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1. Week 1: Course overview

1.1. Why algebraic groups? If you have ever studied the theory of manifolds, you might
have encountered the notion of a Lie group. A Lie group is a mathematical object equipped
with two different kinds of mathematical structures in a consistent way; the one is a manifold
structure, and the other is a group struture. An “algebraic group” is an algebraic version
of the notion of a Lie group, where a “manifold structure” is replaced with an “algebraic
variety structure”.

The theory of algebraic groups is interesting in its own right, but it also plays a very
important role in applications. For example, much of modern representation theory is
founded on the theory of algebraic groups. Nowadays, theory of algebraic groups has became
an indispensable “language” for developing representation theory.

The aim of this course is to learn basics of the theory of algebraic groups, mainly following
the textbooks [Bor91, Spr09, Mil17].

1.2. Algebraic varieties. Before introducing the definition of an algebraic group, we
briefly review the notion of schemes. See any textbook on algebraic geometry for more
details, for example, Hartshorne, Liu, etc...

Definition 1.1. For a ring1 R, we put SpecR to be the set of all prime ideals of R. We
call SpecR the spectrum of R.

Let R be a ring. For any ideal I ⊂ R, we define a subset V (I) of SpecR by

V (I) := {p ∈ SpecR | I ⊂ p}.
When I is a principal ideal (f) generated by an element f ∈ R, we simply write V (f) instead
of V ((f)). Also, we put D(f) := SpecR∖ V (f).

Lemma 1.2. (1) For any ideals I, J ⊂ R, we have V (I) ∪ V (J) = V (I ∩ J).
(2) For any family of ideals {Iλ}λ∈Λ of R, we have

⋂
λ∈Λ V (Iλ) = V (

∑
λ∈Λ Iλ).

(3) We have V (R) = ∅ and V (0) = SpecR.

Exercise 1.3. Prove this lemma.

The above lemma shows that the family {V (I) | I ⊂ R: ideal} defines a topology on
SpecR such that the closed subsets are the sets of the form V (I). We call the topology on
SpecR defined in this way the Zariski topology.

Note that, from the above definition, the closed points of SpecR are nothing but the
maximal ideals of R.

Example 1.4. Let k be an algebraically closed field. We put An
k := Spec k[x1, . . . , xn]

(where k[x1, . . . , xn] is the polynomial ring with n variables over k). Then An
k is called the

n-dimensional affine space over k.

(1) Let us first consider the subset of closed points of Ak
n. By the Hilbert’s Nullstel-

lensatz, any maximal ideal of k[x1, . . . , xn] is of the form (x1 − a1, . . . , xn − an) for
some a1, . . . , an ∈ k (note that, for this, it is needed that k is algebraically closed).

(2) Let us next consider a closed subset V (I) ⊂ An
k for an ideal I = (f1, . . . , fr) of R

generated by f1, . . . , fr ∈ k[x1, . . . , xn]. Let x ∈ An
k be a closed point corresponding

to a maximal ideal m = (x1 − a1, . . . , xn − an). Then x ∈ V (I) if and only if
m ⊃ I, which is furthermore equivalent to f1(a1, . . . , an) = · · · = fr(a1, . . . , an) = 0.

1In this lecture, the word “ring” always means a commutative ring with unit.
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In other words, the subset of closed points of V (I) is identified with the set of
simultaneous solutions to polynomial equations f1 = · · · = fr = 0 in kn.

Definition 1.5. Let X be a topological space. A presheaf F of abelian groups (resp. rings)
on X is a contravariant functor from the category of open sets of X to the category of
abelian groups (resp. rings). More precisely, F associates an abelian group (resp. a ring)
F(U) to each open set U ⊂ X such that

(1) F(∅) = 0,
(2) for any open subsets V ⊂ U ⊂ X, we have a group homomoprhism (resp. ring homo-

morphism) ρU,V : F(U) → F(V ) (called the restriction homomorphism) satisfying
• ρU,U = idU for any open subset U ⊂ X,
• ρU,W = ρV,W ◦ ρU,V for any open subsets W ⊂ V ⊂ U ⊂ X.

For each open set U ⊂ X, we call an element s ∈ F(U) a section of F over U . We write
s|V in short for ρV,U (s).

