
INTRODUCTION TO THE LOCAL LANGLANDS CORRESPONDENCE

MASAO OI

Contents

1. Week 1: Course overview 3
1.1. Class field theory 3
1.2. What is the Langlands correspondence? 5
1.3. Local-global principle in number theory 6
1.4. What is the local Langlands correspondence? 7
2. Week 2: Overview of local class field theory 9
2.1. Local fields and CDVR 9
2.2. Extension of local fields 10
2.3. Galois groups and Weil groups of local fields 13
2.4. Local class field theory 14
3. Week 3: Representations of locally profinite groups 16
3.1. Locally profinite groups 16
3.2. Smooth representations of locally profinite groups 17
3.3. Frobenius reciprocity 19
3.4. Representations of profinite groups 19
3.5. Contragredient representation 20
3.6. Irreducible representations and Schur’s lemma 21
4. Week 4: Irreducible smooth representations of GL2(F ) 23
4.1. Recap on irreducible representations of GL2(Fq) 23
4.2. Principal series representations of GL2(F ) 24
4.3. Depth-zero supercuspidal representations of GL2(F ) 25
4.4. Depth of representations 26
4.5. Simple supercuspidal representations 27
5. Week 5: Representation of Weil groups 29
5.1. Representations absolute Galois groups 29
5.2. Galois group vs. Weil group 30
5.3. More about Weil groups 31
5.4. Grothendieck’s monodromy theorem 32
5.5. Weil–Deligne representations 34
6. Week 6: Local Langlands correspondence for GLn 36
6.1. Local Langlands correspondence for GLn 36
6.2. Example: the case of GL2 37
6.3. Idea of the characterization of LLC for GLn 38
6.4. Local L-factors and ε-factors 39
6.5. Local L-factors and ε-factors for pairs 41

Date: April 1, 2025, 8:37am.

1



References 43

2



1. Week 1: Course overview

1.1. Class field theory. Let us begin with the following very famous and classical theorem
in elementary number theory.

Theorem 1.1. The number of the solutions to the equation x2 − 2 = 0 in Fp is given as
follows:

|{x ∈ Fp | x2 − 2 = 0}| =


2 if p ≡ 1, 7 (mod 8),

0 if p ≡ 3, 5 (mod 8),

1 if p = 2.

This theorem is called the second supplement to the quadratic reciprocity law (see, e.g.,
[Ser73, Chapter I, §3]). In fact, more generally, the general quadratic reciprocity law implies
the following:

Theorem 1.2. Let a ∈ Z be an integer. Then there exists a positive integer N ∈ Z>0 such
that the number |{x ∈ Fp | x2 − a = 0}| depends only on the modulo N of p.

For example, Theorem 1.1 says that N can be taken to be 8 when a = 2.

Exercise 1.3. (1) Explain the statement of the quadratic reciprocity law.
(2) Determine the number N in Theorem 1.2 using the quadratic reciprocity law.

Next let us consider the equation x3 − 2 = 0. Can we find a simple description of the
numbers of the solutions to this equation in Fp like above? In fact, the answer is NO!
More precisely, there does not exist a positive integer N ∈ Z>0 such that the number
{x ∈ Fp | x3 − 2 = 0} depends only on the modulo N of p.

What causes such a difference between the quadratic and the cubic cases? To explain it,
let us think about how to prove Theorem 1.1 from a modern viewpoint based on algebraic
number theory. (In the following, we appeal to some basics of algebraic number theory. But
it’s not a material necessary for this course. If you are not familiar with them, please try
to feel just its flavor.)

Since the equality |{x ∈ F2 | x2 − 2 = 0}| = 1 is obvious, let us suppose that p is an odd
prime number. Then Theorem 1.1 is rephrased as follows:

Fp has a square root of 2 if and only if p ≡ ±1 (mod 8).

Noting this, let us introduce the quadratic extension K := Q(
√

2) of Q obtained by adding a

square root
√

2 of 2. The ring of integer OK in K is given by Z[
√

2]. Because the quadratic
extension K/Q is unramified outside 2, any odd prime number p has only the following two
possibilities about the ideal pOK of OK generated by p:

• pOK is a prime (maximal) ideal of OK (p “inerts” in K), or
• pOK is the product p1p2 of two different prime ideals p1 and p2 of OK (p “splits

completely” in K).

Let us look at the quotient ring OK/pOK . This ring is

• a field if p inerts in K, and
• the product of two fields (OK/p1 and OK/p2) if p splits completely in K.

On the other hand,

OK/pOK = Z[
√

2]/pZ[
√

2] ∼=
(
Z[x]/(x2 − 2)

)
/p
(
Z[x]/(x2 − 2)

)
∼= Fp[x]/(x2 − 2).

The right-hand side is
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• a field (a quadratic extension of Fp) if Fp does not have a square root of 2, and
• the product of two fields (both Fp) if Fp has a square root of 2.

Hence, in summary, we see that

Fp has a square root of 2 if and only if p splits completely in K.

Recall that each odd prime number p gives rise to a special element Frobp of Gal(K/Q),
called Frobenius element (again note that K/Q is unramified outside 2). The important
property of the Frobenius is that it knows whether p splits completely or not. More precisely,

p splits completely in K if Frobp = id.

So, our task is now reduced to investigate when Frobp = id.
In fact, the argument so far can be carried out in general (e.g., for x3−2 = 0 by replacing

K with the smallest factorization field of x3 − 2 = 0) more or less. But here we reach the
stage where a special nature of the equation x2−2 = 0 comes into play. The point is that the
quadratic extension K/Q is abelian, i.e., its Galois group Gal(K/Q) is abelian. In general,
by the Kronecker–Weber theorem, any abelian extension of Q is contained in a cyclotomic
field Q(µN ) (µN denotes the set of N -th roots of unity). The Galois group of Q(µN )/Q is
given by (Z/NZ)×; by choosing a primitive N -th root ζN of unity, it is described as follows:

Gal(Q(µN )/Q) ∼= (Z/NZ)× : [ζN 7→ ζiN ] 7→ i.

Under this identification, the Frobenius element Frobp on the left-hand side is mapped to
p ∈ (Z/NZ)× on the right-hand side (as long as p is unramified, which is equivalent to that
p does not divide N).

In our situation, actually we have Q(
√
−2) ⊂ Q(µ8). More precisely, under the Galois the-

ory, Q(
√
−2) is the subfield of Q(µ8) corresponding to the subgroup {±1} of Gal(Q(µ8)/Q) ∼=

(Z/8Z)×. Hence the Galois group Gal(K/Q) is identified with the quotient of (Z/8Z)× by
{±1}. Thus we conclude that

Frobp = id if and only if p ≡ ±1 (mod 8).

Hence this completes the proof of Theorem 1.1.
The classical class field theory enables us to do a similar thing for more general number

fields (finite extensions of Q).

Theorem 1.4 (class field theory). Let F be a number field. Let F ab be the maximal abelian
extension of F . Then there exists a natural surjective continuous homomorphism

ArtF : A×F → Gal(F ab/F ),

which kernel is explicitly described.

Here, I do not explain the meaning of “natural” (it is formulated as the compatibility
with the local class field theory, which will be explained later) nor even what “AF ” on the
source of the map is. But I just want to emphasize that this “AF ” (which is called the
adele ring of F ) is defined only using the intrinsic data of the original object F . So, class
field theory describes how the field F extends to a larger abelian field only by appealing to
the internal data of F , which is much easier to grasp. For example, when F = Q, the map
ArtF exactly gives rise to the above-mentioned isomorphism (Z/NZ)× ∼= Gal(Q(µN )/Q) by
taking an appropriate finite quotient.

If we try to imitate the above discussion in the case of the equation x3 − 2 = 0, we
immediately notice that the last part does not work because the smallest splitting field
Q( 3
√

2, µ3) of the equation x3− 2 = 0 is not abelian over Q; its Galois group is given by S3.
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1.2. What is the Langlands correspondence? Then, is it impossible to find any beau-
tiful law on the behavior of the number |{x ∈ Fp | x3 − 2 = 0}| over prime numbers p? In
fact, the following holds:

Theorem 1.5. We let
∑∞
n=1 anq

n be the infinite series given by the following infinite prod-
uct:

q ·
∞∏
n=1

(1− q6n) · (1− q18n) =

∞∑
n=1

anq
n.

Then, for any prime number p 6= 2, 3, we have

|{x ∈ Fp | x3 − 2 = 0}| = 1 + ap.

(See, e.g., [DS05, Section 4.11] for the more general case of x3 − a = 0.)
Let us also introduce a different, but similar, phenomenon. We consider the following

equation:

E : y2 + y = x3 − x2.

The set of solutions of this equation forms a curve, which is called an elliptic curve. Let us
think about the solutions in Fp:

E(Fp) := {(x, y) ∈ Fp × Fp | y2 + y = x3 − x2}.

Note that, in this case, the equation is not one-variable. So we do not even have a simple
interpretation of the set E(Fp) in terms of field extensions of Q. (In the case of x3 − 2 = 0,
although we cannot apply the class field theory, we can still relate the number |{x ∈ Fp |
x3−2 = 0}| to how p decomposes into prime ideals in the smallest splitting field of x3−2 = 0.)
Nevertheless, we have the following:

Theorem 1.6. We let
∑∞
n=1 anq

n be the infinite series given by the following infinite prod-
uct:

∞∑
n=1

anq
n = q ·

∞∏
n=1

(1− qn)2 · (1− q11n)2.

Then, for any prime number p 6= 11, we have

|E(Fp)| = 1 + p− ap.

In Theorems 1.5 and 1.6, by putting q := exp(2πiz) (for z ∈ C), we may regard the infinite
serieses as functions on the complex upper-half plane. In fact, they are examples of so-called
“modular forms”, which is a holomorphic function on the complex upper-half plane equipped
with a lot of symmetry. Both elliptic curves and modular forms have been investigated in
the context of number theory for a long time. A priori, they are totally different objects;
elliptic curves are purely-algebraic while modular forms are purely-analytic, at least from
the above descriptions. However, they are actually related in a surprising way as above.

All the phenomena introduced so far (Theorems 1.1, 1.5, 1.6) can be thought of as special
cases of the Langlands correspondence. The Langlands correspondence is a vast, but conjec-
tural, framework which connects two completely different mathematical objects: on the one
hand are automorphic representations and on the other hand are Galois representations:

(automorphic representations) oo
Langlands correspondence

// (Galois representations)
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Roughly speaking, an automorphic representation is an irreducible representation of
GLn(AF ) realized in the space of automorphic forms, which are generalization of modu-
lar forms, and a Galois repersentaion is an n-dimensional continuous1 representation of the
absolute Galois group Gal(F/F ).

The important viewpoint here is not to look at the Galois group itself, but to consider
representations of the Galois group. Recall that representation theory is a very strong tool
(or even a modern “formulation”) for studying non-abelian groups. For example, when
n = 1, we have GL1(AF ) = A×F ; this implies an automorphic representation of GL1(AF ) is

just a character of A×F . On the other hand, when the dimension of a Galois representation is
1, it must be a character, hence it necessarily factors through the maximal abelian quotient

of Gal(F/F ), i.e., Gal(F
ab
/F ). Thus the Langlands correspondence in this case says that

the characters of A×F and Gal(F
ab
/F ) nicely correspond. This is exactly implied by the

isomorphism A×F ∼= Gal(F
ab
/F ) of class field theory.

When n = 2, the Shimura–Taniyama conjecture, which plays a crucial role in the proof
of Fermart’s conjecture, is also regarded as a special case of the Langlands correspondence.
Theorem 1.6 is an example of the Shimura–Taniyama conjecture.

Other than these examples, It is known that various phenomena in number theory can
be explained in a sophisticated way by appealing to the prediction of the Langlands corre-
spondence. Therefore, one of the most important objectives in the modern number theory
is to establish the Langlands correspondence.

Exercise 1.7. By looking at “LMFDB” (which is an online database of modular forms,
elliptic curves, and so on), we can find a lot of examples of elliptic curves and modular forms
which “correspond”. For example, the elliptic curve and the modular form considered in
Theorem 1.6 are labelled by “11.a3” and “11.2.a.a”, respectively. I just randomly chose the
following elliptic curve from this database: y2 + xy + y = x3 − x. Try to find the modular
form corresponding to this elliptic curve using LMFDB (please explain how you arrive at
it).

1.3. Local-global principle in number theory. Then, what is the “local” Langlands
correspondence in the course title? To explain this, let us briefly talk about the philosophy
of the local-global principle in number theory. Recall that the real number field R is the
completion of the rational number field Q with respect to the normal metric on Q. We
note that R is not the only field obtained by such a procedure from Q. Indeed, Q possesses
non-trivial metrics other than the normal metric. For each fixed prime number p, if we put
|pr · nm |p := p−r (here, n and m are integers prime to p), then | · |p gives a well-defined
metric on Q called the p-adic metric. If we complete Q with respect to the p-adic metric,
we obtain a locally compact field different to R, which is called the p-adic number field and
denoted by Qp. The fundamental philosophy in number theory is that any problem on the
rational number field Q should be able to be understood through its analog for R and Qp
for all prime numbers p; this is the idea of “local-global” in number theory.

problem on Q oo
local-global principle

// problems on R and Qp (for all p)

For example, the local analog of the class field theory is the local class field theory, which
says that, for any p-adic field F (i.e., a finite extension of Qp), we have a natural injective

1It is very important which kind of coefficient field/topology we adopt when we consider a representation

of Gal(F/F ). But let us just ignore this subtlety here.
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homomorphism

ArtF : F× → Gal(F ab/F )

with dense image.
Both automorphic representations and Galois representations are objects related to the

rational number field Q (or, more generally, any number field F ). Thus it is natural to think
about the analog of the Langlands correspondence for R or Qp (or, more generally, any local
field of characteristic zero, which means a finite extension of R or Qp); this is what is called
the local Langlands correspondence (LLC). This also generalized the local class field theory.

