;éjgn}
9j

and the set ®(G,S) is described as follows:

(Cp\D/TE) 15 &(G,S); Tpglp—T- B} ;
K3

where (I'g\I'/T'g)’ is the set of nontrivial double-T"g-cosets in T.

Suppose that E/F is tamely ramified in the following. We simply write e (resp.
f) for the ramification index e(E/F') (resp. residue degree f(E/F)). We first recall
an explicit choice of a set of representatives of I'/T'g, following [Tam1f, Section
3.2]. Let up denote the set of roots of unity in E. We take uniformizers wg
and wr of E and F, respectively, so that wf = (g /pwr for some (g/rp € pg.
We fix a primitive e-th root (. of unity and an e-th root (g r. of (g/r, and put

Cp = C%;},e. Then L := E[Cc,(r/p,] is a tamely ramified extension of F* which
contains the Galois closure of E//F and is unramified over E. The Galois group
Gal(L/F) of the extension L/F is given by the semi-direct product (o) x (¢), where

c: (¢ ((€pL), wp—(wg

¢: (=" (CepuL), wer (e
and ¢op~! = 09. Moreover, as explained in [TamIf, Proposition 3.3 (i)], we can
take a set of representatives of I'/T'g to be

(Tp/Tp}i={c"¢" |0<k<e—-1,0<i< f—1}.
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Here we implicitly regard each o*¢’ € T'j, sr as an element of I'r by taking its

extension to F' from L. We note that, as L/E is unramified, there exists an integer
c such that Gal(L/E) = (o¢¢').

Flwg, p]

ur. with (0'/ \ot ram. with (o)

Flur]

We recall a fact about symmetric ramified roots of S in G.

Proposition 15.2 ([OTZ1, Proposition 5.3]). Let o € ®(G,S) be a root of the
form [;] for some g = oF¢'. The root o is symmetric ramified if and only if
g =03 (hence e must be even in this case).

Lemma 15.3. If e is even, then E/Ey must be ramified so that a Os-stable toral
character of S exists.

Proof. Let ¥ be a fg-stable toral character of S. If we let r € Ry be the depth of
1, then we can take a fg-stable element X* € s* | representing ¥|s, (Lemma B3).
By the torality of ¥, X* must satisfy Yu’s condition GE2 (see [Yu, Section 8] or
Section B2), which means that valp((X*, H,)) = —r for any a € ®(G, S).

We identify s* =2 E* = Homp(F, F') with E via the F-linear isomorphism [Y —
Trg,p(XY)] <+ X. Write X for the element of E corresponding to X* € E* under
this identification. If we write & = [§i] as in the above notation, then we have
(X*,Hy) = gi(X) — gj(X). Thus, for any o belonging to the I-orbit of v = [} ]
with g = o*¢?, we have valp((X*, H,)) = valp(X — g(X)).

Now, for the sake of contradiction, let us suppose that E/Ey is unramified.
Since X * is fg-invariant and the above identification between E* and E is Galois-
equivariant, X must satisfy —79(X) = X. We write X = whu with ¢t € Z and
u € OF. Then we have 02 (X) = (—1)'X (mod pf*). On the other hand, we have
7005 (X) = (—1)'"' X (mod p’f!). Since E/EL is unramified, 790 # id. Thus,
by considering the condition GE2 for ¢ = 0% and g = 1902, we get

valp(X — 02 (X)) = r = valp(X — 7902 (X)).
However, this is impossible because we have
X-03(X)=X - (-1)'X (mod p*) and
X —102(X) =X — (-1)'"" X (mod pft)
and exactly one of these is nonzero. ]

15.3. Computation of spectral transfer factors. Now we go back to the situ-
ation as in Section [A. Thus the explanation given in the previous subsections are
applied to the F-rational elliptic twisted maximal torus (ék, Si) of (é, G). Recall
that we want to show that the quantity (E4), which is given by

6S;c,mm(sk) : 6:9,6 (Sk) : Cdesc(sk)_l : H f(Gnov (O‘res)7
areseé(G‘n07SE¢)ram

depends only on the G-conjugacy class of k and is independent of 7.
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Suppose that S;, is isomorphic to Resg/r G, where E/F is a tamely ramified
extension of degree n. If the ramification index e of E/F is odd, then so is that of
the Galois closure of E/F, which implies that Sy splits over a finite extension of F’
with odd ramification index. Since such a case is already treated in Theorem [Z2722,
we assume that e is even in the following. In particular, by Lemma I53, E/Ey is
a ramified quadratic extension with Galois group generated by 79 = o2 .