Definition 1.6. We say that a presheaf F on X is a sheaf if it satisfies the following
conditions:

(1) For any open subset U ⊂ X and its open covering {Ui}i∈I , if a section s ∈ F(U)
satisfies s|Ui = 0 for every i ∈ I, then s = 0.

(2) For any open subset U ⊂ X and its open covering {Ui}i∈I , if a family of sections
{si ∈ F(Ui)}i∈I satisfies si|Ui∩Uj

= sj |Ui∩Uj
for every i, j ∈ I, then there exists

s ∈ F(U) satisfying s|Ui
= si.

Now we let X = SpecR for a ring R. Then we can construct a (unique) sheaf of rings
OX on X such that

• OX(D(f)) = Rf for any f ∈ R (Rf denotes the localization of R with respect to
f), and

• for any f, g ∈ R such that D(g) ⊂ D(f), the restriction ρD(f),D(g) : OX(D(f)) →
OX(D(g)) is given by the natural homomorphism Rf → Rg (note that f is invertible
in Rg when D(g) ⊂ D(f)).

We call the sheaf OX the structure sheaf of X.

Definition 1.7. We call the pair (X = SpecR,OX) the affine scheme associated to the
ring R. We refer to R as the coordinate ring of X.

In general, a topological space equipped with a sheaf of rings is called a “ringed space”.
For ringed spaces, we can define the notion of a morphism. When a ringed space (X,OX) is
locally isomorphic to affine schemes (more precisely, there exists an open covering {Ui}i∈I of
X such that each (X,OX)|Ui

is isomorphic to an affine scheme), we call (X,OX) a scheme.
(We often omit the symbol OX of the structure sheaf and simply write “X” for a scheme
(X,OX).)

Note that, when we have a ring homomorphism φ : R → S, we can naturally define a
continuous map φ♯ : SpecS → SpecR by φ♯(p) := φ−1(p) for any p ∈ SpecS. This map
furthemore naturally induces a morphism between ringed spaces (X := SpecS,OX) →
(Y := SpecR,OY ).

Fact 1.8. The association R 7→ (X = SpecR,OX) gives a contravariant equivalence between

• the category of rings and
• the category of affine schemes.

The inverse is given by (X,OX) 7→ OX(X).
3



When a ring R is a k-algebra, we say that the affine scheme SpecR is “over k”. When X
is an affine scheme over k, its coordinate ring (i.e., the ring R when X = SpecR) is often
denoted by k[X].

When a scheme is made from affine schemes over k (such that any restriction morphism
is a k-algebra homomorphism), we say that the scheme is over k. Any scheme X over k
is equipped with a moprhism X → Spec k; locally, this is a morphism of affine schemes
corresponding to the structure morphism k → R of a k-algebra R. We call X → Spec k the
“structure morphism” of X.

Definition 1.9. Let k be an algebraically closed field.2.

(1) When R is a reduced finitely generated k-algebra, we call SpecR an affine algebraic
variety over k.

(2) When a scheme X over k has a finite open covering {Ui}i∈I such that each Ui is an
affine algebraic variety, we call X an algebraic variety over k.

As long as k is fixed and there is no confusion, we often omit the word “over k”.

1.3. Definition and examples of algebraic groups. For any schemes X and Y over k,
there uniquely (up to a unique isomorphism) exists their “fibered product” X ×k Y , which
is a scheme over k equipped with morphisms p1 : X ×k Y → X and p2 : X ×k Y → Y over
k satisfying the following “universal property”:

for any scheme Z over k equipped with morphisms q1 : Z → X and q2 : Z →
Y over k, there uniquely exists a morphism f : Z → X ×k Y over k such
that q1 = p1 ◦ f and q2 = p2 ◦ f .

Note that, when X = SpecR and Y = SpecS for k-algebras R and S, their fibered product
is simply given by Spec(R⊗kS) (the morphisms p1 and p2 are given by the natural k-algebra
homomorphisms R → R⊗k S and S → R⊗k S).