1.4. What is the local Langlands correspondence? Let us explain the LLC a bit more
precisely. In the following, we let F be any p-adic field, i.e., a finite extension of Qp. The
LLC is a natural correspondence between the set of “irreducible admissible representations”
of GLn(F ) and the set of “n-dimensional Weil–Deligne representations”:

(irred. adm. repns. of GLn(F )) oo LLC // (n-dim. WD repns.)

Here, roughly speaking,

• an irreducible admissible representation of GLn(F ) means an irreducible represen-
tation of the group GLn(F ) on a C-vector space equipped with a certain finiteness
condition (this can be thought of as the local version of an automorphic represen-
tation);

• a Weil–Deligne representation is a modified version of the notion of a continuous
representation of Gal(F/F ).

Now recall that the starting point of our discussion was how to understand the absolute
Galois group Gal(F/F ). The point of class field theory is that it can be understood through
a much easier object F×. However, at this point, we notice the following:

• The automorphic side of LLC is not so obvious to understand as in the case of
F×. So we may also think that LLC enables us to investigate irreducible admissible
representations of GLn(F ) through the Galois side, which consists of arithmetic
objects.

• The automorphic side of LLC makes sense even if we replace GLn with more general
groups.

Keeping these observations in mind, let us present a naive formulation of LLC in general:

Conjecture 1.8 (local Langlands conjecture, naive form). Let G be a reductive group
defined over F . Then there exists a natural map from the set of irreducible admissible
representations of G(F ) to the set of “L-parameters” of G.

For general G, we can no longer say that one of the automorphic or Galois sides is
particularly easier than the other side. Therefore the local Langlands correspondence is
very important not only from number-theoretic viewpoint, but also representation-theoretic
viewpoint (representation theory of p-adic reductive groups).

At present, LLC is still conjectural in general, but has been constructed for several specific
groups. For example,

• GLn by Harris–Taylor [HT01], Henniart [Hen00],
• SOn and Sp2n (quasi-split) by Arthur [Art13],
• Un (quasi-split) by Mok [Mok15],
• and so on...
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On the other hand, there are also approaches for specific classes of irreducible admissible
representations. For example,

• the classical construction by Satake for unramified representations,
• regular depth-zero supercuspidal representations by DeBacker–Reeder [DR09],
• regular (positive-depth) supercuspidal representations by Kaletha [Kal19],
• and so on...

The aims of this course to understand the following:

• A naive formulation of LLC in general. For this, I will explain some basics of
representation theory of p-adic reductive groups (such as the notion of admissible
representations) and also representations theory of local Galois groups (especially,
Weil–Deligne representations etc).

• The precise formulation (characterization) of LLC for GLn given by [HT01] and
[Hen00]. For this, I will explain more details of representaiton theory of p-adic
reductive groups by focusing on the case of GLn (so-called “Bernstein–Zelevinsky
classification”). It is far beyond my ability to explain the construction of LLC, so
I’m not going to touch it.

• The precise formulation (characterization) of LLC for quasi-split classical groups
given by [Art13] and [Mok15]. For this, I will explain basics about harmonic anal-
ysis on p-adic reductive groups including the Harish–Chandra characters of repre-
sentaitons etc.

• Recent developments on explicit construction of LLC for certain supercuspidal rep-
resentations by [DR09], [Kal19], etc.

Of course, this plan must be too ambitious. Let’s see how much I can achieve...
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2. Week 2: Overview of local class field theory

2.1. Local fields and CDVR. We briefly review some basic facts about local fields (see,
e.g., [Ser79, Chapters 1, 2] or [Wei74, Chapter I]).

We first introduce the p-adic number field Qp. Recall that the real number field R is the
completion of the rational number field Q with respect to the normal metric on Q. In fact,
there is a different way of completing Q; for each prime number p, we put

|pr · nm |p := p−r

(here, n and m are integers prime to p). Then | · |p gives a well-defined metric on Q called
the p-adic metric. If we complete Q with respect to the p-adic metric, we obtain a locally
compact field different to R, which is called the p-adic number field and denoted by Qp.

Local fields are generalizations of these fields.

Definition 2.1 (local field). We say that a field F is a local field if it is a nondiscrete locally
compact topological field.

Fact 2.2. Any local field is isomorphic to one of the following:

• R or C (archimedean);
• a finite extension of Qp (nonarchimedean, characteristic 0);
• a finite extension of Fp((t)) (nonarchimedean, characteristic p).

One notable characterization of a local field is that it is the completion of a global field
(i.e., a finite extension of Q or Fp(t)) with respect to a nontrivial metric. Thus, from the
viewpoint of “global” number theory, both archimedean and nonarchimedean local fields
have equal importance. However, in this course, we focus only on nonarhimedean local
fields (and often assume even that characteristic is zero).

Let us introduce more ring-theoretic description of nonarchimedean local fields.

Definition 2.3 (DVR (discrete valuation ring)). Let F be a field. We say that a group
homomorphism v : F× → Z× is a discrete valuation of F if it is surjective and satisfies the
following condition:

For any x, y ∈ F , we have v(x+ y) ≥ min{v(x), v(y)},

where we put v(0) :=∞. When F is equipped with a discrete valuation v, the set

{x ∈ F | v(x) ≥ 0}

forms a subring of F , called the valuation ring F (with respect to v). If a ring O is obtained
as the valuation ring of a field with respect to its discrete valuation, we call it a discrete
valuation ring (DVR).

Fact 2.4. Let O be a ring. Then O is a DVR if and only if it is a PID with unique nonzero
prime (hence maximal) ideal.

When O is a DVR with discrete valuation v, its subset

{x ∈ F | v(x) = 0}

forms the multiplicative group of units O×. The maximal ideal of O is given by

p = {x ∈ F | v(x) ≥ 1}.
9



Any generator of the maximal ideal p is often referred to as a uniformizer of p. If we fix a
uniformizer $ of p, then any nonzero ideal of O is expressed as 2

pn = {x ∈ F | v(x) ≥ n} = $nO.

We call O/p the residue field of O.
Now let F be a fractional field of a DVR O with discrete valuation v. Then we can equip

F with a metric |x| := rv(x) (|0| := 0) by choosing any real number r ∈ (0, 1). If we let F̂ be

the completion of F with respect to this metric, F̂ naturally has a structure of a topological
field. Moreover, we can equip F̂ with a discrete valuation which extends v; the valuation
ring of F̂ is given by the closure of O in F̂ . By noting that {pn}n∈Z≥0

forms a fundamental

system of open neighborhoods of 0 in O, we can see that the closure of O in F̂ is nothing
but

Ô := lim←−
n

O/pn,

where the transition map O/pn+1 � O/pn is given by the natural surjection.

We say that a DVR O is complete (and say O is a CDVR) if Ô = O.

Fact 2.5. Let F be a field. Then F is a nonarchimedean local field if and only if F is a
fractional field of CDVR (“CDVF”) with finite residue field.

Remark 2.6. When F is a nonarchimedean local field with valuation ring O and maximal
ideal p, the characteristics of (F,O/p) must be either (0, p) (called mixed characteristic) or
(p, p) (called equal characteristic). According to a classification result mentioned above, F
is mixed characteristic if and only if it is a finite extension of Qp. In this case, we often say
that F is a p-adic field (but this terminology depends on people).

Let F be a nonarcimedean local field. Recall that the absolute Galois group of F is, by
definition, the Galois group ΓF := Gal(F sep/F ) of the separable closure F sep of F . 3 The
separable closure F sep is given by the direct limit (union) of all finite separable (Galois)
extensions of F . We define F ab to be the maximal abelian extension of F in F sep, i.e., the
direct limit (union) of all finite abelian extensions of F . (Note that this makes sense since
the composite field of any two finite abelian extensions is again a finite abelian extension.)
Then the Galois group Gal(F ab/F ) is identified with the maximal abelian quotient of ΓF ,

i.e., ΓF /[ΓF ,ΓF ].

2.2. Extension of local fields.

Fact 2.7. Let OF be a CDVR with fractional field F . Let E/F be a finite separable extension
of rank n. Then the integral closure of OF in E (write OE) is a CDVR. Moreover, OE is
a free OF -module of rank [E : F ].

By this fact, it makes sense to refer to OF as the ring of integers in F .
Let E/F be a finite separable extension of non-archimedean local fields of degree n. Let

OF be the ring of integers in F , pF the maximal ideal of OF , kF := OF /pF the residue
field. Also for E, we define OE , pE , and kE in a similar way. We introduce two invariants
of the extension E/F :

2Another popular symbol for a uniformizer is π, but we often use $ in our area (representation theory

of p-adic groups) in order to reserve π to denote a representation.
3Another standard symbol for the absolute Galois group is “GF ”, but we avoid it because we want to

use “G” for a reductive group over F .
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• The ideal pFOE of OE is of the form peE , where e ∈ Z>0. We call e the ramification
index of E/F .

• Noting that kF = OF /pF is regarded as a subfield kE = OE/pE , we let f be the
degree of the finite extension kE/kF . We call f the residue degree of E/F .

Note that these invariants satisfies the chain rule: if E/F is a finite separable extension
with ramification index e and residue degree f and L/E is a finite separable extension with
ramification index e′ and residue degree f ′, then L/F is a finite separable extension with
ramification index ee′ and residue degree ff ′,

Fact 2.8. We have n = ef .

Definition 2.9. (1) We say that E/F is unramified if e = 1 and (so, equivalently,
n = f) and the residual extension kE/kF is separable.

(2) We say that E/F is ramified if it is not unramified.
(3) We say that E/F is totally ramified if e = n (so, equivalently, f = 1).

Note we don’t have to be worried about the second condition of the unramifiedness
(separability of kE/kF ) for local field since kF is finite, hence perfect. Also, in this case, the
ramifiedness is equivalen to that e > 1.

Example 2.10. Let p be an odd prime number such that p ≡ −1 (mod 4). Note that this
condition is equivalent to that

√
−1 /∈ Fp, which is furthermore equivalent to that

√
−1 /∈ Qp

by Hensel’s lemma (explained later). We put F0 := Qp(
√
−1) and F1 := Qp(

√
p).

• The quadratic extension F0/Qp is unramified since the residue field of F0 must

contain
√
−1, hence be a quadratic extension of Fp.

• The quadratic extension F1/Qp is ramified since the ring of integers OF1
contains√

p and the ideal pE1 generate by
√
p satisfies p2

E1
= pOF1 (so pE1 must be the

maximal ideal).

In fact, unramified extensions are much easier to understand than ramified extensions.
The fundamental reason for this lies in the following theorem:

Fact 2.11 (Hensel’s lemma). Let O be a CDVR with maximal ideal p and residue field k.
Let f(X) ∈ O[X] be a polynomial with mod p reduction f̄(X) ∈ k[X]. If ᾱ ∈ k is a simple
root of f̄(X), then there uniquely exists a root α ∈ O of f(X) such that α ≡ ᾱ (mod p).

Example 2.12. Let p be an odd prime number. Then Qp contains
√
−1 if and only if p ≡ 1

(mod 4). Indeed, note that the monic X2 + 1 has a root in Qp is and only if it has a root
in Zp since Zp is integrally closed. By Hensel’s lemma, the latter condition is equivalent to

that X2 + 1 has a root in Fp. Since
√
−1 is a primitive 4th root of unity (this is nothing

but the definition of the symbol “
√
−1”) and F×p is cyclic of order p− 1, we have

√
−1 ∈ F×p

if and only if 4 | (p− 1), which means that p ≡ 1 (mod 4).

Proposition 2.13. Let F be a CDVF with residue field kF . The association E 7→ kE for
any finite unramified extension E/F gives a bijective map between the set of finite unramified
extensions of F (in F ) and the set of finite separable extensions of kF (in kF ). Moreover,
E/F is Galois if and only if so is kE/kF ; in this case the Galois groups are identified.

Proof. We just give a sketch here. For checking the surjectivity, we take a finite separable
extension k′ of kF . We write k′ = kf [X]/(f̄(X)) with f̄(X) ∈ k[X] and choose a lift
f(X) ∈ OF [X] of f̄(X). Then we can show that F [X]/(f(X)) is a finite unramified extension
whose residue field is isomorphic to k′.
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To show the remaining part, we take a finite unramified extension E of F . For the
residual extension kE/kF , we choose f̄(X) ∈ kF [X] as in the previous paragraph and lift it
to f(X) ∈ OF [X]. Then, for any finite unramified extension E′, we have

HomF (E,E′)
1:1←→ HomOF (OE ,OE′)

1:1←→ {roots of f(X) in OE′}
(if α′ ∈ OE′ is a root of f(X), then the corresponding OF -algebra homomorphism is deter-
mined by α 7→ α′). On the other hand, we also have

HomkF (kE , kE′)
1:1←→ {roots of f̄(X) in kE′}

By Hensel’s lemma, the right-hand sides of these are naturally bijective. Thus we get a
natural bijection HomF (E,E′) ∼= HomkF (kE , kE′). This shows the injection of the map in
the assertion. Also, being Galois is preserved between E/F and kE/kF . �

Note that, in particular, when E and E′ are finite unramified extensions of F , their com-
posite field EE′ is also a finite unramified extension of F ; this is the field corresponding to
kEkE′ in the above proposition. Hence it makes sense to think about the maximal unrami-
fied extension of F , which is the direct limit (union) of all finite unramified extensions of F
and denoted by F ur. Then F ur is a Galois extension of F whose Galois group Gal(F ur/F ) is
isomorphic to Gal(ksep

F /kF ). We remark that, for any finite extension E/F , the intersection
E ∩ F ur gives the maximal unramified (over F ) subextension of F in E; in other words,
E/E ∩ F ur is totally ramified and E ∩ F ur/F is unramified.

Let us apply this to the case of nonarchimedean local field. Let F be a nonarchimedean
local field, hence kF is a finite field, say Fq (a field of q elements). As long as we fix an

algebraic closure Fq of Fq, there uniquely exists a degree n extension of Fq in Fq for each

n ∈ Z>0; it is Fqn , which is realized as the set of solutions of xq
n − x = 0. This degree

n extension Fqn/Fq is cyclic; Gal(Fqn/Fq) has a natural generator called the arithmetic
Frobenius element

Fqn
∼=−→ Fqn ; x 7→ xq.