Note that the toral invariant is always trivial when G = GL,, (see [OT21, Propo-
sition 4.4]), hence the character €s, ram is trivial. Moreover, we have

Lemma 15.4. If e is even, then the character €3, is trivial.

Proaf Recall that, for any s € Sy, €, (s) is defined to be the product of €, (s) over

a € (G Sk) whose restricted root ayes is ramified. If the ramification index e of
E/F is even, then there exists a ramified symmetric root of S in G by Proposition
[52. Then, as discussed in [Kall9H, Section 4.7] (see also [OTZI, Section 6.4]),
the depth r of the toral character ¥y of Sy is given by 25“ for some integer s.
However, this implies that the set Z(G, S) of roots appearmg in the Heisenberg
space is empty (see [OTZ1, Remark 5.10]). Thus we get the assertion. O

Hence we are reduced to investigate the following product:

(45) H €a(sk) H €a(sk) H f(Gnov (ares)~

a€d(G,Sk)asym a€P(G,Si)ur s €D(Gy,SE) ram

Qlres:Tam Qtres:ram

Lemma 15.5. The third product in (E3) equals

H f(G7707 (ares) . H f(Gnov (ares)'

Cres €P(Gng ,SL) ™ Ores €P(Gng ,SE) ad

Proof. Let a € ®(G, Sg)ram be an element satisfying ayes € @(Gno, Sf )EQ?;“’ Then
« is fixed by fg. Indeed, we may suppose that « is of the form [05 ] Since 7y = 0’2,

o= ] <t ] [3] -

Hence, we have f(G sn)(arES) = fia,s,) (@) as noted in the proof of Proposi-
n0 "k

tion [Z7. Again by using that fiq s,)() = 1 ([OTZI, Proposition 4.4]), we get

f(G"O’ )(ares) =1. O

Lemma 15.6. There exists an element of Sy, of order 2.

Proof. We utilize a realization of G as the space of bilinear forms as in [WalT(,
Section 1.2] (see also [Lil3, Section 3.6]).

Let V be an n- dlmenblonal F-vector space equipped with basis {el}l 1,...n- We
let 6 be a symplectic form on V such that the representation matrix of 6 Wlth respect
to {ei}iz1,..n is Jan, Le. O(ep, ) = (=1)F16, on+1-1. Let Hom}ondeg(V ®@r V, F)
denote the space of non-degenerate F-bilinear forms on V. Note that Homno}ﬂdeg (Ver
V, F) has a bi-GLg(V)-torsor structure by

(9-q-9)(w,0") :=q(g" v, g'"V)
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nondeg

for any ¢ € Hom' (V@pV,F)and g,9' € GLp(V). (Thus we may regard 0 as
a “base point” of Hom'»°8(V @ V, F').) Then Hom's>""8(V @ V, F) is identified
with G = GL,,(F) x 0 bi-GL,, (F)-equivariantly by the following association:

Hom "™ °8(V @5 V, F) 3 GL,(F) % 0: g- 6+ g x 0.

Let us examine how the condition that g % 6 is of order 2 can be rephrased on
the space Hom}ondeg(V ®r V, F). The order of g x § € G is 2 if and only if we have
0 0 nondeg

g-0=0-g7'. Let ¢ be the involution on the space Hom', (V®p V,F) given by
swapping two entries of V ®p V, i.e.,

L(q)(v,v") = q(v',v)

for ¢ € Hom}™"°8(V @ V, F) and v,v’ € V. Then we have «(g-0) = =0 - g~ 1.
Indeed, we have

g - 0)(v,0') = (g-O)(v',0) = (g ', v) = —0(v,g7 ') = =(0- g~ (v, ')

for v,v" € V (we used that 0 is symplectic in the third equality). Hence, g x  is of
order 2 if and only if ¢(g - é) = —g -0, in other words, ¢ - 0 is symplectic.

Now we note that elements of Si can be realized in Homy"*8(V @ V, F) in
the following way ([Wallll, Section 1.3]). Recall that S = E* and we have a
degree 2 subextension E/Ey with Galois group (7). For any x € E*, we define

an F-bilinear form & on E by
Z(v,0") := Trg p(vre(v')x).

Then, by choosing an F-basis of E, we can embed {Z | # € EX} in Hom s "8 (V @ 5
V, F). This subset realizes S.