Definition 1.10 (algebraic group). Let G be an algebraic variety over k. We say that G is
an algebraic group over k if G is equipped with a group structure, i.e., morphisms of schemes
over k

• m : G×k G → G (“multiplication morphism”),
• i : G → G (“inversion morphism”), and
• e : Spec k → G (“unit element”)

satisfying the axioms of groups. More precisely, the following diagrams are commutative:

G×k G×k G
m×id

//

id×m

��

⟳

G×k G

m

��

G×k G
m // G

G
id×e

//

e×id

��

id
⟳

⟳
%%

G×k G

m

��

G×k G
m // G

G×k G

id×i

��

⟳

G
∆oo ∆ //

ϵ

��

⟳

G×k G

i×id

��

G×k G
m // G G×k G

moo

Here, ϵ denotes the composition of the structure morphism G → Spec k and e : Spec k → G.

2In this lecture, for the definition of an algebraic variety, we always assume that k is an algebraically
closed field. Also, please be careful that the definition of the word “algebraic variety” heavily depends on

textbooks. The definition given here may not be very universal.
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Definition 1.11. Let G and H be algebraic group over k. We say that a morphism f : G →
H over k is a homomorphism of algebraic groups if the following diagram is commutative:

G×k G
f×f
//

m

��

⟳

H ×k H

f

��

G
m // H

Here, the left vertical arrow denotes the multiplication morphism for G and the right one
denotes that for H.

Remark 1.12. Suppose that G is an affine algebraic variety with coordinate ring k[G] (i.e.,
G = Spec k[G]). Recall that the category of affine schemes is equivalent to the category
of rings. Thus giving G an algebraic group structure is equivalent to defining k-algebra
homomorphisms

• m : k[G] → k[G]⊗k k[G],
• i : k[G] → k[G],
• e : k[G] → k.

In general, a commutative ring equipped with such an additional structure is called a Hopf
algebra.

Example 1.13. (1) We put Ga := Spec k[x] and define m, i, and e at the level of rings
as follows:

• m : k[x] → k[x]⊗k k[x]; x 7→ x⊗ 1 + 1⊗ x,
• i : k[x] → k[x]; x 7→ −x,
• e : k[x] → k; x 7→ 0.

Then Ga is an algebraic group over k with respect to the corresponding morphisms.
We call Ga the additive group over k.

(2) We put Gm := Spec k[x, x−1] and define m, i, and e at the level of rings as follows:
• m : k[x, x−1] → k[x, x−1]⊗k k[x, x−1]; x 7→ x⊗ x,
• i : k[x, x−1] → k[x, x−1]; x 7→ x−1,
• e : k[x, x−1] → k; x 7→ 1.

Then Gm is an algebraic group over k with respect to the corresponding morphisms.
We call Gm the multiplicative group over k.

(3) We put GLn := Spec k[xij , D
−1 | 1 ≤ i, j ≤ n], where D := det(xij)1≤i,j≤n. We

define m, i, and e at the level of rings as follows:
• m(xij) :=

∑n
k=1 xik ⊗ xkj ,

• i(xij) := the (i, j)-entry of the inverse of the matrix (xij)1≤i,j≤n,
• e(xij) := δij (Kronecker’s delta).

Then GLn is an algebraic group over k with respect to the corresponding morphisms.
We call GLn the general linear group (of rank n) over k. (Note that GL1

∼= Gm.)

Now we explain a “functorial” viewpoint of algebraic groups, which is more practical.
Let X = Spec k[X] be an affine scheme over k. We consider a functor X(−) from the

category of k-algebras to the category of sets given by

X(R) := Homk(SpecR,X)

for any k-algebra R, where Homk(−,−) denotes the set of morphisms of affine schemes over
k. Since the category of affine schemes is equivalent to the category of rings, we have

Homk(SpecR,X) ∼= Homk(k[X], R),
5



where the latter Homk(−,−) denotes the set of k-algebra homomorphisms. In fact, the
affine scheme X is determined by the functor X(−). Therefore, we may regard the affine
scheme X as a “machine” which associate to each k-algebra R a set X(R) in a functorial
way. (More precisely, the association X 7→ X(−) gives a fully faithful functor from the
category of affine schemes over k to the category of functors from the category of affine
schemes over k to the category of sets; this is so-called “Yoneda’s lemma”.)