Note that the inverse to the arithmetic Frobenius element is also a generator. We call it the
geometric Frobenius element and write FrobFq for it4. Therefore, the Galois group of the

infinite Galois extension Fq/Fq is isomorphic to the profinite completion Ẑ of Z:

Gal(Fq/Fq) ∼= lim←−
n

Gal(Fqn/Fq) ∼= lim←−
n

Z/nZ =: Ẑ.

Here, the topological generator 1 of Ẑ on the right-hand side corresponds to the arithmetic

Frobenius element Fq
∼=−→ Fq : x 7→ xq on the left-hand side.

Now, by Proposition 2.13, for each n ∈ Z>0, there uniquely exists a degree n unramified
extension Fn of F ; it is generated by the solutions to the equation xq

n − x = 0. In other
words, Fn is obtained by adjoining all (qn − 1)-th roots of unity to F .

Exercise 2.14. Let F be a nonarchimedean local field with residue field kF of characteristic
p. Prove that the maximal unramified extension F ur is generated over F by roots of unity
whose orders are prime-to-p.

We next consider ramified extensions. As mentioned before, ramified extensions are not
so easy compared with unramified extension. For example, totally ramified extensions are
not closed under the composition. Thus it does not make sense to think about something

4Here we have some conflict of notations: in Week 1, I used this symbol for denoting (a lift of) the

arithmetic Frobenius.
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like “maximal totally ramified extension”. Related to this, there is also no canonical way of
associating a “maximal totally ramified subextension” to a given extension E/F .

Example 2.15. Let p, F0 = Qp(
√
−1), and F1 := Qp(

√
p) be as in Example 2.10. We

furthermore introduce another quadratic extension F2 := Qp(
√
−p), which is ramified for

the same reason as F1. If we let E be the quartic extension Qp(
√
p,
√
−1) of Qp, then we

have E = F0F1 = F0F2 = F1F2. The situation is summarized as follows:

Qp(
√
p,
√
−1)

Qp(
√
−1)

ram

Qp(
√
p)

ur

Qp(
√
−p)

ur

Qp
ur

ram
ram

In particular, note that the composite of two totally ramified extensions F1 and F2 contains
an unramified extension.

Definition 2.16. Let O be a CDVR with discrete valuation v. Let f(X) ∈ O[X] be a
monic polynomial f(X) = Xn + an−1X

n−1 + · · · + a0. We say that f(X) is an Eisenstein
polynomial if v(ai) ≥ 1 for any 1 ≤ i ≤ n− 1 and v(a0) = 1.

Fact 2.17. Let O be a CDVR with fractional field F . Let f(X) ∈ O[X] be an Eisenstein
polynomial of degree n. Then f(X) is irreducible and the field F [X]/(f(X)) is a totally
ramified extension of F of degree n.

Exercise 2.18. Let Mn(Qp) be the Qp-algebra of n-by-n matrices whose entries are in Qp.
We consider the following element

ϕ :=

à
0 1

. . .
. . .

. . . 1
p 0

í
∈Mn(Qp).

More precisely, (i, i+ 1)-entry of ϕ is 1 for 1 ≤ i ≤ n− 1, (n, 1)-entry of ϕ is p, and all the
other entries are 0. We consider the Qp-subalgebra Qp[ϕ] of Mn(Qp) generated by ϕ. Prove
that Qp[ϕ] is a finite extension of Qp (in particular, Qp[ϕ] is a field). Also, determine the
extension degree, the ramification index, and the residue degree of Qp[ϕ]/Qp.

2.3. Galois groups and Weil groups of local fields. Let E/F be a finite Galois ex-
tension of nonarchmedean local fields. Then, any element of Gal(E/F ) induces an element
of the extension of residue fields kE/kF . In other words, we have a natural surjection
Gal(E/F ) � Gal(kE/kF ). By letting E run over all finite Galois extensions of F , we also
get a natural surjection ΓF := Gal(F sep/F ) � Gal(kF /kF ).

Definition 2.19. We let IF be the kernel of the map ΓF � Gal(kF /kF ) and call it the
inertia subgroup of ΓF .

Recall that we have Gal(F ur/F ) ∼= Gal(kF /kF ). Hence the inertia subgroup IF is
nothing but the closed subgroup of ΓF corresponding to the subextension F ur, i.e., IF =
Gal(F sep/F ur).

13



Definition 2.20. We define a subgroup WF of ΓF to be the preimage of 〈FrobkF 〉 under
the map ΓF � Gal(kF /kF ) and call it the Weil group of F .

1 // IF // ΓF // Gal(kF /kF ) ∼= Ẑ // 1

1 // IF // WF
//

⋃
〈FrobkF 〉 ∼= Z

⋃
// 1

Note that the Weil group is not the Galois group for any Galois extension, hence there is
no intrinsic topology on WF . We equip WF with the topology such that IF is open in WF

and the induced topology on IF coincides with the natural topology of IF (as the Galois
group of F sep/F ur). The natural inclusion WF ↪→ ΓF induces an inclusion between their
maximal abelian quotients W ab

F ↪→ Γab
F .

2.4. Local class field theory.

Theorem 2.21 (local class field theory). Let F be a non-archimedean local field with residue
field k. Then there uniquely exists an isomorphism

ArtF : F×
∼=−→W ab

F

as topological groups satisfying the following properties:

(1) For any uniformizer $ ∈ F×, its image ArtF ($) ∈ W ab
F is a lift of the geometric

Frobenius Frobk ∈ Gal(k̄/k).
(2) For any finite separable extension E/F , the following diagram commutes:

E×
ArtE //

NrE/F

��

W ab
E

res

��

F×
ArtF // W ab

F

(3) For any finite abelian extension E/F , ArtF induces an isomorphism

F×/NrE/F (E×)
∼=−→ Gal(E/F ).

Because of this theorem, it is important to know the structure of F×. So let us explain
how F× can be understood.

We first note the exact sequence

1→ O×F → F×
v−→ Z→ 1.

This splits by choosing a uniformizer $ ∈ F×, i.e., we have F× ∼= OF × 〈$〉. Secondly, we
have the exact sequence

1→ (1 + pF )→ O×F → k×F → 1.

This splits by Hensel’s lemma; elements of k×F are identified with (q − 1)-roots of unity,
where q = |kF |. Finally, we consider the exponential/logarithm map between F and F×.
Here, for simplicity, we suppose that F = Qp:

exp: Qp → Q×p ; x 7→
∞∑
n=0

1

n!
xn,

log : Q×p → Qp; x 7→
∞∑
n=1

(−1)n−1

n
(x− 1)n.
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These maps do not converge on the whole domain, but gives group isomorphisms between®
pZp and 1 + pZp if p 6= 2,

4Z2 and 1 + 4Z2 if p = 2.

In the case where p = 2, we have (1 + 2Z2) ∼= {±1} × (1 + 4Z2). Thus, in conclusion, we
have

Q×p ∼=
®
Z× Z/(p− 1)Z× Zp if p 6= 2,

Z× Z/2Z× Z2 if p = 2.

Exercise 2.22. Count the number of (isomorphism classes of) quadratic extensions of Qp.

Exercise 2.23. For any finite abelian group G, can we always find a finite abelian extension
of nonarchimedean local fields E/F whose Galois group is isomorphic to G?
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3. Week 3: Representations of locally profinite groups

3.1. Locally profinite groups. The reference for this section is [BH06, §1].

Definition 3.1. (1) We say that a topological group G is profinite if G is compact
and the set of open subgroups of G forms a fundamental system of neighborhood of
1 ∈ G (i.e., any open neighborhood of 1 ∈ G contains an open subgroup of G).

(2) We say that a topological group G is locally profinite if it contains an open subgroup
which is a profinite group.

Fact 3.2. A topological group G is profinite if and only if it is written as the inverse limit
G = lim←−nGn with respect to a projective system {Gn}n of finite groups.

We don’t review here the fundamental properties of (locally) profinite groups, but just
mention the following one, which will be used implicitly many many times.

Lemma 3.3. Let G be a profinite group. Then any open subgroup of H is of finite index.

Proof. Let us write G =
⊔
g∈G/H gH. Then the g-translation G → G : x 7→ gx is a home-

omorphism, gH is also open in G. Thus, by the compactness of G, we conclude that the
disjoint open covering {gH}g∈G/H must be a finite covering. Hence G/H is finite. �

Example 3.4. (1) Any non-archimedean local field F is a locally profinite group as an
additive group. Indeed, by the definition of its metric, the descending filtration

OF ⊃ pF ⊃ p2
F ⊃ · · · ⊃ {0}

consisting of open subgroups pn forms a fundamental system of neighborhoods of 0.
Since OF is closed (and also open) in F and bounded with respect to the metric,
OF is compact (hence profinite). Note that we can write OF ∼= lim←−nOF /p

n
F .

(2) For any non-archimedean local field F , its multiplicative group F× is a locally
profinite group. Indeed, by the definition of its metric, the descending filtration

O×F ⊃ (1 + pF ) ⊃ (1 + p2
F ) ⊃ · · · ⊃ {0}

consisting of open subgroups (1+pn) forms a fundamental system of neighborhoods
of 1. SinceO×F is closed (and also open) in F and bounded with respect to the metric,

O×F is compact (hence profinite). Note that we can write O×F ∼= lim←−nO
×
F /(1 + pnF ).

(3) The previous examples can be generalized as follows.
For any non-archimedean local field F , the additive group Mn(F ) of n-by-n ma-

trices is a locally profinite group. Here, we just regard Mn(F ) as F⊕n
2

and equipped
it with the product topology. A fundamental system of its open neighborhood (of
the zero matrix) can be taken to be

Mn(OF ) ⊃Mn(pF ) ⊃Mn(p2
F ) ⊃ · · · ⊃ {0}.

Next, we consider G = GLn(F ) for a non-archimedean local field F . Then, with
respect to the induced topology from Mn(F ), G is a locally profinite group. A
fundamental system of its open neighborhood (of the identity matrix) can be taken
to be

GLn(OF ) ⊃ 1 +Mn(pF ) ⊃ 1 +Mn(p2
F ) ⊃ · · · ⊃ {In}.

(4) The previous example can be furthermore generalized as follows. Let G be a linear
algebraic group over F . Then, by definition, we can find an embedding (Zariski
closed immersion) ι : G ↪→ GLn into some GLn over F . Hence we may regard
G as a Zariski closed subgroup of GLn via ι. Here, recall that “Zariski closed”
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means that G can be defined to be the subset of GLn consisting of zeros of some
polynomials. Thus any element g ∈ GLn(F ) r G(F ) is not a solution to those
polynomials; then any element h ∈ GLn(F ) r G(F ) which is “sufficiently” close to
g in the locally profinite topology (p-adic topology) cannot be a solution. In other
words, the completment GLn(F )rG(F ) is open, hence G(F ) is closed in GLn(F ).
In general, any closed subgroup of a locally profinite group is again a locally profinite
group, hence so is G(F ).

3.2. Smooth representations of locally profinite groups. The reference for this sec-
tion is [BH06, §2].

Let G be a locally profinite group. In the following, by “a representation (π, V )” of G,
we mean a C-vector space V equipped with an action π of G, i.e., a group homomorphism
π : G→ GLC(V ). (Sometimes we just say “π is a representation of G”.)

Definition 3.5. Let (π, V ) be a representation of G. We say that (π, V ) is smooth if any
v ∈ V is contained in V K for some open compact subgroup K of G. Here, V K denotes the
subspace of K-fixed vectors, i.e.,

V K := {w ∈ V | π(k)(w) = w for any k ∈ K}.
In other words, (π, V ) is smooth if and only if we have

V =
⋃
K⊂G

V K ,

where the index set is over all open compact subgroups K of G.

We want to examine examples of smooth representations. In representation theory of
finite groups, an operation called induction plays a very important role in constructing
representations of a given group. So let us consider whether the same technique is available
in this context.

Let H ⊂ G be a subgroup. What we want to do here is to construct a smooth repre-
sentation of a “bigger” locally profinite group using a smooth representation of a “smaller”
locally profinite group. So, firstly, let us assume that H is closed because this guarantees
that H is again locally profinite. Let (σ,W ) be a smooth representation of H. Let (π, V )
be the induction of (σ,W ) in the usual sense. More precisely, the underlying space V is

{f : G→W | f(hg) = σ(h)(f(g)) for any h ∈ H}
and the action π of G on V is given by the right-translation on the functions, i.e.,

(π(x)f)(g) := f(gx).

Then, is (π, V ) smooth? In fact, NO in general. So that (π, V ) is smooth, for any f ,
there must be an open compact subgroup K ⊂ G satisfying f(gK) = f(g) (for any g ∈ G).
However, this property is not formally deduced from the definition of V in general.

The idea is to modify the definition of V so that this condition is satisfied. In other
words, if we put

V∞ := {f : G→W | ∃K s.t. f(hgk) = σ(h)(f(g)) for any h ∈ H, k ∈ K},
then (π, V∞) is smooth (with respect to the same right-translation action π).

Definition 3.6. Let H be a closed subgroup of G and (σ,W ) be a smooth representation
of H. We call the smooth representation (π, V ) defined as in the previous paragraph the
smooth induction of (σ,W ) from H to G. In our context, we always only consider the

smooth induction, so we just say the induction of (σ,W ) and write (IndGH σ, IndGHW ) for it.
17



Before we think about examples, let us introduce one guiding fact:

Fact 3.7. Any irreducible smooth representation of GLn(F ) is either one-dimensional (i.e.,
a character) or infinite dimensional.

This fact says that, in representation theory of locally profinite groups, we seriously have
to face infinite dimensional representations. However, it is still possible to formulate some
finiteness condition for smooth representations; it is called the admissibility.