Therefore, in order to show the claim, it suffices to find an element x € E* such
that & is symplectic. If we let x € E* be any element satisfying Trg, g, () = 0,
then T is symplectic. O

Proposition 15.7. If e is even, then we have natural identifications

{a € éasym(G, Sk) | Qres : Tam} L, é(GnO, Si)ggfgm% Q> Qres,

ram °

{a € D4 (G, Sk) | Qe : Tam} RN (G, Si)(ur)' Q> Qpes-

Proof. We consider only the case of asymmetric roots with ramified restriction since
the case of symmetric unramified roots with ramified restriction can be treated
in the same manner. To show that the association a — a.es gives the asserted
identification, we must check the following:

(1) a and (a) belong to the same class in ®,qym (G, Sk);
(2) any o € Pugym (G, Sy) whose e is ramified descends to Gy, .

As investigated in the proof of Lemma 22, we must have 6(«) # a. Moreover, if we

let 74 be the nontrivial element of Gal(Fy,,../Fxia,..), then we have 7, () = —0(«).

This implies the condition (1). For the condition (2), we note that o descends to

Gy, if and only if « descends to Gy for any topologically semisimple ny € Sk,

which is equivalent to a(n{?) = 1 (see Lemma 232 and its proof). Any element 7},

of S of order 2, which exists by Lemma 50, satisfies the latter condition. O
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By combining Lemma [53H with Proposition I572, we see that (E3) equals the
following product:

(46) H Ga(sk) : f(Gm)’Shk)(arcs)'

Cres €P(G .S BT ™ LD(G,, ST 01

Therefore, by recalling that n = sxn, , we see that (Ef) equals

(47) H f(Gﬂk’Si)(ares)

Ares €B(Gy, SHER™ LB (G,, ST

by Propositions I3 and I28H. Now we can prove the following.

Proposition 15.8. If e is even, then (BQ) depends only on the G-conjugacy class
of k and is independent of 1.

Proof. Tt is obvious that (£8) is independent of n. Let j' € jgn and k' € jg'n" ()
such that k& and k' are G-conjugate. Suppose that g € G be an element such that
k' = [g]ok and n,, = 91, . Then the g-conjugation induces F-rational isomorphisms

[9]: G, — Gy, and Si — Shk,. Hence we get the assertion. O

We summarize what we obtained.

Theorem 15.9. The spectral transfer factor A;pzc is well-defined for GL,, with
even n. In particular, the twisted endoscopic character relation (E3) is satisfied.

15.4. A consequence.

Lemma 15.10. Let H be either a quasi-split special orthogonal or symplectic group
over F' which is an endoscopic group of (G,0). Let ¢u be a toral supercuspidal L-
parameter of depth r € Rsq in the sense of Kaletha (Definition [T13). Suppose that
Sop = T0(Zg(Im(¢pn))/Ze) is trivial. Then £ o ¢u is toral supercuspidal as an
L-parameter of G of depth r € Rsg.

Proof. We put ¢ := £ o ¢yg. Let us check that the three conditions (0), (1), (2) of
Definition [ZT9 are satisfied by ¢. By the assumption that Sy, is trivial, we see
that ¢ is irreducible as an n-dimensional representation of Wg, which implies (0).
Since ¢y is toral supercuspidal of depth 7 € Rso, Zg(éu(/f)) is a maximal torus

of H containing ¢ (Pr). We note that Z¢(9(I)) is a Levi subgroup of G by (the
proof of) [KalTyh, Lemma 5.2.2 (1)]. In other words, Zg (¢(1%)) is a f-stable Levi
subgroup of G whose Zy(ou(ly)) = Zé(qﬁ(l};))é’o is a maximal torus of H. This
implies that the Levi subgroup Zg (¢(If)) is necessarily a (f-stable) maximal torus
of G. Thus we get (1). The condition (3) is obviously satisfied. O

Now we arrive at the following consequence.

Theorem 15.11. Let H be either a split odd special orthogonal or symplectic group
over F'. Let Hng be a toral supercuspidal L-packet with L-parameter ¢y in the sense

of Kaletha (see Section [1). Let HgIHArt be the L-packet of H corresponding to ¢u
in the sense of Arthur ([ATET3, Theorem 2.2.1]). Then we have T, =TI5 .