We call an element of X(R) an R-valued point or an R-rational point of X.

Example 1.14. Let X = Spec k[x, y]/(y2 − x3). Then, for any k-algebra R, we have

X(R) ∼= Homk(k[x, y]/(y
2 − x3), R).

Note that, any k-algebra homomorphism f from k[x, y]/(y2−x3) to R is uniquely detemined
by the images f(x), f(y) ∈ R of x, y. Since x and y satisfies the equation y2 − x3 = 0 in the
coordinate ring k[x, y]/(y2 − x3), their images must satisfy f(y)2 − f(x)3 = 0. Conversely,
for any elements (a, b) ∈ R2 satisfying the equation b2 − a3 = 0, we can define a k-algebra
homomorphism f : k[x, y]/(y2 − x3) → R by f(x) = a and f(y) = b. Therefore, we get

X(R) ∼= Homk(k[x, y]/(y
2 − x3), R) ∼= {(a, b) ∈ R2 | b2 − a3 = 0}.

In other words, we can think of X as a machine which associates to each R the set of
solutions to the equation y2 − x3 = 0 in R2.

Now let G be an algebraic group over k. Then the multiplication morphism m : G ×k

G → G induces a map mR : G(R) × G(R) → G(R) for each k-algebra R. Indeed, let
g1, g2 ∈ G(R) = Homk(SpecR,G). Then we can define an element mR(g1, g2) ∈ G(R) to by

mR(g1, g2) : SpecR
(g1,g2)−−−−→ G×k G

m−→ G.

(Here, (g1, g2) denotes the morphism induced from g1 and g2 by the universal property of
the fibered product G×k G.) Similarly, we also have a map iR : G(R) → G(R) induced by
i. Furthermore, the unit morphism e : Spec k → G induces an element eR ∈ G(R) given

by eR : SpecR → Spec k
e−→ G, where the first arrow is the structure morphism for SpecR.

Then, it can be easily checked that the axiom of an algebraic group implies that G(R) is a
group in the usual sense with respect to the map mR with inversion map iR and unit element
eR. As a result, G(−) gives a functor from the category of k-algebras to the category of
groups.

Example 1.15. (1) For a k-algebra R, we have Ga(R) ∼= R, where the group structure
on R is given by the additive structure of R. Indeed, we have

Ga(R) = Homk(SpecR,Ga) ∼= Homk(k[x], R) ∼= R,

where the last map is given by f 7→ f(x). The multiplication map mR induced
on Ga(R) corresponds to the addition on R. Indeed, let us take any elements
g1, g2 ∈ Ga(R), hence mR(−,−) is given by the composition

mR(g1, g2) : SpecR
(g1,g2)−−−−→ G×k G

m−→ G.

At the level of rings, this amounts to the composition

k[x]
m−→ k[x]⊗k k[x]

g1⊗g2−−−−→ R.

Since m(x) = x⊗ 1 + 1 +⊗x by definition, we get

(g1 ⊗ g2) ◦m(x) = (g1 ⊗ g2)(x⊗ 1 + 1 +⊗x) = g1(x) + g2(x).

This is why Ga is called the “additive group”.
6



(2) For a k-algebra R, we have Gm(R) ∼= R×, where R× denotes the unit group of R
with respect to the multiplicative structure of R. Indeed, we have

Gm(R) = Homk(SpecR,Gm) ∼= Homk(k[x, x
−1], R) ∼= R×,

where the last map is given by f 7→ f(x). In a similar manner to above, we can
check that the multiplication map mR on Gm(R) corresponds to the multiplication
on R×. This is why Gm is called the “multiplicative group”.

(3) For a k-algebra R, we have

GLn(R) ∼= {g = (gij)i,j ∈ Mn(R) | det(g) ∈ R×}.
Indeed, by definition, we have

GLn(R) = Homk(SpecR,GLn) ∼= Homk(k[xij , D
−1 | 1 ≤ i, j ≤ n], R).

The right-hand side is isomorphic to (at least as sets) {g = (gij)i,j ∈ Mn(R) |
det(g) ∈ R×} by the map f 7→ (f(xij))i,j . It is a routine work to check that this
bijection is indeed a group isomorphism.