Definition 3.8. Let (π, V ) be a representation of G. We say that (π, V ) is admissible if it
is smooth and dimC(V K) is finite-dimensional for any open compact subgroup K of G.

Example 3.9. Let G = GL2(F ), where F is a nonarchimedean local field.

(1) Let χ : G → C× be a character, or equivalently, one-dimensional representation
(χ,C). Then, by definition, (χ,C) is smooth if and only if χ is trivial on some open
compact subgroup of G. (This is equivalent to that χ is continuous with respect to
the discrete topology of C×.) Any smooth character of G is of course admissible.

(2) Let B ⊂ G be the subgroup of upper-triangular matrices (this is a closed subgroup).

Let (π, V ) be the (smooth) induction (IndGB 1, IndGB C) of the trivial representation
(1,C) of B to G. By definition, we can explicitly write

V = {f : B\G→ C | ∃K s.t. f(gk) = f(g) for any k ∈ K}.

To check the admissibility of (π, V ), let us fix any open compact subgroup K of G.
Then we have

V K ∼= {f : B\G/K → C}.
This is finite-dimensional since B\G/K is finite. Indeed, to check it, we may replace
K with any its open subgroup freely (recall that such a subgroup must be of finite
index in K). Especially, we may assume that K is contained in GL2(OF ). Since
K must be also open, hence of finite index, in GL2(OF ), it is enough to show
that B\G/GL2(OF ) is a finite set. It is a well-known fact that G = BGL2(OF )
(so-called the Iwasawa decomposition), hence B\G/GL2(OF ) is a singleton.

(3) Next consider the subgroup T ⊂ G of diagonal matrices (this is a closed subgroup).

Let (π, V ) be the (smooth) induction (IndGT 1, IndGT C) of the trivial representation
(1,C) of T to G. By definition, we can explicitly write

V = {f : T\G→ C | ∃K s.t. f(gk) = f(g) for any k ∈ K}.

To check the admissibility of (π, V ), let us fix any open compact subgroup K of G.
Then we have

V K ∼= {f : T\G/K → C}.
However, this space is infinite dimensional (Exercise below). Hence (π, V ) is smooth
but not admissible.

Note that this example shows that B is large enough so that the admissibility is preserved
by the induction to G, but T is too small. This idea will be elaborated as the “parabolic
induction” later.

Exercise 3.10. Prove that the set T\G/K in the above example is infinite.

Fact 3.11. Let G = G(F ) for any connected reductive group G over a nonarchimedean
local field F . Then any irreducible smooth representation of G is admissible.
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3.3. Frobenius reciprocity. Recall that, in representation theory of finite groups, we have
so-called the Frobenius reciprocity, which is the adjunction between the induction functor
and the restriction functor. In fact, the Frobenius reciprocity holds also for the smooth
induction as well.

Theorem 3.12 (Frobenius reciprocity for Ind). Let H be a closed subgroup of G and (σ,W )
a smooth representation of G. Let (π, V ) be a smooth representation of G. Then we have
an isomorphism

HomG(π, IndGH σ) ∼= HomH(π|H , σ).

given by φ 7→ α ◦ φ, where α : IndGH σ → σ is f 7→ f(1).

For the proof, see [BH06, §2.4].
Here, we caution that the smooth induction is put on the target in Hom(−,−). In other

words, the smooth induction is the right adjoint to the restriction. In contrast to the case
of finite groups, representations may not be semisimple. Thus we cannot swap the source
and target in Hom(−,−) freely in general.

Then, does the restriction have a left adjoint? In fact, the answer is YES when H is
open; it is given by the following variant of a smooth induction:

Definition 3.13. Let H be an open subgroup of G and (σ,W ) be a smooth representation
of H. We put

V∞c :=

{
f : G→W

∣∣∣∣∣ • f is compactly supported modulo H
• ∃K s.t. f(hgk) = σ(h)(f(g)) for any h ∈ H, k ∈ K

}
and consider the right-translation action π of G on V∞c . Then (π, V∞c ) is a smooth rep-
resentation of G. We call it the compact induction of (σ,W ) from H to G and write

(c-IndGH σ, c-IndGHW ).

Theorem 3.14 (Frobenius reciprocity for c-Ind). Let H be a closed subgroup of G and
(σ,W ) a smooth representation of G. Let (π, V ) be a smooth representation of G. Then we
have an isomorphism

HomG(c-IndGH σ, π) ∼= HomH(σ, π|H).

given by φ 7→ φ ◦ β. Here, β : σ 7→ c-IndGH σ is w 7→ fw, where fw : H → W is such that
fw(h) = σ(h)w for h ∈ H and fw(g) = 0 for g ∈ GrH.

3.4. Representations of profinite groups. We define the notion of a subrepresentation
and a direct sum of smooth representations in the usual way. The following proposition is
a simple consequence of Zorn’s lemma (see [BH06, §2.2, Proposition]).

Proposition 3.15. For any smooth representation (π, V ), the following are equivalent:

(1) (π, V ) is the direct sum of irreducible subrepresentations.
(2) (π, V ) is the sum of irreducible subrepresentations.
(3) for any subrepresentation (π1, V1), there exists a complement, i.e., another subrep-

resentation (π2, V2) such that (π, V ) ∼= (π1, V1)⊕ (π2, V2).

Definition 3.16. When a smooth representation satisfies the conditions in the previous
proposition, we say it is semisimple.

Note that, in contrast to the case of finite groups, there exist plenty non-semisimple
smooth representations in general.
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Exercise 3.17. Show that IndGB 1 in Example 3.9 (2) is non-semisimple. (Hint: check that

IndGB 1 is not irreducible by finding a proper subrepresentation and show that EndG(IndGB 1) =
1 using Frobenius reciprocity and Schu’r lemma, which will be explained later.)

Proposition 3.18. Any smooth representation of a profinite group K is semisimple.

Proof. Let (π, V ) be a smooth representation of K. Then, for each v ∈ V , there exists an

open (hence of finite index) subgroup K ′ of K such that v ∈ V K′ . Here, by shrinking K ′ if
necessary, we may assume that K ′ is normal in K. (Indeed, by writing K =

⋃
l∈K/K′ lK

′,

it is enough to replace K ′ with
⋂
l∈K/K′ lK

′l−1.) Note that v is contained in the subrep-

resentation SpanC{π(k)v | k ∈ K} generated by v. However, since the action of K ′ on
this subrepresentation is trivial and K/K ′ is a finite group, this subrepresentation must be
semisimple. Thus, (π, V ) can be written as a sum of semisimple representations, hence so
is itself. �

Definition 3.19. Let (π, V ) be a smooth representation of G. For any open compact
subgroup K of G, by the previous proposition, we can write

V =
⊕

σ∈Irr(K)

V [σ].

Here, the both hand sides are regarded as representations of K and V [σ] denotes the sum
of irreducible K-subrepresentations of V isomorphic to σ (Irr(K) is the set of isomorphism
classes of irreducible smooth representations of K). We call V [σ] the σ-isotypic part of V .
Note that V K = V [1].

3.5. Contragredient representation. Recall that, for any representation (π, V ) of a finite
group G, its dual (contragredient) representation (π∗, V ∗) is defined by V ∗ := HomC(V,C)
and

〈π∗(g)(v∗), v〉 = 〈v∗, π(g−1)(v)〉
for any g, v ∈ V , v∗ ∈ V ∗. In the context of locally profinite groups, this definition contains
the issue as in the definition of Ind; i.e., the resulting representation may not be smooth.
So, again, we consider smoothening V ∗.

Definition 3.20. For a smooth representation (π, V ) of G, we define its contragredient
representation (π∨, V ∨) by

V ∨ :=
⋃
K⊂G

(V ∗)K ,

where K runs open compact subgroups of G and π∨ = π∗|V ∨ .

Exercise 3.21. Show that, for any open compact subgroup K of G, we have (V ∨)K ∼=
(V K)∗.

Proposition 3.22. For a smooth representation (π, V ) of G, we consider the natural map
π → (π∨)∨ given by v 7→ [v∨ 7→ 〈v∨, v〉]. This map is G-equivariant. Moreover, it is
isomorphic if and only if (π, V ) is admissible.

Proof. The first statement can be checked easily. Then, for any open compact subgroup K
of G, we get πK → ((π∨)∨)K . Since π =

⋃
K π

K and (π∨)∨ =
⋃
K((π∨)∨)K , it is enough to

discuss when this map is bijective (for all K). By applying the previous exercise twice, we
see that this map is identified with the natural map πK → ((πK)∗)∗. It is well-known fact in
linear algebra that this natural map is bijective if and only if πK is finite-dimensional. �
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3.6. Irreducible representations and Schur’s lemma.

Definition 3.23. Let (π, V ) be a smooth representation of G. We say that (π, V ) is
irreducible if (π, V ) has no G-subspace (subrepresentation) other than {0} and V .

Lemma 3.24. Let (π, V ) be an irreducible smooth representation of G. Then V is generated
by any nonzero vector v ∈ V , i.e., we have V = SpanC({π(g)v | g ∈ G}).

Proof. The C-vector subspace SpanC({π(g)v | g ∈ G}) of V is stable under G-action. Thus
the irreducibility of V implies that it equals {0} or V . Since v 6= 0, it must be V . �

Definition 3.25. For smooth representations (π, V ) and (π, V ′), we define the set HomG(π, π′)
of G-equivariant homomorphisms by

HomG(π, π′) := {φ ∈ HomC(V, V ′) | φ(π(g)v) = π′(g)φ(v)∀g ∈ G,∀v ∈ V }.

When (π, V ) = (π, V ′), we simply write EndG(π) for HomG(π, π).

Theorem 3.26 (Schur’s lemma). Let (π, V ) be an irreducible smooth representation of G.
Assume that dimC(V ) is countable. Then we have EndG(π) = C.

Proof. Suppose that φ ∈ EndG(π) is a nonzero G-equivariant endomorphism of (π, V ). Then
both Ker(φ) and Im(φ) are G-stable subspaces of V . Hence, by the irreducibility of V , they
must be {0} or V . Since φ is supposed to be nonzero, we necessarily have Ker(φ) = 0 and
Im(φ) = V ; in other words, φ is an isomorphism. Therefore, EndG(π) is a division C-algebra
(i.e., possibly non-commutative C-algebra whose any nonzero element is invertible).

By Lemma 3.24, if we fix any nonzero vector v ∈ V , then v generates V . Hence, any
G-equivariant endomorphism φ ∈ EndG(π) is determined uniquely by the image φ(v) of v.
If φ(v) ∈ V is equal to φ′(v) ∈ V up to scalar, then φEndG(π) equals φ′ ∈ EndG(π) up
to scalar. In particular, the dimension of EndG(π) as a C-vector space is bounded by the
dimension of V . Since dimC(V ) is countable, so is dimC(EndG(π)).

Now suppose that dimC(EndG(π)) is bigger than C; then we can choose φ ∈ EndG(π)rC.
Then the division C-algebra EndG(π) contains the rational function field C(φ). However, the
dimension of C(φ) as a C-vector space is uncountable. (For example, it can be easily checked
that the subset {(φ−a)−1 | a ∈ C} is linear independent.) Thus we get a contradiction. �

A reasonable sufficient condition for that the assumption of Theorem 3.26 is satisfied is
the following:

Lemma 3.27. If there exists an open compact subgroup K0 of G such that G/K0 is count-
able, then any irreducible representation of G has countable dimension.

Proof. Note that if K0 is an open compact subgroup whose G/K0 is countable, then any
open compact subgroup K satisfies that G/K is countable. (Indeed, since K ∩K0 is also
open subgroup of K0, it is compact and of finite index in K0. Thus G/(K∩K0) is countable.
As K ∩K0 is also of finite index in K, G/K is countable.) By Lemma 3.24, any nonzero
vector v ∈ V generates V . If we let K be an open compact subgroup of G satisfying v ∈ V K ,
then dimC(V ) is bounded by the cardinality of G/K, which is countable. �

Example 3.28. When G = GLn(F ), G satisfies the countability assumption in the above
lemma. Indeed, if we put K0 := GLn(OF ), then K0 is an open compact subgroup of G.
Moreover, we have the following decomposition (so-called “Cartan decomposition”, which is
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a consequence of elementary divisor theory):

G =
⊔
a,b∈Z
a≤b

K0

Å
$a 0
0 $b

ã
K0.

Each summand is compact, hence its right-K0-cosets are finite since K0 is open. As the
index set is countable, we only have countable many right-K0-cosets in G.

More generally, for any linear algebraic group G over F , G := G(F ) satisfies the count-
ability assumption. (take an embedding G ↪→ GLn and put K0 := G ∩GLn(OF )).

In the following, we always assume that there exists an open compact subgroup K0 whose
G/K0 is countable. Let us suppse that (π, V ) is an irreducible representation of G. Let Z be
the center of G. Then, for any z ∈ Z, the automorphism π(z) ∈ GLC(V ) is G-equivariant.
Indeed, for any g ∈ G and v ∈ V , we have

π(z)(π(g)v) = π(zg)v = π(gz)v = π(g)(π(z)v).

By Schur’s lemma, π(z) must be a (nonzero) scalar multiplication. Therefore, we get a map
Z → C×. It is easy to check that this map is a smooth character.

Definition 3.29. For any irreducible representation (π, V ) of G, we call the smooth char-
acter of Z defined in this way the central character of (π, V ) and write ωπ.
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4. Week 4: Irreducible smooth representations of GL2(F )

Let F be a non-archimedean local field of residual characteristic p, hence a finite extension
of Qp or Fp((t)). The aim of this week is to give an overview on a classification of irreducible
smooth representations of group GL2(F ).

4.1. Recap on irreducible representations of GL2(Fq). Let Fq be a finite field of order
q and characteristic p. We first review how the irreducible representations of GL2(Fq) are
classified.