Proof. Recall that both ITYL and IT¥L , , are bijective to the set of irreducible char-

116



first note that we may assume [T} | = [II}}, 4| = 1 by a standard argument based
on the theory of standard endoscopy. Indeed, suppose that |H2;IH| = |H£IH7 art] > 1L
Then the S-group contains a nontrivial element, which means that the L-parameter
¢u factors through the L-group of a nontrivial standard endoscopic group H' of
H. Let ¢p be an L-parameter of H' such that its lift to H is ¢g. By [Kall9B,
Theorem 6.3.4] and [AT£T3, Theorem 2.2.1], both HgIH and Hgbl:IH,Art satisfy the stan-

dard endoscopic character relation with Hg;ﬂ and Hf};“ Art for any elliptic strongly
regular semisimple element of H, respectively. Therefore, if we can show that
H(I;H, = H(I;H,’ art> then we see that the signed sum of the characters of members

of IIH  coincides with that of ITE for any elliptic strongly regular semisimple
¢H . ¢H7Art’ . . . . . .

element of H. Since the strongly regular semisimple locus of H is Zariski dense in
the regular semisimple locus of H, we see that the signed sum of HgH and that of
HEH, Aqt coincide for any elliptic regular semisimple elements of H. Hence, by the
orthogonality relation of the elliptic inner product ([CIo91, Theorem 3]), we get
Hgﬂ = H};H,Arr Since the order of HgI};/ (or Hgll;/,Art) is smaller than that of HHH,
by repeating this argument inductively, we may assume that |H§IH| = |H5;IH’ arel =1

Let us put ¢ := £ o ¢g. When |H£IH\ = |H§;IH7AR| = 1, or equivalently, Sg,
is trivial, ¢ is a toral supercuspidal L-parameter of GL,, by Lemma I510. Thus
we can apply Theorem I, Hqcf and HEH satisfy the twisted endoscopic character
relation, i.e., we have

APERR(0) = Y A, 0) By (1)

YEH /st

for any elliptic strongly regular semisimple element & € G, where 7 and 7y are the
unique members of Hg’ and Hgﬂ, respectively. Similarly, we also have

Py, (0) = Z A('Yv 6)<I)7rH,Art, ()

YEH /st

for any elliptic strongly regular semisimple element § € G , where Ty and Ty Axt
be the unique members of Hg: Apt and Hglm Art> Tespectively. We note that, for any

elliptic strongly regular semisimple element § € G, there exists an elliptic strongly
G-regular semisimple element v € H satisfying (v,d) € D at most uniquely up to
stable conjugacy. In other words, the index set of the above sums can be thought
of as a singleton at most. Moreover, for any elliptic strongly G-regular semisimple
element v € H, there exists an elliptic strongly regular semisimple element ¢ € G.
(These facts follow from, e.g., an explicit parametrization of semisimple conjugacy
classes of these groups; see [Wallll, Sections 1.3 and 1.9].) Since we have m = mayt
by [OT21], we get ®ry(v) = AP Pry 4, (7) for any elliptic strongly G-regular
semisimple element v € H (recall that A(y,8) # 0 whenever (7,8) € D). As the
strongly G-regular semisimple locus of H is Zariski dense in the regular semisimple
locus of H, we see that the identity @y, (7) = A *®ry ., (7) holds for any elliptic
regular semisimple element v € H. Therefore, again by the orthogonality relation of
the elliptic inner product, we conclude that g = T st (and also Azl?frc =1). O

We note that Arthur’s local Langlands correspondence is established only up to
the action of outer automorphisms for quasi-split even special orthogonal groups.
By exactly the same argument as above, we can show the following (note that, in
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that case, for any elliptic strongly regular semisimple element § € G, there exists
an elliptic strongly G-regular semisimple element v € H satisfying (vy,4) € D at
most uniquely up to stable conjugacy and the action of the outer automorphisms).

Theorem 15.12. Let H be a quasi-split even special orthogonal group over F. Let
Hgﬂ be a toral supercuspidal L-packet with L-parameter ¢y in the sense of Kaletha

(see Section [1). Let HEH’Art be the L-packet of H corresponding to ¢y in the sense

of outer automorphisms.