(4) The symplectic group Sp2n is an affine algebraic group such that the group of its
R-valued points is given as follows:

Sp2n(R) ∼= {g = (gij)i,j ∈ GL2n(R) | tgJ2ng = J2n},
where J2n denotes the antidiagonal matrix whose antidiagonal entries are given by
1 and −1 alternatively:

J2n :=

á
1

−1
1

. .
.

ë
.

Here, we don’t explain how to define the coordinate ring of Sp2n and also how to introduce
the group structure at the level of the coordinate ring. Only the important viewpoint here is
what kind of groups are associated as the groups of R-valued points! So, in this course, let
us just believe that the functor Sp2n is indeed representable, i.e., realized as the functor of
points of some affine algebraic groups. This remark is always applied to any affine algebraic
group which we will encounter in the future.
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2. Week 2: Very basic properties of general algebraic groups

Recall that, in general, a scheme X is a topological space equipped with a sheaf of
rings OX (“structure sheaf”) which is locally isomorphic to affine schemes (“SpecA” for a
commutative ring A).

In the following, we let k be an algebraically closed field. Also, when we say “an algebraic
variety”, it always means “an algebraic variety over k”. Here, recall that we say that a
scheme X is an algebraic variety over k if it is locally isomoprhic to SpecA for a finitely
generated reduced k-algebra (hence, in particular, A is of the form k[x1, . . . , xn]/I for an
ideal I of k[x1, . . . , xn]).

For any algebraic variety X over k, the subset of closed points of X can be identified
with the set X(k) of k-rational points of X; for any k-rational point Spec k → X, the image
of the unique point of Spec k is a closed point of X, and vice versa. From now on, we freely
identify the set of closed points of X with X(k). Moreover, the subset of closed points of
X is dense in X because k is algebraically closed. (Both these facts are consequences of
Hilbert’s “nullstellensatz”, which asserts that any maximal ideal of k[x1, . . . , xn] is of the
form (x1− a1, . . . , xn− an) for some a1, . . . , an ∈ k; this fact assumes that k is algebraically
closed.)

2.1. Identity component subgroup. Let G be an algebraic group over k. Recall that,
in particular, G is equipped with a unit element e ∈ G(k). Let G◦ denote the connected
component of G containing the closed point e.

Proposition 2.1. The subset G◦ is a subgroup of G. Moreover, G◦ is normal of finite
index in G.

Proof. We have to show that G◦ is closed under the multiplication morphism m : G×G → G
and the inversion morphism i : G → G. More precisely, our task is to check thatm(G◦, G◦) ⊂
G◦ and i(G◦) ⊂ G◦. But both statements follow by combining a general fact that the image
of a connected set under a continuous map is again connected with that m(e, e) = e and
i(e) = e.

To show the second assertion, let us take g ∈ G(k). (By definition, being normal means
that gG◦g−1 ⊂ G◦ for any g ∈ G(k).) Then it can be easily checked that gG◦g−1 is a
subgroup of G which is connected and contains the unit element. Hence we get gG◦g−1 ⊂
G◦. The finite-index property follows from that the set of connected components of an
algebraic variety is finite. □

Definition 2.2. We call the algebraic subgroup G◦ of G the identity component of G.

2.2. Smoothness of algebraic groups. Let us first look at the following example: we
consider an affine algebraic variety X := Spec k[x, y]/(y2 − x3), i.e., X is the spectrum of
the quotient ring of k[x, y] by the ideal generated by (y2 − x3). Recall that, X represents
the space of solutions to the equation y2 − x3 = 0. More precisely, for any k-algebra R,
the set X(R) of R-rational points of X is equal to the set of solutions to y2 − x3 = 0 in
R. If we try to draw a picture of the set X(R) ⊂ R2, then we can immediately notice that
the resulting curve is “smooth” except for the origin (0, 0); at the origin, the curve has a
“singular point”3.

In fact, the difference between the point (0, 0) and the other points in this example can
be explained in terms of ring-theoretic properties of the coordinate ring k[x, y]/(y2 − x3).

