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1. WEEK 1: COURSE OVERVIEW

1.1. Introduction. Suppose that a group G is given and that we want to understand the
group G. But then what exactly does it mean to “understand” G?7 There is a rich framework
which enables us to “define” a reasonable answer to this problem; it is representation theory.
Recall that a representation of a group G is a vector space V, say C-coefficient here, equipped
with an action of G.

Let us say that “we understand the group G” when we understand all the
representations of G.

The aim of this course is to give an introduction to “Deligne-Lusztig theory” (established
in [DL76)), which provides a realization of all representations of finite groups of Lie type.

1.2. Quick review of representation theory of finite groups. The basic reference of
this subsection is Serre’s book [Ser74].
In the following, we let G be a finite group.

Definition 1.1 (representation). We say that (p,V) is a representation of G if V is a
finite-dimensional C-vector space equipped with an action p of G, i.e., p is a homomorphism
G — GL¢(V) := Aute (V). We often only write p or V for a representation (p, V).

Definition 1.2 (homomorphism). Let (p1, V1) and (pa, V2) be representations of G. We
say that a C-linear map f: Vi — V5 is a homomorphism from (p1,V1) to (pe, Vo) if it is
equivariant with respect to the actions p; and ps of G, i.e., we have f(p1(g)(v)) = p2(g9)(f(v))
for any g € G and v € ;.

Vi

pl(g)l @) J{pz(g)
f

Vi— Vs

We write Homg (p1, p2) for the set of homomorphisms from p; to ps (this has a natural
C-vector space structure). We say that (p1, V1) and (p2, Va) are isomorphic if there exists
an isomorphism f: V3 — V4 (i.e., homomorphism which is isomorphic as a C-linear map).

Definition 1.3 (subrepresentation). Let (p, V) be a representation of G. We say that a
subspace W of V is a subrepresentation of V if it is stable under the action p of G.

Definition 1.4 (irreducible representation). Let V' be a representation of G. We say that
V is irreducible if V' # {0} and there is no subrepresentation of V' except for V itself and

{0}.
Note that basic operations on vector spaces can be considered also for representations.

For example, when (p1, V1) and (p2, Va) are representations of G, we define their direct sum
(p1 ® p2, V1 ® V3), which is a representation of G, by

(p1 @ p2)(9)(v1 + v2) := p1(g)(v1) + p2(g)(v2)
for any g € G and vy € Vi, vy € Vo. Similarly, we define the tensor product p; ® p2, which
is a representation of G, by

(p1 @ p2)(9)(v1 ® v2) = p1(g)(v1) ® pa2(g)(v2).

We also often use the “box-tensor product” p; X po, which is a representation of G x G
defined by

(p1 X p2)(g1,92)(v1 ® v2) := p1(g1)(v1) @ p2(g2)(va).
3



(Note that this definition works for, more generally, representations p; of G1 and ps of Ga;
in this case, p; K ps is a representation of G x Gaz.)

The following theorem is very fundamental and important in representation theory of
finite groups.

Theorem 1.5 (semisimplicity of representations). Let V' be a representation of G. Then
there is a unique (up to permutation) way to write

T

~ bn;

v,
i=1

where W;’s are pairwise inequivalent irreducible representations of G and n;’s are positive
integers determined only by V.

By this theorem, the problem of understanding representations of G can be divided into
the following two steps:

(1) Classify all irreducible representations of G.
(2) Find a systematic way of determining each n; from a given V.

Let us list some fundamental facts on the first part (1):

Theorem 1.6. (1) The number of conjugacy classes of G equals the number of isomor-
phism classes of irreducible representations of G.
(2) We have

|G| = Zdim(p)2=
P
where p runs over isomorphism classes of irreducible representations of G.

The key to the part (2) is the following:

Theorem 1.7 (Schur’s lemma). Let (p1, V1) and (p2,V2) be irreducible representations of
G. Then we have

0 if pr # pa.

By Schur’s lemma, each multiplicity n; of an irreducible representation V; in the ir-
reducible decomposition of a representation V of G is given by dim¢ Homg(V,V;) (or
dim¢ Homg(V;, V). Then, how can we determine this number for each V;? Theory of
characters provides a satisfactory answer to this question.