APPENDIX A. SOME FACTS ON HEISENBERG—WEIL REPRESENTATIONS

A.1. Decomposition formula of twisted characters. Let us consider an ab-
stract situation where the following data are given:
e a finite-dimensional symplectic space V' over IF,,, where p # 2,
e mutually orthogonal finite-dimensional symplectic subspaces V; where i =
0,...,7and j =0,...,l; satisfying

T l,
V=DV
i=0 j=0
e asymplectic automorphism ¢ of V such that ¢: Vj = V', forany 0 <i <r
and 0 < j <; (here we put VZH := V{ for convenience),
e a nontrivial character ¥ of F,,.
We write H(VJ’) for the finite Heisenberg group associated to the symplectic
space Vji over IF,,. More precisely, H(VJ’) is defined to be the set Vf x ), equipped
with a multiplication law given by

1
(v1,21) - (v2,22) == (U +w, 21 + 22 + 5(”1,’02»,

where (—, —) denotes the symplectic form on V. Then, according to the Stone-
von Neumann theorem, we have an irreducible representation w’ of Sp(V}) x H(V})
with central character ¢ (called a Heisenberg—Weil representation), which is unique
up to isomorphism unless Sp(V}) = SLa(F3). We let W} denote the representation
space of w}:
wh: Sp(V}) x H(V}) = GLe(W)).

Let H(V) denote the Heisenberg group associated to V. Then note that H(V)
is isomorphic to the central product of H(VJZ) for0<i<rand0<j<l,ie., the
quotient of the product group [], ; H(V}) by the central subgroup

{1 e [THE)| X7 =0f.

If we put W = ®1 j WJ?, then W realizes a Heisenberg—Weil representation of
Sp(V) x H(V') with central character ¥, for which we write w. Furthermore, on the
subgroup

(ITsp(v)) = B(V) € Sp(v) x E(V),

i wi (see [Gér7d, 2.5] for the details).
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Since ¢ is a symplectic automorphism of V', an isomorphism

te: Sp(V) x H(V) = Sp(V) x H(V); (g, (v,z)) — (Lg, (L(U),Z))

is naturally induced, where ‘g := 10 g o:~'. Then, since ¢ acts on the center

part of H(V') identically, the t,-twist of the representation w (let us write w*) is
again a Heisenberg-Weil representation of Sp(V) x H(V') with central character
9. Hence, by the uniqueness part of the Stone—von Neumann theorem, w and w*
are isomorphic as representations of Sp(V') x H(V). Our aim in this section is to
construct an intertwiner w — w* explicitly by using the symplectic decomposition
V=_, @?:O ij’ and express the associated twisted character in terms of the
intertwiner.

Since the symplectic isomorphism ¢ maps Vf to Vji 1, the automorphism ¢, of
Sp(V) x H(V) induces

bt SP(VY) ) H(V) = Sp(Viy) ) H(Vi )i (95 (v,2)) = (‘9. (u(v), 2)).
Therefore the subgroup

(T se(v)) x H(V) < Sp(v)  H(V)

is preserved under ¢,. As w and w* are irreducible as representations of the sub-
group ([]; ;Sp(V})) x H(V) (or even H(V')), any intertwiner between w and w* as
representations of ([, ; Sp(V}/)) x H(V) is automatically an intertwiner as repre-
sentations of Sp(V) x H(V). '

Let us consider the representation w;il given by the pull-back of wé 11 Via Ly

Wit Sp(Vy) ) H(VY) £ Sp(Viyy) x H(Vi ) = GLe(Wiy,)-

Here, similarly to the notation V' ; := V{, we put wj ., := wf for convenience.
Then, since ¢ preserves the center part of H(VJZ) identically, w;-’frl is a Heisenberg—
Weil representation of Sp(V}') x H(V}') with central character 9. In particular, by
the uniqueness part of the Stone-von Neumann theorem, w;il is isomorphic to wé
as a representation of Sp(V}/) x H(V}). Let us fix an intertwiner I? between these
two representations, i.e., an isomorphism

It (W5, W) = (Wit W)

making the following diagram commutative for any (g, h) € Sp(V}) x H(V}):
Wi —— Wi,
w;(‘%h)l lwﬂl(g»h)=w;+1(t*(g7h))
W]l I W;+1
J

If we put V? := @;’;O V}, then H(V*) is isomorphic to the central product of
H(V}) for 0 < j <l;. The automorphism ¢, of Sp(V') x H(V') preserves the subgroup