3Because we assume k is algebraically closed in this lecture, it’s not actually allowed to take R to be R.
If you want to be rigorous please take the coefficient k to be any smaller field, for example, Q.
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Let us explain how to introduce the notion of a “smooth point” and also a “singular point”
for general schemes in the following.

Let X be a scheme. For any point x ∈ X, we define a ring OX,x by

OX,x := lim−→
x∈U

OX(U),

where the inductive limit is over open sets U ofX containing x ∈ X (the structure morphisms
are given by the restriction maps OX(V ) → OX(U) for any x ∈ V ⊂ U). This ring is a local
ring and called the stalk of X at x ∈ X. If x ∈ X is contained in an affine open subscheme
U ⊂ X isomorphic to SpecA, where x is identified with a prime ideal p of A, then the stalk
OX,x is nothing but the localization Ap of A with respect to p.

For any x ∈ X, we write mx for the unique maximal ideal of the stalk OX,x. We put
κ(x) := OX,x/mx and call κ(x) the residue field of X at x ∈ X.

Definition 2.3. Let X be an algebraic variety over k.

(1) We say that a point x ∈ X is smooth if the local ring OX,x of X at x is a regular
local ring, i.e., we have

dim(OX,x) = dimκ(x)(mx/m
2
x).

Here, the left-hand side denotes the Krull dimension of the ring OX,x and the right-
hand side denotes the dimension of mx/m

2
x as a κ(x)-vector space.

(2) We say that X is smooth if every point of X is smooth.

Fact 2.4. Let X be an algebraic variety over k. Then the subset of smooth points of X is
open dense in X.

The subset of smooth point of X is often referred to as the smooth locus of X.

Proposition 2.5. Let G be an algebraic group over k. Then G is smooth.

Proof. Let U be the smooth locus of G, which is open dense in G by the above fact. Let us
show that any closed point g of G is contained in U . If we can show this, then the assertion
follows. Indeed, the complement G∖ U is a closed subset of G; if this is not empty, then it
contains at least one closed point of G, hence a contradiction.

Firstly, U contains at least one closed point g0 of G because, otherwise, G∖U is a closed
subset of G containing all closed points, hence equal to G by the density of closed points.
Next, for any closed point g of G, we consider the (gg−1

0 )-multiplication morphism

G → G : x 7→ gg−1
0 x.

(Precisely speaking, for any h ∈ G(k), the h-multiplication morphism is defined to be the
composition G ∼= Spec k×kG → G×kG → G, where the second arrow is the fibered product
of h : Spec k → G and idG and the last arrow is the multiplication morphism of G. At the
level of k-rational points, this realizes the intuitive map x 7→ hx.) Then, because this is
an isomoprhism of algebraic varieties, any smooth point is mapped to a smooth point. In
particular, g, which is the image of the smooth point g0, is also smooth. Thus U contains
g. □

Remark 2.6. The word “smooth” usually means a property of a morphism of schemes
f : X → Y ; the definition introduced above is usually referred to as the regularity (non-
singularity) of X (at x), which is an “absolute” notion depending only on X. When Y =
Spec k (where k is an algebraically closed field), the smoothness for the morphism f is
equivalent to the regularity (non-singularity) of X. In general, we must be careful about
the difference between the regularity and the smoothness; see, e.g., [Mil17, §1.b].
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2.3. Homomorphism between algebraic groups. Let us investigate a homomorphism
between algebraic groups over k.

Proposition 2.7. Let α : G → G′ be a homomorphism between algebraic groups over k.
Then the image α(G) is a closed subgroup of G′.

To show this proposition, let us first review some general notions for topological spaces.

Definition 2.8. Let X be a topological spaces.

(1) We say that a subset Z of X is locally closed if Z is an intersection of an open subset
of X and a closed subset of X.

(2) We say that a subset Z of X is constructible if Z is a finite union of locally closed
subsets of X.

(3) We say that X is noetherian if any open subset of X is quasi-compact.

Remark 2.9. In the above definition, the word “quasi-compact” just means “compact”,
i.e., any open covering has a finite subcovering. This is because, sometimes (depending on
areas), the word “compact” is used to mean “Hausdorff and compact”. In the context of
algebraic geometry, we often use the word “quasi-compact” to emphasize that the Hausdorff
property is not assumed.