C if p1 = po,
HOmG(pl,p2) g{ fpl P2

Definition 1.8 (character). Let (p, V) be a representation of G. The character of (p,V),
for which we write ©, (or ©v ), is the function G — C defined by ©,(g) := Tr p(g). Namely,
©,(g) is the trace of the representation matrix of p(g) (with respect to any C-basis of V).

Note that ©, is constant on each conjugacy class of G. Such a function is called a class
function on G. Let C(G) denote the set of C-valued class functions on G. Then C(G) has
a natural C-vector space structure equipped with an inner product (—, —) given by

i, f2) = |—g| S hil9) - Folo).

geG
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Theorem 1.9. The set of characters of irreducible representations of G forms an orthonor-
mal basis of C(G) with respect the inner product (—, —). In particular, for irreducible rep-
resentations (p1, V1) and (p2, Vo) of G, we have

1 = po,
<®l)1a®p2> = { fpl p2
0 i pr # po-

Note that, by this theorem, it is enough to compute (O, Ow,) to get the multiplicity n;
of W;in V.

From these discussion, we could say that our ultimate goal in representation theory of
G is to get a list of the character values of all irreducible representations on all conjugacy
classes of G. Such a list is called the character table of G.

1.3. Warmup example: S3. When G is a finite abelian group, all irreducible represen-
tations of G are 1-dimensional, i.e., characters. Thus there exists |G| irreducible represen-
tations of G; all of them can be described explicitly by, e.g., the structure theorem of finite
abelian groups.
So let us look at the non-abelian group of the smallest order, i.e., the permutation group
of three letters:
S5 = {1,(12), (23), (31), (123), (132)}.

Since this group has three conjugacy classes

{13, 1(12),(23), (3D}, {(123),(132)},

there should be three irreducible representations. Firstly, we have the trivial representation
of &3, which is 1-dimensional. Secondly, the signature character sgn: &3 — {£1} gives
another 1-dimensional representation. T

So, what is the remaining representation? We let r be its dimension. Then we should

have

24+ 12 4172 = |63 =6,

i.e., r must be 2. Let us find the remaining 2-dimensional irreducible representation. Almost
by definition, &3 acts on the set of three letters X := {1,2,3}. Thus, if we let V :=
C[X] be the space of C-valued functions on X, then &3 also acts on V (via pull-back of
functions). This representation is 3-dimensional and contains the trivial representation as
its subrepresentation. Indeed, the subspace of constant functions on X is stable under the
action G3; let us write W for it. We claim that V/W, which is 2-dimensional, is an irreducible
representation of &3. To check this, it is enough to show that (Oy/w,Ov,w) = 1.

Let us first compute the character Oy of V. Since Oy is a class function, it is enough
to compute the traces of the actions of 1, (12), and (123). Let 1; denote the characteristic
function of {i} C X for ¢ = 1,2,3. Then {1; | ¢ = 1,2,3} is a C-basis of V' and the
representation matrices of the actions of 1, (12), and (123) with respect to this basis is given
by

Hence we have
Ov(1) =3, Oy((12)=1, ©Oy((123))=0.

1Recall that, in general, the signature character of &3 associates +1 (resp. —1) to a permutation expressed
by the product of even (resp. odd) number of transpositions.
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As we have Op (1) = 1,0 ((12)) = 1, 0w ((123)) = 1, we get
Ovw(l) =2, Oyw((12)) =0, Oyw((123)) = -1

Therefore, we have

1 -

(Ovyw,Ov/w) = 5 Z Ov,w(9) - Ovyw(g)
geG3

1

=—(2240°+0°+ 0>+ (-1)* + (-1)%) = 1.

6

1.4. What is Deligne—Lusztig theory? When a group G is finite, we win if we can find
all irreducible representations “by hand” in any way. However, we immediately notice that
it’s not easy in general. (We will look at the example of GLy(F,) in the next week. We
construct its all irreducible representations by hand, by we can see that it’s already not
obvious at all.)

In fact, we can find an idea in the above example of G3. This example suggests that,
more generally, we can try to construct representations of a given group G according to the
following steps:

(1) First, introduce a “space” X equipped with an action of G.

(2) Second, find a “functorial linearization” X — Vx, i.e., an operation which associates
a vector space to each space X which is functorial in X. Then, the action of G on
X induces an action of G on V.