(f[ Sp(V;)) x H(V?)
j=0
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and its action is described on this subgroup by
Uy ((90 s 7gl71)7 (’U, Z))'_) ((Lglia Lg()a R Lgli—l)a (L(’U), Z))
We put Wt := ®;i:0 W; and define an C-linear automorphism I? on W* by
I @ @ vy @up, = I (1) @ Tg(vo) © -+ @ I,y (vg,—1).-
We write (w?, W?) for the tensored Heisenberg—Weil representation (&) i wh, @ ; W)
of Sp(V?) x H(V?). Then we can easily check that I gives an intertwiner between
(w¥, W) and its L,-twist (w®*, W) as representation of (H?:o Sp(V})) x H(V?), that
is, the following diagram is commutative for any ((go, ..., 91,),h) € (H;;O Sp(VJ’)) X
H(V?) :
Wi LW
wi((go,...,gli),h)l l‘u“((gowngli)>h)—w(L*((90 ----- g1;):h))
w — we
Now we define a C-linear isomorphism I of W = @;_ W' by I := Q,_, I, i.e
In"® @0 = I°W)®@-- - @I"(v").
Then [ is an intertwiner between w (= @), w') and its t.-twist w* (= @), w"*).

Lemma A.1. Let W{,..., W/ be finite-dimensional C-vector spaces equipped with
C-linear isomorphisms I}: W = Wi for 1 <j <1, where we put W[, :== Wj.
We define an automorphism I' of W' := Wi ® --- @ W/ by
I''vg®- - @u = Ij(v) @ I(vg) @+ @ I]_ (vi—1).
Then we have
tr(I' | W) =tr(I] o---o I | W{).

Proof. We take a C-basis {610 e (0)} of W} and define a C-basis {61 b ,esf)}
of each W/ (1 <i <) by e(z) = I’ ‘o IO( e; ) Then, by the definition of the
trace, we have
0 1 0 !
w(l' W)= 3 (e @ @e) ) @@ hw,

1<jo,....si<n
where (—, —)w denotes the standard C-bilinear pairing on W’ x W' given by

(0) O] O Dy
(e;, ® - ®e ®"'®eg‘l’>V*5' -0

i ] 0,36 " 9,31

for any 1 < jo,...,5i <nand 1< jgy,...,j <n, where 6_ _ denotes the Kronecker
delta. By the definition of I’, we have

0 1 !
IV @-@el)= (ool oel o el

Hence the summand of the above formula for the trace of I’ is not zero only when
jo =-+-=ji. Moreover, in this case (let us put j:=j; = --- = j;), we have

0 l 0 l 0 0
<I/( ( ) .®€§l)), §0) ®e( )> <Il OIO( ( ))’eg )>W(§a
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where (—, —)y; denotes the standard C-bilinear pairing on Wy x Wy satisfying

<e§0),e§-9)>wé =9, forany 1 < j<mnand1<j <n. Thus we get

0 0
tr(I' | V') :ZIIO o If(e ())’§)>W6'
=1

This is nothing but the trace of IO o---ol] on WE. O

Proposition A.2. Let g := (g})i; € IL; Sp(V}). Then the trace of w(g) o I on
W is given by
)

Lot orsta oot o 1 oo
Proof. We put g* := (g});. Recall that W = Q_ W’ w(g) = Q;_yw'(g"), and
I=@Q;_,I" Hence we have

tr(w(g) ol | W) = Htr Ho Il | WY).

Let us compute each tr(w?(g%) o I' | W¢). Recall that W* = ®é‘i=o Wi, wi(g') =
®§‘i:0 wj— (gji-)7 and an automorphism I* of W is defined by
I''yy®---® v,—1 @y, — Ifb_(vli) ® Ié(vo) Q- ® Iliﬁl(vli—l)
Hence the automorphism w?(g®) o I of W is given by
V@ @1 @, = I (0,) @I (vo) ® - @ I (v,-1),
where we put
I = whiy (ghy) o Il Wi S Wi
Thus, by Lemma BT, we get
tr(w'(g") o I' | W) = tr(Ili;I 0---0 Ié’/

Then, by the intertwining property of I, i.e., w’, (t«(=)) o I} = I} o wi(—),
I oo Iy" = (Wi 1 (gi,1) 0 1,) 0+ 0 (wilg1) © o)

= wi(go 0 ex(gi,) 0 --0ui(gh)) o Ij 0o I,
Hence we get the assertion. O

A.2. Gérardin’s character formulas of Weil representations. In this subsec-
tion, we review character formulas of Weil representations established by Gérardin
[Ger7d]. We let V' be a finite-dimensional vector space over F, equipped with
a symplectic pairing (—, —): V x V — F,. Let (wy, Wy) be a Heisenberg—Weil
representation of Sp(V') x H(V') with central character, say, J: F,, < C*.