Let us simply write G = GL2 in the following. We introduce several subgroups of GL2(Fq)
as follows:

B(Fq) :=

ßÅ
a b
0 d

ã
∈M2(Fq)

∣∣∣∣ a, d ∈ F×q , b ∈ Fq
™
,

T (Fq) :=

ßÅ
a 0
0 d

ã
∈M2(Fq)

∣∣∣∣ a, d ∈ F×q
™
,

U(Fq) :=

ßÅ
1 b
0 1

ã
∈M2(Fq)

∣∣∣∣ b ∈ Fq
™
.

Note that U(Fq) is a normal subgroup in B(Fq) and that we have the semi-direct decompo-
sition B(Fq) = T (Fq) n U(Fq). In particular, we have a natural surjection B(Fq) � T (Fq)
by quotienting by U(Fq) / B(Fq).

Let us take two characters χ1, χ2 of F×q . Then we get a character of T (Fq)

χ := χ1 � χ2 : T (Fq)→ C×; diag(t1, t2) 7→ χ1(t1) · χ2(t2).

By pulling back χ to B(Fq), we may regard χ as a character of B(Fq). Finally, by taking the

induction to G(Fq), we get a representation Ind
G(Fq)
B(Fq) χ of G(Fq). We call the representation

Ind
G(Fq)
B(Fq) χ a principal series representation (associated to χ).

The decomposition rule of Ind
G(Fq)
B(Fq) χ is described as follows.

Proposition 4.1 ([BH06, Section 6]). (1) When χ1 6= χ2, Ind
G(Fq)
B(Fq) χ is irreducible.

(2) When χ1 = χ2 (say χ0), we have Ind
G(Fq)
B(Fq) χ

∼= (Ind
G(Fq)
B(Fq) 1) ⊗ (χ0 ◦ det) and

Ind
G(Fq)
B(Fq) 1) decomposes into the sum of two irreducible representations; the one is

the trivial representatation 1 of G(Fq) and the other one is called the Steinberg

reperesentation St. In summary, we have Ind
G(Fq)
B(Fq) χ = (χ0 ◦ det)⊕ St⊗ (χ0 ◦ det).

(3) Two principal series representations Ind
G(Fq)
B(Fq) χ1 �χ2 and Ind

G(Fq)
B(Fq) χ

′
1 �χ′2 contains

a common irreducible representation if and only if (χ1, χ2) = (χ′1, χ
′
2), (χ′2, χ

′
1).

Can this construction exhaust all irreducible representations of GL2(Fq)? In fact, not;
the missing representations are called cuspidal representations. In my course of the previ-
ous semester [Oi24], I introduced two ways of constructing all cuspidal representations of
GL2(Fq). The one is a purely algebraic construction; we first define a virtual representation
as a linear combination of several induced representations, and then show that it is in fact an
irreducible representation which is not contained in any principal series representation. The
details of this construction can be found in [BH06, Section 6]. The other one is a geometric
construction; we first define an algebraic variety on which GL2(Fq) acts and then take its
`-adic étale cohomology. Then the resulting cohomology realizes cuspidal representations
(and even also principal series representations); this is what is called Deligne–Lusztig theory
[DL76].
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4.2. Principal series representations of GL2(F ). Now let us consider the group GL2(F ).
Recall that, in the last week, we have introduced the notion of the (smooth) induction in
the context of smooth representation theory of locally profinite groups. Thus it is natural
to try to imitate the construction of principal series also for GL2(F ).

We introduce several subgroups of GL2(F ) in the same way as before, just by replacing
Fq with F :

B(F ) :=

ßÅ
a b
0 d

ã
∈M2(F )

∣∣∣∣ a, d ∈ F×, b ∈ F™ ,
T (F ) :=

ßÅ
a 0
0 d

ã
∈M2(F )

∣∣∣∣ a, d ∈ F×™ ,
U(F ) :=

ßÅ
1 b
0 1

ã
∈M2(F )

∣∣∣∣ b ∈ F™ .
Then these groups satisfy the same properties as before. Especially, U(F ) is a normal
subgroup in B(F ) and we have the semi-direct decomposition B(F ) = T (F ) n U(F ). We
have a natural surjection B(F ) � T (F ) by quotienting by U(F ) / B(F ).

Let us take two smooth characters χ1, χ2 of F×. Then we can define the repersentation

Ind
G(F )
B(F ) χ1 � χ2 of GL2(F ) in exactly the same manner as before. We call Ind

G(F )
B(F ) χ1 � χ2

a principal series representation (associated to χ1 � χ2). However, the decomposition rule

of Ind
G(F )
B(F ) χ1 � χ2 is a bit more difficult than the case of GL2(Fq). The point is that

representations of GL2(Fq) are allways semisimple, but those of GL2(F ) are not. To be
more precise, the situation is summarized as follows.

Let Fq be the residue field of F . Let |− | : F× → C× denote the absolute value character,

i.e., |x| = q−v(x), where v is the normalized valuation of F .

Proposition 4.2 ([BH06, Section 9]). (1) The representation Ind
G(F )
B(F ) χ1 � χ2 is re-

ducible if and only if χ1χ
−1
2 equals either 1 or | − |2. Moreover, Ind

G(F )
B(F ) χ1 �

χ2 and Ind
G(F )
B(F ) χ

′
1 � χ′2 are isomorphic if and only if (χ1, χ2) equals (χ′1, χ

′
2) or

(χ′2 · | − |−
1
2 , χ′1 · | − |

1
2 )

(2) Suppose that χ1χ
−1
2 = 1, hence χ1 = χ2 = χ0 for some smooth character χ0 : F× →

C×. Then Ind
G(F )
B(F ) χ1 � χ2

∼= Ind
G(F )
B(F ) 1 ⊗ (χ0 ◦ det) and we have the following

non-split exact sequence of smooth representations of GL2(F )

0→ 1→ Ind
G(F )
B(F ) 1→ St→ 0,

where 1 is the trivial representation of GL2(F ) and St is an infinite-dimensional
irreducible smooth representation of GL2(F ) (called the Steinberg representation).

In other words, 1 is the unique irreducible subrepresentation of Ind
G(F )
B(F ) 1 which

cannot be a quotient, and St is the unique irreducible quotient representation of

Ind
G(F )
B(F ) 1 which cannot be a subrepresentation.

(3) Suppose that χ1χ
−1
2 = |−|2, hence χ1 = χ0 ·|−| and χ2 = χ0 ·|−|−1 for some smooth

character χ0 : F× → C×. Then Ind
G(F )
B(F ) χ1�χ2

∼= Ind
G(F )
B(F )(|−|� |−|

−1)⊗(χ0 ◦det)

and we have the following non-split exact sequence of smooth representations of
GL2(F )

0→ St→ Ind
G(F )
B(F )(| − |� | − |

−1)→ 1→ 0.
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In other words, 1 is the unique irreducible quotient representation which cannot be
a subrepresentation, and St is the unique irreducible subrepresentation which cannot
be a quotient representation.

As in the case of GL2(Fq), this construction does not produce all irreducible smooth rep-
resentation of GL2(F ). If an irreducible smooth representation of GL2(F ) is not contained
in any principal series representation, we call it a supercuspidal representation.

4.3. Depth-zero supercuspidal representations of GL2(F ). The question is: how to
construct (all) irreducible supercuspidal representations of GL2(F )? For principal series
representations, we just imitated the construction in the case of GL2(Fq). However, for
supercuspidal representations, we can immediately see that the construction in the finite
field case no longer works.

One idea is, instead of imitating, “reducing” the construction to the finite field case. The
point is that GL2(F ) has the following open compact subgroup:

GL2(O) :=

ßÅ
a b
c d

ã
∈ GL2(F )

∣∣∣∣ a, b, c, d ∈ O, ad− bc ∈ O×™ ,
where O denotes the ring of integers in F . When each entry of a 2-by-2 matrix belongs to
O, it makes sense to take its mod-p reduction for the maximal ideal p of O. Then we get a
2-by-2 matrix with entries in Fq = O/p:

GL2(O) � GL2(Fq) :

Å
a b
c d

ã
7→
Å
a b

c d

ã
.

Exercise 4.3. Prove that the map SL2(O)→ SL2(Fq) is also surjective.

Now let κ be an irreducible cuspidal representation of GL2(Fq). By pulling back it along
the above surjection, we get an irreducible smooth representation of GL2(O) (let’s again
write κ). Recall that, in the last week, we introduced a variant of the usual (smooth)
induction, which is called the compact induction “c-Ind”. The basic strategy is to construct
a smooth representation of GL2(F ) by applying the compact induction to this representation
κ of GL2(O).

However, here we have an ovbious obstruction. Let Z(F ) be the center of GL2(F ), i.e.,
the subgroup of non-zero scalar matrices. Then we have

c-Ind
GL2(F )
GL2(O) κ = c-Ind

GL2(F )
Z(F ) GL2(O)

Ä
c-Ind

Z(F ) GL2(O)
GL2(O) κ

ä
.

Since the quotient Z(F ) GL2(O)/GL2(O) is isomorphic to Z(F )/Z(O) ∼= F×/O×, which

is an infinite abelian group, the internal induction c-Ind
Z(F ) GL2(O)
GL2(O) κ breaks into infinitely

many pieces of irreducible representations of Z(F ) GL2(O). So the whole compact induction
cannot be irreducible.

To remedy this issue, we first extend the representation κ from GL2(O) to Z(F ) GL2(O)
by fixing a character of Z(F ). Note that, as κ is irreducible, the restriction of κ to Z(O) is
given by a character (“central character”). Let ω be a character of Z(F ) such that ω|Z(O)

coincides with the central character of κ. We define a representation κ̃ of Z(F ) GL2(O) by

κ̃(z) :=

®
ω(z) if z ∈ Z(F ),

κ(g) if g ∈ GL2(O).

We put

πκ̃ := c-Ind
GL2(F )
Z(F ) GL2(O) κ̃.

25



Fact 4.4. The representation πκ̃ is an irreducible supercuspidal representation of GL2(F ).
Moreover, for any other κ′ and ω′, the representations πκ̃ and πκ̃′ are isomorphic if and
only if κ ∼= κ′ and ω = ω′.

Now we come up with the next question: does this construction exhaust all irreducible
supercuspidal representations of GL2(F )? The answer is NO! In fact, rather, only very few
supercuspidal representations are realized in this way. The supercuspidal representations
constructed here are called depth-zero supercuspidal representations.

4.4. Depth of representations. Let us describe a general picture in the following. We
first consider the structure of GL1(F ) = F×. As reviewed in Week 2, we have the following
isomorphism depending on the choice of a uniformizer $ of F×:

F× ∼= 〈$〉 × O×

∼= 〈$〉 × F×q × (1 + p).

The last part 1 + p is a profinite group having a descending filtration

(1 + p) ⊃ (1 + p2) ⊃ · · · ⊃ {1}.

This filtration gives a fundamental system of neighborhood. In particular, if a character χ
of F× is smooth, then it must be trivial on 1 + pr for some r ∈ Z≥0. By noting this, we
introduce a numerical invariant for smooth characters of F× as follows:

Definition 4.5. Suppose that r ∈ Z≥0 is the smallest integer such that χ is trivial on
1 + pr+1 but nontrivial on 1 + pr. (For convenience, we put 1 + p0 := O×.) We call this
number r the depth (or level) of χ.

The idea is to generalize this argument to GL2(F ) (or even more general p-adic reductive
groups). The following descending filtration gives a fundamental system of neighborhood of
1: Å

O O
O O

ã
⊃
Å

1 + p p
p 1 + p

ã
⊃
Å

1 + p2 p2

p2 1 + p2

ã
⊃ · · · ⊃

Å
1 0
0 1

ã
.

Let us put Kr :=

Å
1 + pr pr

pr 1 + pr

ã
(K0 := GL2(O)). The difference between GL1 and

GL2 is that, for GL2, an irreducible representation (π, V ) may not be trivial on Kr for any
r ∈ Z≥0. (This is because V could be infinite-dimensional; in fact, it happens as long as V
is not 1-dimensional.) However, it is still true that V Kr is nonzero for some r ∈ Z≥0 due to
the definition of smoothness. Therefore, it still makes sense to look at the smallest integer
r ∈ Z≥0 satisfying V Kr = 0 but V Kr+1 6= 0.

Then is it reasonable to define the “depth” of an irreducible smooth representation
(π, V ) to be this number r? Actually, NOT! The reason is that GL2(O) has many in-
teresting/impotant open compact subgroups other than Kr’s. Let us consider the following
descending chain:Å
O× O
p O×

ã
⊃
Å

1 + p O
p 1 + p

ã
⊃
Å

1 + p p
p2 1 + p

ã
⊃
Å

1 + p2 p
p2 1 + p2

ã
⊃ · · · ⊃

Å
1 0
0 1

ã
.
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We write I0 for the most left-hand side subgroup and call it the Iwahori subgroup of GL2(F ).
We give a half-integer numbering on each subgroup of this filtration as follows:

Ir :=


Ç

1 + ps ps

ps+1 1 + ps

å
if r = s,Ç

1 + ps+1 ps

ps+1 1 + ps+1

å
if r = s+ 1

2 ,

where s ∈ Z≥0. Why this way of numbering is reasonable? The point is the second step
subgroup is the pro-p-radical of I0, i.e., maximal normal pro-p subgroup of I0. In this sense,
it is an analogue of K1 for K0. However, even if we raise the level of each entry of I0, we
do not get this second step subgroup; what we get is the third step subgroup. So it is fair
to call the third step one “I1” and the second step one “I 1

2
”.

Definition 4.6. Let (π, V ) be an irreducible smooth representation of GL2(F ). Suppose
that r ∈ Z≥0 is the smallest integer such that V Pr = 0 but V Pr+1 6= 0 for P = K or P = I.
We call the number r the depth of the representation (π, V ).