The following fact is a general nonsense on topological spaces:

Lemma 2.10. Let X be a noetherian topological space. Let Y be a constructible subset of
X. Then Y contains an open dense subset of its closure Y in X.

Exercise 2.11. Prove the above lemma.

Note that, any algebraic variety over k is a noetherian topological space, hence the above
lemma can be applied.

On the other hand, the following fact is much deeper:

Fact 2.12. Let f : X → Y be a morphism between algebraic varieties over k. Then the
image of any constructible subset under f is a constructible subset of Y .

Let us utilize these facts to deduce some useful facts on algebraic groups.

Lemma 2.13. Let G be an algebraic group over k. Then, for any open dense sets U and
V of G, we have U · V = G, where we put U · V := {u · v ∈ G | u ∈ U, v ∈ V }.

Proof. It is enough to show that the open subset U · V contains every closed point g of G.
Let g ∈ G be a closed point. Then both U and g · V −1 are dense open subsets of G, hence
have a nonempty open intersection. By the density of closed points, there exists a closed
point in U ∩ (g ·V −1). In other words, there exists closed points u ∈ U and v ∈ V satisfying
u = hv−1, hence h = uv ∈ U · V . □

Proposition 2.14. Let G be an algebraic group over k. Then any constructible subgroup
H of G is closed.

Proof. By Lemma 2.10, H contains an open dense subset U of its closure H in G. Since H
is a subgroup of G, we obtain

U · U ⊂ H ·H ⊂ H.

By the above lemma, we have U · U = H, hence H = H. □

Corollary 2.15. Let α : G → G′ be a homomorphism between algebraic groups over k.
Then the image α(G) is a closed subgroup of G′.
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Proof. By Fact 2.12, α(G) is a constructible subset of G′. Since α(G) is a subgroup of G′,
the above proposition implies that α(G) is closed. □

Remark 2.16. The notion of a “kernel” in the context of algebraic groups is quite subtle.
Scheme-theoretically, the kernel of α is defined to be the fibered product of α : G → G′ and
e′ : Spec k → G′, where e′ denotes the unit element of G′. However, the problem is that
this fibered product is not necessarily reduced, hence not necessarily an algebraic variety in
our sense. For example, consider the morphism Gm → Gm : x 7→ xp for the multiplicative
group defined over an algebraically closed field k of characteristic p > 0. Then, as “points”,
its kernel is equal to µp(k) := {x ∈ k | xp = 1} = {1}. However, the fibered product is
isomorphic to Spec k[x]/(x− 1)p, which is not reduced. This observation suggests that, for
a better treatment of algebraic groups, we should work with more general notion of group
schemes.

2.4. Dimension of algebraic groups.

Definition 2.17. Let X be an algebraic variety. We say that a closed subset Y of X
is irreducible if Y is non-empty and cannot be written as Y = Z1 ∪ Z2 for non-empty
proper closed subsets Z1, Z2 ⊊ Y . We call a maximal irreducible subset of X an irreducible
component of X.

Definition 2.18. For an algebraic variety X, we define the dimension dimX of X to be
the maximum of the length d of a chain

Y0 ⊊ Y1 ⊊ · · · ⊊ Yd

of irreducible subsets of Yd.

In fact, the dimension of an algebraic variety is related to the Krull dimension of its stalks
in the following sense: let Y be an irreducible component of X. Then, for any x ∈ X, we
have dimOX,x = dimY .

Fact 2.19. Let α : G → G′ be a homomorphism between algebraic groups over k. Then we
have

dimG = dimKer(α) + dimα(G).

Here, as noted above, α(G) is a closed subgroup of G while Ker(α) is not in general
because it might not be reduced. So the (ad hoc) meaning of “Ker(α)” is that it is the
set-theoretic preimage of the unit element e′ ∈ G′ under α. Since α is continuous and e′ is
closed, the preimage is closed in G, hence it makes sense to talk about its dimension.

For the proof of this fact, see [Mil17, Proposition 1.63].