We introduce some notation following [Gér7d, Section 4]. Suppose that T is
an [F,-rational maximal torus of Sp(V). Then, since T acts on V, we have a
decomposition

Vi (=Ver,F)= @ %,
ecP(V,T)
where P(V,T) denotes the set of weights of T in V and V6 denotes the weight

space with respect to e € P(V,T). As the action of T onV 1s Fp-rational, the set
121



P(V,T) is equipped with an action of I'y, = Gal(F,/F,). Furthermore, by putting
Yr, = I'r, x {1}, X5, also acts on P(V,T') (-1 acts via € — —¢). We say that a
I'r,-orbit w in P(V,T) is symmetric (resp. asymmetric) if —w = w (resp. —w # w).
For each Q € P(V,T)/Sg, such that e € €, we define a quadratic character x§, of
T(Fp) by
7 e(t) 2% if an(y) w C Q is asymmetric,
Xo(t) = Itag . .
e(t)7z  if an(y) w C Q is symmetric,

for t € T(F,), where we put go := p%m‘. we define a quadratic character 7 of

T(Fp) by
= I K
QeP(V\T)/Zx,
Proposition A.3 ([Gér7d, Corollary 4.8.1]). For any t € T C Sp(V), we have
Ouy (1) = (=1)! VT pN V5 T (1),

where

o I(V.T5t) := {w e P(V.T)/Tx, | e(t) #1 for an(y) e € w}|,

o N(V;t):=Ldimp, V* (hence pN(Vit) = Vi|z).

In order to apply Proposition B3 to a given semisimple element g € Sp(V), we

have to pick an F,-rational maximal torus T of Sp(V') containing ¢g and analyze the

structure of the set of weights P(V,T) including its Galois action. The following
lemmas are useful for this:

Lemma A.4. Let g,t € Sp(V) be semisimple elements. If g and t have the same
(multi- )sets of eigenvalues, then they are Sp(V')-conjugate.

Proof. The proof of this lemma should be standard, but we explain it for the sake
of completeness. Note that Sp(V) C SP(VFP) C GL(VFP)- The assumption that g
and t have the same eigenvalues implies that g and ¢ are conjugate in GL(VE). It
is known that this furthermore implies that g and ¢ are conjugate in Sp(VFP) (for
example, see [SS70, 275 page, Exercises 2.15 (ii)]).

Let x € Sp(VE) be an element such that g = zta™!

. Then we have xtz~! =
g =o0(g9) = o(z)to(x)~! for any o € I'r,. In other words, by putting H to be the
centralizer of ¢ in Sp(VFp), we have o(z)"!'z € H. Hence we obtain a 1-cocycle
2y € ZY(I'y,, H) given by z, = o(z) " 'a.

We note that H is connected (as an algebraic group) since Sp(VE) is simply-
connected (for example, see [Hum3H, Section 2.11]). Thus we have H'(I'g,, H) = 1
by Lang’s theorem. This means that there exists an element h € H satisfying
zo = o(h)'h. In particular, xh~! is F,-rational, i.e., an element of Sp(V). As we
have (zh~1)t(xh™1)~! = atz=! = g, we obtain the assertion. O

Lemma A.5. Let 2n := dimg, (V). Let k7,...,k; be finite extensions of F, sat-
isfying [kS : Fp] + --- 4+ [k} : F,] < n. Let k; be the quadratic extension of ki for
1 < i <1. Then there ezists an F,-mazimal torus T of Sp(V') of the form

!
H Ker(Nrki/kg : Reski/Fp Gm — Reskio/]Fp Gm) X Grm,
i=1
where r:=n — ([kS : Fp] 4+ - - + [k : Fp]). Moreover, we have the following:
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(1) The set of weights P(V,T) is of the form [_|é:1 Q; U L];Zl{:lzej}, where
e O, is a finite set of order [k; : Fp] on which Gal(k;/F,) acts simply
transitively (T, acts trivially) and the unique nontrivial element of
Gal(k;/k7) acts via negation,
o ¢; is a weight on which I'y, acts trivially.
2) Ift=(ti,. sty tists o tipr) € T(Fy) 2 [T, kX (FX)7, then the (multi-
)set of eigenvalues of t is given by

|_|{0’ )}oeal(k; F,) U |_|{tz+;7tf+1]}
Jj=1
Proof. If we let 7; be the unique nontrivial element of Gal(k;/kf), then we can
define an F,-symplectic form on k; by
(z,y) = Try, yr, (27i(y) — 7i(2)Y)-