The notion of depth can be generalized for any irreducible smooth representation of any
p-adic reductive group; it was introduced by Moy–Prasad [MP94, MP96]. The subgroups K0

and I0 are generalized to so-called parahoric subgroups of p-adic redcutive groups, which can
be classified by Bruhat–Tits theory [BT72, BT84]. Roughly speaking, Bruhat–Tits classified
maximal open compact subgroups of a p-adic reductive group by introducing a geometric
object equipped with an action of the p-adic group, which is called the Bruhat–Tits building.
In the papers of Moy–Prasad [MP94, MP96], they introduced a descending filtration to each
such maximal open compact subgroup, which is called the Moy–Prasad filtration. (The
above filtrations {Kr}r and {Ir}r are nothing but the Moy–Prasad filtrations for K0 and
I0.) Then, Moy–Prasad defined the notion of a depth using the all possible Moy–Prasad
filtrations.

In general, the depth is known to be a non-negative rational number. Moreover, its
possible denominator is determined by the given p-adic reductive group. For example, in
the case of GL2, the denominator can be only 1 or 2.

4.5. Simple supercuspidal representations. Now let us go back to how to think about
supercuspidal representations of GL2(F ). The representation πκ̃ constructed above has a
non-zero K1-fixed vector, thus its depth is zero. In fact, it is known that for any positive
half-integer r, there exists an irreducible supercuspidal representation of GL2(F ) of depth
r.

In contrast to the case of finite fields, classifying all positive-depth irreducible supercus-
pidal representations of GL2(F ) is not easy nor elementary at all. It’s doable, but based on
very subtle and deep analysis of the group structure of GL2(F ). Because I’m not going to
go into its details in this course, here let’s just cite Chapter 4 of Bushnell–Henniart’s book
[BH06]. The construction/classification given there can be thought of as a special case of
Bushnell–Kutzko’s type theory for GLn [BK93].

But, instead, I just would like to explain how the minimal positive depth (i.e., depth 1
2 )

supercuspidal representations can be constructed because it’s fairly easy.
Recall that we have

I0 =

Å
O× O
p O×

ã
⊃ I 1

2
=

Å
1 + p O
p 1 + p

ã
⊃ I1 =

Å
1 + p p
p2 1 + p

ã
.
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Note that the quotient I 1
2
/I1 is isomorphic to the abelian group F⊕2

q by looking at the mod-p

reduction of (1, 2) and (2, 1) entries:

I 1
2
/I1

∼=−→ F⊕2
q :

Å
a b
c d

ã
7→ (b, c$−1).

We choose a nontrivial additive character ψ : Fp → C× and define a smooth character of I 1
2

by

I 1
2
� I 1

2
/I1 ∼= F⊕2

q
sum−−→ Fq

ψ−→ C× :

Å
a b
c d

ã
7→ ψ(b+ c$−1).

By abuse of notation, let us again write ψ for this character.
Basically we want to get an irreducible supercuspidal representation of GL2(F ) by ap-

plying the compact induction to this representation of I 1
2
. As in the depth-zero case, we

extend ψ to a bit bigger subgroup. The intermediate group we need is the following:

GL2(F ) ⊃ Z(F ) · I 1
2
· 〈ϕ〉 ⊃ I 1

2
, ϕ =

Å
0 1
$ 0

ã
.

We choose any extension ψ̃ of ψ to this subgroup and put

πψ̃ := c-Ind
GL2(F )
Z(F )I 1

2
〈ϕ〉 ψ̃.

Fact 4.7. The representation πψ̃ is an irreducible supercuspidal representation of GL2(F )

of depth 1
2 . Conversely, any such representation is of the form πψ̃.

The representations obtained in this way are called simple supercuspidal representations
and have discovered firstly by Gross–Reeder [GR10].

Exercise 4.8. Prove that the normalizer group of I0 in GL2(F ) is given by Z(F ) · I0 · 〈ϕ〉.

Exercise 4.9. Describe all the possible extensions of ψ from I 1
2

to Z(F )I 1
2
〈ϕ〉.
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5. Week 5: Representation of Weil groups

For this week’s discussion, we follow [BH06, Chapter 7],

5.1. Representations absolute Galois groups. Let us start with investigating continu-
ous representations of profinite groups on C-vector spaces.

Proposition 5.1. Let G be a profinite group. Let (π, V ) be a continuous representation of
G on a finite-dimensional C-vector space V . Then the image of π : G→ AutC(V ) is finite.

Proof. By choosing a C-basis of V , we identify AutC(V ) with GLn(C), where n is the
dimension of V . For any positive real number ε, we define an open subset Uε of Mn(C) by

Uε := {g = (gij) ∈Mn(C) | |gij | < ε}.
If we choose ε to be sufficiently small, then In + Uε is a subset of GLn(C). Moreover, it is
an open neighborhood of In in GLn(C). Let us write Kε for this open subset of GLn(C).
Since π is continuous, the preimage π−1(Kε) is also an open neighborhood of 1 ∈ G.

Recall that G is profinite, hence it has a fundamental system of open neighborhood of
1 ∈ G consisting of open compact subgroups. In fact, even stronger, we can choose such
a system so that each subgroup is normal (see Excercise below). Thus let us take an open
normal compact subgroup K of G such that K ⊂ π−1(Kε), or equivalently, π(K) ⊂ Kε.
Then π(K) is a subgroup contained in Kε.

However, as long as ε is sufficiently small, Kε does not contain any nontrivial subgroup.
Indeed, for the sake of contradiction, let us assume that Kε contains a nontrivial subgroup
K ′ and choose k ∈ K ′ r {In}. Let α1, . . . , αn be the generalized eigenvalues of k. Then
αr1, . . . , α

r
n are the generalized eigenvalues of kr for any r ∈ Z. Note that all the eigenvalues

of any element of Kε must be sufficiently close to 1. Since K ′ is a subgroup contained in
Kε, k

r belongs to Kε for any r ∈ Z. Hence αr1, . . . , α
r
n are sufficiently close to 1 for any

r ∈ Z. This can happen only when α1 = · · · = αr = 1. In other words, k must be a
unipotent matrix. However, if k is not equal to In, kr cannot belong to Kε for sufficiently
large r ∈ Z>0. (This can be easily seen by, e.g., taking the Jordan normal form of k).

Hence we obtained that π(K) must be {In}. Thus π factors through the quotient G/K,
which is a finite group, hence π(G) is finite. �

Exercise 5.2. For any profinite group, prove that there exists a fundamental system of
open neighborhoods of 1 consisting of open normal subgroups.

Our fundamental interest lies in understanding the absolute Galois groups of a non-
archimedean local field (or even a global field). We approach to this by investigating rep-
resentations of the absolute Galois group. Since the absolute Galois group is a topological
group equipped with a profinite topology, it is natural to impose some topological constraints
on the representations. However, the above proposition is saying that “as long as we con-
sider continuous representations on C-vector spaces, we cannot construct any interesting
(nontrivial) examples beyond those coming from finite Galois groups”.

Then, what should be the next candidates for the coefficients and the class of representa-
tions to be studied? In our context, one natural idea is to consider continuous representations
on Q`-vector spaces. This is because, for example, theory of étale cohomology provides ma-
chinery to systematically construct such a class of representations. Also, indeed, there exist
plenty of continuous representations with infinite images.

Example 5.3. Let G = Z`. If we define a 2-dimensional representation ρ : Z` → GL2(Q`)
by x 7→ ( 1 x

0 1 ), then π is obviously continuous and has infinite image.
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Now we consider the case where G is the absolute Galois group Gal(F sep/F ) of a non-
archimedean local field F . So we investigate continuous representations of Gal(F sep/F ) on
finite-dimensional Q`-vector spaces, where ` is a prime number. If we let p be the residual
characteristic of F , the situation changes according to whether ` = p or ` 6= p. In fact,
the case where ` = p is much more complicated and difficult. Although the continuous
representations of Gal(F sep/F ) on Qp-vector spaces (often referred to as p-adic Galois rep-
resentations) are very important object to be studied, we focus only on the case where
` 6= p in this course. In the following, when we say “an `-adic representation”, it means a
continuous reprepresentation on a finite-dimensional Q` where ` is not equal to p.

But then we come up with another question: when ` 6= p, how does the situation depend
on the choice of `? Recall that the other side of the Langlands correspondence (globally,
automorphic representations; locally, irreducible admissible representations of a p-adic re-
ductive group) does not involve such a choice of a prime number `. In fact, Grothendieck’s
monodromy theorem provides an answer to this question.

5.2. Galois group vs. Weil group. Let F be a non-archimedean local field with residual
characteristic p > 0. Recall that we have a natural surjection

ΓF := Gal(F sep/F ) � Gal(kF /kF ) ∼= Ẑ.

The kernel of this surjection is referred to as the inertia subgroup and denoted by IF ; this is
nothing but the absolute Galois group Gal(F sep/F ur) of the maximal unramified extension
F ur of F (see Week 2 notes). The Weil group WF , which is a subgroup of ΓF , is defined to
be the preimage of 〈FrobkF 〉 under the map ΓF � Gal(kF /kF ):

1 // IF // ΓF // Gal(kF /kF ) ∼= Ẑ // 1

1 // IF // WF
//

⋃
〈FrobkF 〉 ∼= Z

⋃
// 1

We write v for the map WF � Z.
In the following, we investigate `-adic representation of WF rather than ΓF . Note that

WF is dense in ΓF , hence any `-adic representation ρ of ΓF is uniquely determined by its
restriction to WF . To be more precise, we let

• RepQ`(ΓF ) be the set of isomorphism classes of `-adic representations of ΓF , and

• RepQ`(WF ) be the set of isomorphism classes of `-adic representations of WF .

Then the natural restriction map gives an injection:

RepQ`(ΓF ) ↪→ RepQ`(WF ).

Thus at least restricting to WF does not lose information of the original `-adic represen-
tations of ΓF . However, be careful that there are more `-adic representations of WF than
those of ΓF , i.e., the above map is not surjective.

Then, why do we work with RepQ`(WF ) rather than RepQ`(ΓF )? This is because

RepQ`(WF ) can be shown to be independent of ` in a certain sense as we will see in the

following.

Exercise 5.4. Find an example of an `-adic representation of WF which cannot be extended
to an `-adic representation of ΓF .
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5.3. More about Weil groups. Let us explain a bit more about the group IF . But, before
it, recall that a finite extension of non-archimedean local fields E/F is called ramified when
its ramification index is greater than 1.

Definition 5.5. Let E/F be a finite extension of non-archimedean local fields with residual
characteristic p > 0. We say that E/F is tamely ramified when its ramification index is
prime to p. Otherwise, we say that E/F is wildly ramified.

For any integer n ∈ Z>0 prime to p, there uniquely exists a degree n extension of F ur.
Explicitly, this extension is given by adjoining an(y) n-th root of a(ny) uniformizer $ of F .
This extension is Galois and cyclic; we have an isomorphism

Gal(F ur( n
√
$)/F ur) ∼= µn : σ 7→ σ( n

√
$)/ n
√
$,

where µn denotes the set of n-th roots of unity (in F sep). We put F tame to be the composite
of all finite extensions of F ur whose degree is prime to p. Then F tame is a Galois extension of
F . In fact, this gives the maximal tamely ramified extension of F . By the above description
of the Galois group at each finite level, we have

Gal(F tame/F ur) ∼= lim←−
(n,p)=1

µn.

Note that, by fixing a system of generators of µn (i.e., a topological generator of the right-
hand side), we also have

lim←−
(n,p)=1

µn ∼= lim←−
(n,p)=1

Z/nZ ∼=
∏
` 6=p

Z`.

We let PF := Gal(F sep/F tame) and call it the wild inertia subgroup. In fact, PF is the
unique pro-p-Sylow subgroup of IF . The quotient IF /PF ∼= Gal(F tame/F ur) is often referred
to as the tame inertia group.

So we obtained the following chains:

ΓF F

IF

ΓF /IF∼=Ẑ
`

F ur

add n-th roots of 1 (p - n)
⋂

PF

IF /PF∼=
∏
` 6=p Z`

`

F tame

add n-th roots of $ (p - n)
⋂

{1}
pro-p subgroup

`

F sep

???
⋂

Since the conjugate action of ΓF on itself preserves IF and PF , ΓF also acts on the tame
inertia group IF /PF . As the tame inertia is abelian, this action factors through the quotient
ΓF /IF . The action of the subgroup WF /IF on IF /PF is described as follows:

Lemma 5.6. For any τ ∈WF and σ ∈ IF /PF , we have

τστ−1 = σq
−v(τ)

.

Proof. By the above description of the tame inertia group (IF /PF ∼= Gal(F tame/F ur) ∼=
lim←−(n,p)=1

µn), it is enough to check that

τστ−1( n
√
$) = σq

−v(τ)
( n
√
$),

for each n ∈ Z0 prime to p with the above notation.
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Since τ preserves $, τ( n
√
$) is again an n-th root of $; let us write τ( n

√
$) = ζ · n

√
$

with some ζ ∈ µn. We also write σ( n
√
$) = ξ · n

√
$ with ξ ∈ µn. Here, note that F ur

contains all roots of unity with prime-to-p order. In particular,

• σ acts on such roots of unity via identity, and
• τ acts on such roots of unity via q−v(τ)-power (recall that any lift Φ of the geometric

Frobenius is supposed to have v(Φ) = 1).

Hence we get

τστ−1( n
√
$) = τσ(ζ−q

v(τ)

· n
√
$) = τ(ξ · ζ−q

v(τ)

· n
√
$) = ξq

−v(τ)
· ζ−1 · ζ · n

√
$ = ξq

−v(τ)
· n
√
$.

On the other hand, we have

σq
−v(τ)

( n
√
$) = ξq

−v(τ)
· n
√
$.

This completes the proof. �

5.4. Grothendieck’s monodromy theorem. Recall that IF /PF ∼=
∏
` 6=p Z`. In the fol-

lowing, we fix a prime number ` (supposed to be the “`” of “`-adic representations”) and
also fix a surjective homomorphism

t : IF /PF ∼=
∏
6̀=p

Z` � Z`.

Note that hence we have IF ⊃ Ker(t) ⊃ PF .
For any finite-dimensional C-vector space V (where C is any field of characteristic zero)

and its nilpotent endomoprhism N ∈ EndC(V ), we put

exp(N) :=

∞∑
n=0

Nn

n!
.