2.5. Algebraic group action on algebraic varieties.

Definition 2.20. Let G be an algebraic group over k and X an algebraic variety over k.
We say that G acts on X if there exists a morphism of algebraic varieties α : G ×X → X
satisfying the usual axioms of group actions, i.e., the following diagrams are commutative:

G×k G×k X
m×id

//

id×α

��

⟳

G×k X

α

��

G×k X
α // G

X
e×id
//

id

⟳

##

G×k X

m

��

X

We can also consider the usual notion on the group action such as normalizer, stabilizer,
and so on, in the context of algebraic groups.
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Proposition/Definition 2.21. Suppose that an algebraic group G acts on an algebraic
variety X.

(1) For any closed subvarieties Y and Z of X, there exists a closed subvariety NG(Y,Z)
satisfying

NG(Y,Z)(R) = NG(R)(Y (R), Z(R)) := {n ∈ G(R) | nY (R) ⊂ Z(R)}

for any k-algebra R. We call NG(Y,Z)(R) the transporter from Y to Z in G.
(2) When Y = Z, we call the transporter NG(Y, Y ) the normalizer of Y in Z and write

NG(Y ) := NG(Y, Y ). Note that the normalizer is a subgroup of G.
(3) When Y consists of a single closed point x ∈ X, we call the normalizer group

NG({x}) the stabilizer group of x in G and write Gx := NG({x}). More generally,
for any closed subvariety Y ⊂ X, we put GY := ∩x∈Y Gx.

4

The subtle point of the above definition is that, so that the resulting “subfunctor”
NG(Y,Z) is indeed given by a “subvariety” (more naively speaking, the subset {n ∈ G |
nY ⊂ Z} has a natural subscheme structure), we need to assume that the subsets Y and Z
are closed subvarieties of G. See [Mil17, 1.79] for the details.

Proposition 2.22 (“Closed orbit lemma”). Let G be an algberaic group acting on an alge-
braic variety X. For any closed point x ∈ X, let Gx denote its orbit.

(1) Each Gx is a smooth variety which is open in its closure Gx in X.
(2) The boundary Gx∖Gx is a union of orbits of strictly smaller dimension.

Proof. Note that G ·x is (by definition) the image of the morphism G → X : g 7→ gx. Using
the fact that the image of any constructible set is again constructible (Fact 2.12), we see
that Gx contains a dense open subset U of its closure Gx. Here note that both Gx and Gx
are stable under the G-action. In particular, we have

Gx =
⋃

g∈G(k)

gU.

(Precisely speaking, we first see that the closed points contained in
⋃

g∈G(k) gU are the same

as those of Gx. Then, by the density of closed points, we get the equality as subvarieties.)
Each gU is open in Gx, hence this equality implies that Gx is open in Gx. The smoothness
follows from the same argument as in the proof of the smoothness of algebraic groups, i.e.,
use the open-density of the smooth locus and that G acts on Gx transitively.

It can be easily checked that any dense open subset of a noetherian space intersects
every irreducible component. In particular, the boundary Gx ∖ Gx does not contain any
irreducible component Gx. In other words, Gx ∖ Gx is a closed subset of Gx of strictly
smaller dimension. Since Gx ∖ Gx is G-stable, it can be written as the union of its G-
orbits. □

Corollary 2.23. Let G be an algberaic group acting on an algebraic variety X. Then any
G-orbit of minimal dimension is closed. In particular, X always has a closed G-orbit.

Proof. If the dimension of a G-orbit Gx is minimal, then the boundary Gx ∖ Gx must be
empty by the above proposition. Hence Gx is closed. □

4When X = G and the action of G on X is the conjugation, we call the stabilizer GX the centralizer of

X in G.
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Example 2.24. A typical example of the application of the above proposition is the fol-
lowing. Let G = GLn. We consider N := {N ∈ Mn | (N − In)

r = 0 for some r ∈ Z≤0}. In

other words, N is an algebraic subvariety of Mn
∼= An2

k (the affine space of n-by-n matrices)
consisting of nilpotent matrices. Then G acts on N via conjugation. By the theory of Jor-
dan normal form, each nilpotent G-orbit corresponds to a partition of n. It is known that
the “closure relation” on N (i.e., when a G-orbit Gx is contained in the closure of another
G-orbit Gy) can be described in terms of the combinatorics on the partition of n.
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