Since the action of k} on k; preserves this symplectic form, we see that the sym-
plectic group Sp(k;) (as an algebraic group over F,) contains an F,-rational torus
Ker(Nry, /go: Resy, /r, Gm — Resge/p, Gm). Since its rank is given by [k7 : Ty,
which is the half of dimp, (k;), it is a maximal torus. On the other hand, obviously
Gy, is realized as a split maximal torus of the rank one symplectic group. Hence the
torus as in the statement can be realized in Hﬁzl SPk,:F,] X H;Zl Sp,, which can be
embedded in Sp,,, = Sp(V). Again by looking at the rank, we see that it gives an
F,-rational maximal torus of Sp(V'). The remaining assertions immediately follows
from this explicit realization. O

Proposition A.6 ([Gér77, Theorem 4.9.1 (a), (c)]). Let g € Sp(V).

(1) Suppose that g has no nonzero fixed point in V. If V' is a mazimal g-
invariant totally isotropic subspace of V', then we have

O (9) = sgngs ((—1)

where Vg := V-V,
(2) Suppose that g fizes pointwise a line L C'V. If Vi is a g-invariant subspace
of L+ such that L+ = L ® Vj, then we have

Ouy (9) = Ouy, ( Z ?((gv,v)

UEVL/L

dim V¢

*det(g | V') - det(g — 1| V),

where wy, is a Heisenberg—Weil representation of Sp(Vp) x H(Vy) with cen-
tral character ¥.

Lemma A.7. Let V =V, @ V_ be a polarization of V (i.e., Vi and V_ are totally
isotropic subspaces). Let g € Sp(V') be a semisimple element and we suppose that
Vi and V_ are invariant under g. Then, for any line Ly C V. fized by g pointwise,
there exist g-invariant decompositions Vo = L. &M, and V_ = L_& M_ such that
L_ is a line fived by g pointwise and we have L+ =V, & M_ and L+ =V_ & M,.

Proof. Let I be an nonzero element of the line L. Weput M_ :={v e V_ | (l,v) =
0}. Since V =V, @ V_ is a polarization, we can find an element w € V_ satisfying

(I,w) # 0. Note that, as g is semisimple, the order of g (say p’) is prime to 2 Thus,

since ¢ stabilizes the subspace V_, the averaged element w' := i, f 0 g( )

belongs to V_. Moreover, w’ is g-invariant and satisfies (I,w’) = (l w) # 0. By
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putting L_ := Fpw’, we get V_ = L_ & M_. By applying the same construction to
V. using w' instead of I, we get V. = L, @ M. These decompositions satisfy the
conditions as desired. (]

Corollary A.8. Let g € Sp(V) be a semisimple element and we suppose that we
have a g-invariant polarization V.=V, @ V_ of V. Then we have

Ouy (9) = sgngx (det(g | V1)) - [V7]2.

Proof. When V' has no nonzero point fixed by g, then Proposition B@ (1) can be
applied to V/ = V,. Then, as V = V. @ V_ is a polarization, we have V'+ =V,
hence Vy = 0. Thus we get

Ouy (9) = sgngx (det(g | V3)).

We next suppose that V has a nonzero point v fixed by g. We write v = vy +v_
according to the polarization V = Vi & V_ (vy € V4 and v_ € V_). Then, since
the decomposition V' = V @ V_ is g-invariant, both of v, and v_ are fixed by
g. Since v # 0, either vy or v_ is not zero. We may assume that vy is not zero
without loss of generality. Then the L :=Fyv; C V; is fixed by g pointwise.

We take g-invariant decompositions V3 = Ly @ My and V_ = L_ & M_ as in
Lemma A7 We use Proposition B8 (2) with L = L,; then L+ =V, & M_ =
Ly & M, & M_, hence V; can be taken to be M & M_. Hence we get

@wv (g) = @wvo (g) Z ﬁ((g’u,v)).

veVst /L

Since V5" is given by Ly @ L_ and g fixes L_ pointwise, we have

Y gvv)) = Y dgu,o)) = D I(ve)) = Y 1=p.

veVgh /L veEL_ veL_ veL_

Then the same argument can be applied to V. By repeating this procedure and
using the result on the case where V' has no nonzero point fixed by g, which is
already proved in the first paragraph, we eventually get

Ouy = sgngx (det(g | Vi /VY)) - plime, (V)
By noting that
det(g | Vi) = det(g | V) - det(g | Vi /VY) = det(g | V}/VY)

and pdime (V) — VI = [V9|2, we get the desired result. O
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