Note that, since Nn = 0 for sufficiently large n (at least for n greater than dim(V )), this
infinite sum is actually a finite sum. Moreover, exp(N) is a unipotent automorphism of V .
Conversely, for any unipotent automorphism u ∈ AutC(V ), we put

log(u) :=

∞∑
n=1

(−1)n−1 (u− 1)n

n
.

Then this defines a nilpotent endomorphism of V . These operations give the inverse to each
other.

Grothendieck’s monodromy theorem says that any `-adic representation of WF is “quasi-
unipotent”:

Theorem 5.7 (Grothendieck’s monodromy theorem). Let ρ be an `-adic representation of
WF . Then there exists an open subgroup H of IF and a unique nilpotent endomorphism
N ∈ EndQ`(V ) satisfying

ρ(σ) = exp(t(σ) ·N)

for any element σ ∈ H.

Proof. Let us first check the uniqueness. Suppose that we have two pairs (H,N) and (H ′, N ′)
as in the assertion. Then, for any σ ∈ H ∩H ′, we have

exp(t(σ) ·N) = ρ(σ) = exp(t(σ) ·N ′).
Thus, by applying log, we get t(σ) ·N = t(σ) ·N ′. Since H ∩H ′ is open and of finite index
in IF , the restriction of t on H ∩H ′ cannot be trivial. Hence we can find σ ∈ H ∩H ′ such
that t(σ) 6= 0, which implies that N = N ′.
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Let us show the existence. In the following, by fixing a Q`-basis of V , we identify
AutQ`(V ) with GLn(Q`). Hence ρ is regarded as a continuous homomorphism

ρ : WF → GLn(Q`).

For r ∈ Z>0, we define an open subgroup Kr of GLn(Q`) by

Kr := In + `r ·Mn(Z`).

We define a subgroup J of IF by J := ρ−1(K2) ∩ Ker(t). We claim that ρ(J) = {In}.
Indeed, note that Ker(t) is a profinite group whose pro-order is prime-to-`, that is, Ker(t)
does not have a finite quotient whose order is divided by `. As ρ is continuous and IF
is compact (hence so is J), ρ(J) must be a compact subgroup of K2. Since K2/K3 is
isomorphic to Mn(Z`/`Z`), which is a discrete abelian group of exponent `, the image of
ρ(J) in the quotient K2/K3 is discrete and compact, hence finite. But then its order must
be `-power, thus ρ(J) is necessarily trivial. In other words, ρ(J) is contained in K3. By
repeating this argument for K3, K4, and so on, eventually, we get ρ(J) =

⋂
r>0Kr = {In}.

IF
ρ|IF // GLn(Q`)

Ker(t)

`

K1

⋃

J

⋃
//

))

##...

K2

`

K3

`

K4

`

...

`

Since J = ρ−1(K2)∩Ker(t), we have (ρ−1(K2)∩ IF )/J ⊂ IF /Ker(t). Hence the restric-

tion of ρ to ρ−1(K2) ∩ IF factors through the homomorphism t : IF /Ker(t)
∼=−→ Z`. We let

φ : t(ρ−1(K2) ∩ IF )→ K2 be the induced homomorphism:

ρ−1(K2) ∩ IF
ρ

//

����

K2

(ρ−1(K2) ∩ IF )/J
t
∼=
//⋂ t(ρ−1(K2) ∩ IF )

φ

OO

⋂
IF /Ker(t)

t
∼=

// Z`

Let Φ ∈ WF be any lift of the geometric Frobenius, i.e., an element such that v(Φ) = 1.
By Lemma 5.6, we have ΦσΦ−1 = σ−q for any σ ∈ IF /PF . Hence, for any σ ∈ ρ−1(K2)∩IF ,
we have

ρ(Φ)ρ(σ)ρ(Φ)−1 = ρ(ΦσΦ−1) = ρ(σ−q) = ρ(σ)−q.

This equality implies that the set of eigenvalues of ρ(σ) is stable under taking the q-power.
Note that this only happens when every eigenvalue of ρ(σ) is a root of unity. On the other
hand, since ρ(σ) ∈ K2, every eigenvalue of ρ(σ) belongs to 1 + `2Z`. A fun fact here is
that these imply that any eigenvalue must be 1 (see exercise below; the reason why we are
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looking at “K2” (not “K1”) is coming from here). Therefore, ρ(σ) must be unipotent for
any σ ∈ ρ−1(K2) ∩ IF .

Now we note that ρ−1(K2) is open in WF by the continuity of ρ, hence (ρ−1(K2)∩ IF )/J
is also open (thus of finite index) in IF /Ker(t). In particular, t(ρ−1(K2) ∩ IF ) cannot be
zero. Hence we can choose σ0 ∈ ρ−1(K2)∩ IF such that t(σ0) 6= 0. Let us define a nilpotent
endomorphism N ∈Mn(Q`) by

N := t(σ0)−1 · log(ρ(σ0)).

Then obviously we have exp(t(σ0) ·N) = ρ(σ0) = φ(t(σ0)). Let us consider an open (hence
of finite index) subgroup A := t(σ0) · Z` of Z`. By definition, we have

A ⊂ t(ρ−1(K2) ∩ IF ) ⊂ Z`.

We claim that, for any x ∈ A,

exp(x ·N) = φ(x) ∈ K2.

Indeed, as remarked above, this identity holds for x = t(σ0). Since both exp and φ are
multiplicative, then the identity holds for any x ∈ t(σ0) · Z ⊂ t(σ0) · Z` = A. As both exp
and φ are continuous, the identity holds for any x ∈ t(σ0) · Z` = A (simply because Z is
dense in Z`).

We finally put H to be the preimage of A under the map

ρ−1(K2) ∩ IF � (ρ−1(K2) ∩ IF )/J
t−→ t(ρ−1(K2) ∩ IF ).

Then H is open in ρ−1(K2) ∩ IF , hence also in IF . By the observation in the previous
paragraph, we have

ρ(σ) = φ(t(σ)) = exp(t(σ) ·N)

for any σ ∈ H. �

Exercise 5.8. Let α ∈ Q` be a root of unity such that α ∈ 1 + `2Z`. Prove that α = 1.

5.5. Weil–Deligne representations.

Definition 5.9. Let C be any algebraically closed field of characteristic 0. An n-dimensional
Weil–Deligne representation of WF with C-coefficient is a triple (r, V,N) consisting of

(1) an n-dimensional smooth C-representation (r, V ) of WF ,
(2) a nilpotent endomorphism N ∈ EndC(V ) (“monodromy operator”) satisfying

r(σ) ·N · r(σ)−1 = q−v(σ) ·N for any σ ∈WF .

We can define the notion of a homomorphism (and so on) for Weil–Deligne representations
in a natural way. We write WDC for the set of isomorphism classes of finite-dimensional
Weil–Deligne representations with C-coefficients.

Remark 5.10. Recall that the smoothness is equivalent to the continuity with respect to
the discrete topology of the coefficient field. Thus the choice of C does not matter so much
in the above definition. To be more precise, if we have an isomorphism C ∼= C ′ (as abstract
fields), then we have WDC

∼= WDC′ .

Exercise 5.11. In fact, any endomorphism N ∈ EndC(V ) satisfying the condition as in
Definition 5.9 (2) is necessarily nilpotent; prove this.
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Let (ρ, V ) be an `-adic repersentation of WF . Let N be the nilpotent endomorphism
associated to ρ by Grothendieck’s monodromy theorem. We fix a lift Φ ∈ WF of the
geometric Frobenius and define a map

r : WF → AutQ`(V )

by
r(Φk · σ) := ρ(Φk · σ) · exp(t(σ) ·N)−1

for k ∈ Z and σ ∈ IF . Then, it is not difficult to see that r is a homomorphism. By
the monodromy theorem, r is trivial on an open subgroup of IF . In other words, (r, V )
is a smooth representation of WF . Furthermore, it can be also checked that (r, V,N) is a
Weil–Deligne representation.

Conversely, for any Weil–Deligne representation, we can define an `-adic representation
by reversing the above procedure.

Theorem 5.12 (“Second form” of Grothendieck’s monodromy theorem). The above asso-
ciation ρ 7→ (r, V,N) gives an equivalence between

• the category of `-adic representations of WF , and
• the caegory of finite-dimensional Weil–Deligne representations.

In particular, we obtain a bijective map

WD: RepQ`(WF )
1:1−−→WDQ` .

In fact, it is not difficult to prove that the “converse direction” association (r, V,N) 7→ ρ
gives a well-defined functor and also that it is a fully faithful. So the nontrivial point of the
above theorem is that this association can indeed exhausts all `-adic representation; this
is nothing but the content of Grothendieck’s monodromy theorem. We omit the details of
the proof of Theorem 5.12, but it is a routine work as long as we admit Grothendieck’s
monodromy theorem, which we already proved. See, e.g., [BH06, 32.6].

As mentioned above, the point here is that WDQ` is essentially independent of `; for

any distinct `′ (not equal to p), we have an abstract field isomorphism Q` ∼= Q`′ , hence
WDQ`

∼= WDQ`′
. Thus, now we arrived at the following picture.

RepQ`(ΓF ) �
�

// RepQ`(WF )
1:1

rest
//WDQ`

1:1 Q`∼=Q`′
��

RepQ`′
(ΓF )

� � // RepQ`′
(WF )

1:1

rest
//WDQ`′
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6. Week 6: Local Langlands correspondence for GLn

This week we discuss the statement of the local Langlands correspondence for GL(n),
especially, its characterization.

6.1. Local Langlands correspondence for GLn. Let F be a non-archimedean local field
with residue field kF = Fq, which is of characteristic p.

Recall that, last week we discussed the notion of Weil–Deligne representation of WF . In
the following, when we talk about a smooth representation of WF , we always assume that
it is finite-dimensional without particularly declaring.

Lemma 6.1. For any Weil–Deligne representation (r, V,N), the following are equivalent:

(1) The image of r(Φ) is semisimple for some lift Φ of the geometric Frobenius.
(2) The image of r(Φ) is semisimple for any lift Φ of the geometric Frobenius.
(3) The smooth representation (r, V ) of WF is semisimple.

Proof. Here we omit the proof; see, e.g., [BH06, 32.7]. (Basically the idea is to go back to
the proof of monodromy theorem.) �

Definition 6.2. Let (ρ, V,N) be a Weil–Deligne representation.

(1) We say that (r, V,N) is Frobenius-semisimple if the image of r(Φ) is semisimple for
a lift Φ of the geometric Frobenius.

(2) We say that (r, V,N) is semisimple if it is Frobenius-semisimple and N = 0.

Remark 6.3. Note that our terminology is a bit confusing; when a Weil–Deligne represen-
tation (r, V,N) is Frobenius-semisimple and N is nonzero, (r, V,N) is not semisimple in our
sense, but its underlying smooth representation (r, V ) of WF is semisimple.

We let

• Π(GLn) be the set of irreducible admissible representations of GLn(F ), and

• WDFrob
C,n be the set of isomorphism classes of 2-dimensional Frobenius-semisimple

Weil–Deligne representations.

The local Langlands correspondence for GLn, which was established by Harris–Taylor and
Henniart, asserts that there is a natural bijection between these two sets.

Theorem 6.4 (LLC for GLn, [HT01, Hen00]). There exists a unique bijection

LLCGLn : Π(GLn)
1:1−−→WDFrob

C,n

satisfying the following properties:

(1) (compatibility with LCFT) For any χ ∈ Π(GL1), we have

LLCGL1
(χ) = χ ◦Art−1

F ,

where ArtF : F× ∼= W ab
F denotes the local Artin map of the local class field theory.

(2) (compatibility with character twist) For any π ∈ Π(GLn) and χ ∈ Π(GL1), we have

LLCGLn(π ⊗ (χ ◦ det)) = LLCGLn(π)⊗ LLCGL1
(χ).

(3) (compatibility with central characters) For any π ∈ Π(GLn) with central character
ωπ ∈ Π(GL1), we have

LLCGL1
(ωπ) = det ◦LLCGLn(π).

(4) (compatibility with duality) For any π ∈ Π(GLn), we have

LLCGLn(π∨) = LLCGLn(π)∨.
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(5) (preservation of local factors) For any π1 ∈ Π(GLn1) and π2 ∈ Π(GLn2), we have

L(s, π1 × π2) = L(s,LLCGLn1
(π1)⊗ LLCGLn2

(π2)),

ε(s, π1 × π2) = ε(s,LLCGLn1
(π1)⊗ LLCGLn2

(π2)).

Here, the left-hand sides are the automorphic local factors of Jacquet–Piatetski-
Shapiro–Shalika [JPSS83] and the right-hand sides are the Galois-theoretic local
factors of Deligne–Langlands [Del73].

Note that although the properties (1)–(4) are quite important, they do not determine
the map LLCGLn uniquely at all. For the unique characterization, the propery (5) is really
essential.

6.2. Example: the case of GL2. Before we discuss the property (5) of Theorem 6.4, we
consider the case of GL2.

Recall that irreducible admissible representations of GL2(F ) are classified as follows
(Week 4):

(1) Irreducible principal series representations. The representation Ind
G(F )
B(F ) χ1 � χ2 is

irreducible if and only if χ1χ
−1
2 6= 1, | − |2.

(2) Character twistes of Steinberg/trivial representations. If χ1χ
−1
2 = 1, hence χ1 =

χ2 = χ0 for some smooth character χ0 : F× → C×, then Ind
G(F )
B(F ) χ1 � χ2

∼=
Ind

G(F )
B(F ) 1⊗(χ0◦det) has two irreducible subquotients χ0◦det and StGL2

⊗(χ0◦det).

(3) Irreducible supercuspidal representations. The representations which are not of the
above two types are called supercuspidal representations.
• Depth-zero supercuspidal representations.
• Simple supercuspidal representations (depth 1

2 ).
• Deeper-depth supercuspidal representations.

Let us also classify 2-dimensional semisimple Weil–Deligne representations. Let (r, V,N)
be such a representation.

When N = 0, we only have two possibilities; (r, V ) is an irreducible 2-dimensional smooth
representation of WF or the sum of two smooth 1-dimensional representations (characters)
of WF . Here, we do not talk about how to further classify irreducibel 2-dimensional smooth
representations of WF .

We consider the case where N 6= 0. In this case, we may choose a basis of V to regard
V ∼= C⊕2 such that the matrix representation of N is given by ( 0 1

0 0 ). Then, for any σ ∈WF ,
we can check that the form of r(σ) is very limited as follows.

Exercise 6.5. Prove that the conditions

• r(σ) is semisimple,
• r(σ) ·N · r(σ) = q−v(σ) ·N

implies that

r(σ) =

Ç
z · q−

v(σ)
2 0

0 z · q
v(σ)

2

å
for some z ∈ C×.

Let | · | : WF → C× be the absolute value character, i.e., |σ| := q−v(σ). Then the above
observation implies that we must have

r = (χ⊗ | · | 12 )⊕ (χ⊗ | · |− 1
2 ),
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where χ is a smooth character of WF . In other words, if we define a 2-dimensional Frobenius-
semisimple Weil–Deligne representation “Sp(2)” by

Sp(2) := (| · | 12 ⊕ | · |− 1
2 ,C⊕2, N),

then we have (r, V,N) = Sp(2)⊗ χ.
Now the local Langlands correspondence for GL2 is stated more precisely as follows:

(1) An irreducible principal series representation Ind
G(F )
B(F ) χ1 � χ2 corresponds to

(χ1 ⊗ | · |
1
2 ⊕ χ2 ⊗ | · |−

1
2 ,C⊕2, 0).

(2) A character χ ◦ det corresponds to

(χ⊗ | · | 12 ⊕ χ⊗ | · |− 1
2 ,C⊕2, 0).

(3) A character twist of the Steinberg representation StGL2
⊗ (χ ◦ det) corresponds to

Sp(2)⊗ χ = (χ⊗ | · | 12 ⊕ χ⊗ | · |− 1
2 ,C⊕2, N).

(4) An irreducilbe supercuspidal representation corresponds to

(r, V, 0),

where (r, V ) is a 2-dimensional irreducible smooth representation of WF .

6.3. Idea of the characterization of LLC for GLn. The fundamental philosophy in
number theory is:

we should be able to attach a ζ-function or L-function to any number-
theoretic object.

Because this is just a slogan, the meaning of “ζ/L-function” or “number-theoretic object”
are not clear. Please just keep in mind that the most basic example is the Riemann ζ-
function ζ(s). So a ζ/L-function in general is something expected to satisfy various nice
properties similarly to ζ(s), e.g., meromorphic continuation to the whole plane C, functional
equaltion, Euler product decomposition into local factors, and so on. If you have studied
theory of modular forms, please remember that we can associate the L-function to any nice
modular form and that they indeed satisfy such properties.

Recall that, in Week 1, we looked at an example of the global Langlands correspondence,
which relates a modular form (say f) and an elliptic curve (say E). In fact, the mysterious
connection between them explained there can be stated in a cleaner way by appealing to
their L-functions, i.e., L(s, f) = L(s, E). The point here is that the relation between f and
E can be uniquely characterized by this equation (this is a consequence of so-called “strong
multiplicity one theorem” on the automorphic side and “Chebotarev density theorem” on
the Galois side).

So the idea of formulating the local Langlands correspondence for GLn is to introduce a
local version of L-functions (called “local L-factors”) for irreducible admissible representa-
tions of GLn(F ) and Weil–Deligne representations and then characterize the correspondence
using them. However, in fact, using only local L-factors is not enough for the unique charac-
terization. We additionally need “local ε-factors” and also their further variants for “pairs”
of representations.

Theory of local factors is too deep to be explained within just one week, so please let me
first declare that my explanation below is very naive.
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6.4. Local L-factors and ε-factors. Let us start with the following well-known elementary
lemma.

Lemma 6.6. Let G be a group and (ρ, V ) be a representation of G. For any normal
subgroup H of G, the subspace V H of H-fixed vectors is G-stable, i.e., a G-subrepresentation.
Moreover, the action of G on V H factors through G/H.

Proof. Let v ∈ V H . Our task is to show that, for any g ∈ G, ρ(g)(v) again belongs to V H .
For any h ∈ H, we have

ρ(h)
(
ρ(g)(v)

)
= ρ(g)

(
ρ(g−1hg)(v)

)
= ρ(g)(v),

hence ρ(g)(v) is fixed by ρ(h) (in the second equality, we used that H is normal in G). The
second assertion is obvious. �

We fisrt define the local L-factor of a smooth representation of WF . Recall that the inertia
subgroup is a normal subgroup of WF such that WF /IF is isomorphic to the subgroup of
Gal(kF /kF ) which is generated by the geometric Frobenius element FrobkF (inverse to
x 7→ xq). We fix a lift Φ ∈WF of FrobkF .

Definition 6.7. Let (r, V ) be a semisimple smooth representation of WF . We define a
complex function L(s, r) on s ∈ C by

L(s, r) := det
(
1− r(Φ) · q−s | V IF

)−1
.

We call L(s, r) the local L-factor of (r, V ).

Remark 6.8. Note that WF /IF ∼= Z, hence any its semisimple representation decomposes
into the sum of 1-dimensional characters of WF /IF . We say that such a character (i.e., a
character of WF trivial on IF ) an unramified character. If we write V IF =

⊕r
i=1 χi, where

each χi is an unramified character of WF , then we get

L(s, r) =

r∏
i=1

(
1− χi(Φ) · q−s

)−1
.

Example 6.9. Let us give two extremal examples of local L-factors.

(1) If (r, V ) is the trivial representation of WF , then L(s, r) = (1− q−s)−1. Note that,
when q = p, this is nothing but the local factor of the Riemann ζ-function

ζ(s) =

∞∑
n=1

1

ns
=
∏
p

(1− p−s)−1.

(2) If (r, V ) is an irreducible smooth representation of WF , then V IF must be either
0 or V since it is a WF -subrepresentation of V . If V IF = V , then it means that
(r, V ) is a 1-dimensional unramified character. Especially, if the dimension of (r, V )
is greater than 1, its L-factor is always trivial (L(s, r) = 1).

These examples shows that the local L-factor only knows the unramified part of the given
representation. From global perspective, this is enough because any “nice” `-adic Galois
representation of a global field is unramified at almost all places and uniquely determined
by its behavior there by Cheobtarev density theorem. However, from local perspective, the
local L-factor is not enough for the unique characterization.

We next define the local L-factor for a Weil–Deligne representation.
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Lemma 6.10. Let (r, V,N) be a Frobenius-semisimple Weil–Deligne representation. Let
V N=0 denote Ker(N : V → V ). Then V N=0 is stable under the WF -action, hence is a
semisimple smooth representation of WF .

Proof. Suppose v ∈ V N=0. Our task is to show that, for any σ ∈WF , r(σ)(v) again belongs
to V N=0. We have

N
(
r(σ)(v)

)
= r(σ)

(
r(σ)−1 ·N · r(σ)(v)

)
= r(σ)

(
q ·N(v)

)
= r(σ)(0) = 0.

�

Definition 6.11. Let (ρ, V,N) be a Frobenius-semisimple Weil–Deligne representation. We
define a complex function L(s, (r, V,N)) on s ∈ C by

L(s, (r, V,N)) := L(s, V N=0).

We call L(s, (r, V,N)) the local L-factor of (r, V,N).

Exercise 6.12. Compute L(s,Sp(2)).

We just give a brief comment on “local ε-factors”. Recall that the (completed) Riemann

ζ-function ζ̂(s) satisfies the functional equation ζ̂(s) = ζ̂(1 − s). Then, should we expect
that such a symmetric equation can be satisfied in general by any L-function associated to
a sufficiently nice global object? In fact, it’s not literally so in general, but it is expected
that the functional equation holds after adding a correction term called the ε-factor. The
typical form of the functional equation for a global object X is like

L(s,X) = ε(s,X) · L(1− s,X∨).

It is expected that ε(s,X) also decomposes into the product of local factors, and those local
factors are called local ε-factors5.

This is just a philosophical explanation of the role of local ε-factors. In our context (i.e.,
smooth representations of WF and also Weil–Deligne representations), there are axiomatic
properties of the local ε-factor ε(s, ρ), which is a complex function on s ∈ C. It is proved
that the function ε(s, ρ) always exists and is uniquely characterized by those properties. In
the case of smooth characters, its definion was given by Tate (so-called “Tate’s thesis”). In
the general case, it is as follows (see, [BH06, Section 29]).

Theorem 6.13. For any semisimple smooth representation r of WF , there uniquely exists
a complex function ε(s, r) ∈ C[q±s]× satisfying the following properties:

(1) If r is 1-dimensional, then ε(s, r) coincides with Tate’s one.
(2) For any two semisimple smooth representations r1 and r2 of WF , we have ε(s, r1 ⊕

r2) = ε(s, r1)⊕ ε(s, r2).
(3) For any finite separable extensions E ⊃ K ⊃ F and a semisimple smooth represen-

tation r of WE, we have

ε(s, IndWK

WE
r)

ε(s, r)
=
ε(s, IndWK

WE
1WE

)dim r

ε(s,1WE
)dim r

.

Once we define the local ε-factor for semisimple smooth representations of WF in this
way, we can also extend it to any Frobenius-semisimple Weil–Deligne representations; see
[BH06, Section 31] for details.

5But note that the local L-factors and the local ε-factors are NOT expected to satisfy the local functional
equation. For example, when (ρ, V ) is a ramified irreducible representation, the L-factors L(s, ρ) and L(s, ρ∨)

are trivial, but ε(s, ρ) is nontrivial and knows how “deep” the ramification of ρ is.
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Remark 6.14. For a smooth representation ρ of WF , its local ε-factor is defined by choosing
a nontrivial additive character ψF of F . For this reason, it is usually denoted by ε(s, ρ, ψF ),
but here we omit it from the notation. Note that, in (3) of the above theorem, we choose
such a character to be ψ ◦ TrE/F for any finite separable extension E/F by fixing one ψF .
(The same is true for Weil–Deligne represetations.)

Exercise 6.15. Let (r, V ) be a semisimple smooth representation of WE for a finite sepa-

rable extension E/F . Prove that L(s, IndWF

WE
r) = L(s, r).

So far, we have only talked about the local factors on the Galois side. In fact, there is also
a parallel picture established on the automorphic side. It was initiated by Tate in the case
of GL1 (the above-mentioned local factors for 1-dimensional characters of WF are nothing
but the “transfer” of Tate’s factors on the automoprhic side via local class field theory) and
then far generalizes to GLn by Godement–Jacquet.

In this course, I do not explain anything about its definition; actually, it is not easy
at all even to state the definition of the local factors on the automoprhic side. In some
sense, this difficulty of providing a definition and the consequences derived from it are in
a “trade-off” relationship. On the Galois side, it quite easy to define the local L-factor.
But it is typically so nontrivial to show that those factors indeed satisfy nice properties,
especially, global properties such as meromorphic continuation, functional equation, etc.
On the automorphic side, it is already a highly nontrivial task to give its definition. But,
once the definition is given, we can prove a lot about its properties by appealing to the
well-established general theory of automoprhic representations.

6.5. Local L-factors and ε-factors for pairs. I finally also give some comments about
pairs.

As mentioned above, the local ε-factor enables us to get more information of the given
irreducible admissible representation of GLn(F ) or Frobenius semisimple Weil–Deligne rep-
resentation. For example, we can read off the depth (a.k.a., conductor/slope on the Galois
side) from the local ε-factor. However, it is still not enough to uniquely determine the given
representation. In other words, it really happens that two non-isomorphic representations
π1 and π2 satisfy L(s, π1) = L(s, π2) and ε(s, π1) = ε(s, π2).

The idea is to consider “pairs”. Let us first look at the Galois side. Suppose that
an irreducible smooth representation (r, V ) of WF whose dimension is greater than 1 is
given. Then it is impossible to recover r from L(s, r) because L(s, r) = 1 as explained
above. However, what will happen if we consider L(s, r ⊗ r′) for “all” semisimple smooth
representations r′ of WF ? By definition of the local L-factor, L(s, r) has a pose at s = 0 if
and only if r contains the trivial representation of WF . Hence, L(s, r ⊗ r′) contains a pole
at s = 0 if and only if r ⊗ r′ contains the trivial representation. Note that

HomWF
(1, r ⊗ r′) = HomWF

(r∨, r′).

In particular, when r′ is irreducible, we see that L(s, r ⊗ r′) has a pole at s = 0 if and only
if r∨ is isomorphic to r′. Therefore, when two irreducible smooth representations r1 and
r2 of WF are given, we can distinguish them by looking at the poles of L(s, r1 ⊗ r) and
L(s, r2 ⊗ r).

Note that, so that this idea works, we need the notion of “the tensor product”. On the
Galois side, for a given semisimple representations r1 and r2 of WF whose dimensions are
n1 and n2, we can construct their tensor product representation r1 ⊗ r2, whose dimension
is n1n2. Thus what we need on the automorphic side is a way of associating an irreducible
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smooth representation “π1 ⊗ π2” of GLn1n2(F ) to any pair of irreducible admissible repre-
sentations π1 of GLn1(F ) and π2 of GLn2(F ). Such an a-priori-hypothetical object is called
the Rankin–Selberg product of π1 and π2. In fact, the Rankin–Selberg product can only
make sense after we prove the local Langlands correspondence for GLn. (Such an operation
on the automorphic side which can be defined by appealing to the local Langlands corre-
spondence is in general referred to as the Langlands functoriality). However, the point is
that it is possible to establish the definition of L(s, π1⊗π2) and ε(s, π1⊗π2) without defining
π1 ⊗ π2; they are called Rankin–Selberg local factors of Jacquet–Piatetski-Shapiro–Shalika
[JPSS83].
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[BT72] F. Bruhat and J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math.

(1972), no. 41, 5–251.
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