Deligne-Lusztig theory exactly realizes this idea for so-called finite groups of Lie type.
What is a finite group of Lie type? To explain this, let us first recall the definition of a
general linear group:

GL,(C) :={g € M,,(C) | g is invertible}.

So GL,(C) is the set of all invertible n-by-n matrices whose entries are complex numbers;
this has a group structure with respect to the usual multiplication of matrices. The point
here is that the definition of a general linear group completely makes sense even if we replace
the field C with any field (or even any ring!). Thus, in some sense, we may think of GL,, as
a “machine” which associates a group to any ring;

R — GL,(R) := {g € M, (R) | g is invertible}.

In particular, by taking R to be a finite field F,, we obtain a finite group GL,,(F,).

In general, this kind of machine is called an algebraic group. Among algebraic groups,
there is a particular class called reductive groups. The general linear group is one of the
most typical examples of a reductive group. A finite group of Lie type is a finite group
obtained by letting R be a finite field I, for a reductive group G which can be “defined over
F,”. (In the case of GL,, its definition makes sense over Z, hence also over F,.)

Let us introduce more examples. Recall that the symplectic (resp. orthogonal) group is
the group consisting of symplectic (resp. orthogonal) matrices:

SPy,(C) :={g € GL2n(C) | *gJang = Jon},
0,(C) :={g € GL,(C) | 'gg = I, }

Here, Jo, (resp. I,) denotes the anti-diagonal matrix whose (i,2n 4+ 1 — i)-entry is given by
(=1)"=! (resp. the identity matrix). The defining equations of these groups only uses 1 and
—1, hence it makes sense to replace C with F; then we get Sp,,, (F,) and O, (F,).

6



Let us also introduce a bit more tricky example. The unitary group is the group consisting

of unitary matrices:
U, = {g € GL,(C) | 'gg = .}

Here, g denotes the entry-wise complex conjugate of g. Note that the complex conjugation
is nothing but the nontrivial element of the Galois group of the quadratic extension C/R.
This viewpoint suggests that we can define a unitary group in the same way as long as
a quadratic extension of fields is given. In particular, by taking a finite field F, and its
quadratic extension g2, we can define

Un(Fq) ={g€ GLn(]Fq2) | tF(g)g =1In}.

Here, F' denotes the nontrivial element of Gal(F,2 /IF,); this is so-called the Frobenius, which
is given by taking (entry-wise) g-th power.

Now let us also mention the “space X” and the “functorial linearization X + Vx”. The
space X in the context of Deligne-Lusztig theory is called the Deligne—Lusztig variety. The
definition of the Deligne-Lusztig variety depends on a finite group of Lie type G(F,) (with
its additional structure). It originates from a very concrete curve with F,-coefficient called
the Drinfeld curve, whose defining equation is given by xy? — 2%y = 1. However, the general
Deligne—Lusztig variety is defined based on a very sophisticated language of the theory of
reductive groups. We have to make full use of the structure theory of reductive groups to
analyze its geometric structure.

On the other hand, the role of “functorial linearization X +— Vx” is played by the
theory of étale cohomology. More precisely, by choosing a prime number ¢ different to the
characteristic p of F,, we obtain the (compactly supported) ¢-adic cohomology H!(X,Q,)
of X. This cohomology H:(X,Q,) is a finite-dimensional Q,-vector space, where Q, is an
algebraic closure of the f-adic number field Q,. The point here is that Q, is abstractly
isomorphic to C, hence we can regard H!(X,Q,) as a finite-dimensional C-vector space.
In particular, we obtain a representation of G(F;). In order to analyze the structure of
H!(X,Qy) as a representation of G(F,), we also need to appeal to various fundamental
properties of the étale cohomology.

1.5. Why Deligne—Lusztig theory? Then, why is Deligne-Lusztig theory so important?
The first reason is that Deligne-Lusztig theory is only a framework (at present) which
enables us to construct all irreducible representations of finite groups of Lie type in a uniform
way. A lot of important examples of finite groups are contained in the class “finite groups
of Lie type”. However, irreducible representations had been classified only in the case of
GL,,(F,) (due to Green in 1955) before the work of Deligne-Lusztig. Moreover, even in that
case, Green’s method is based on heavy combinatorial arguments, hence it is quite nontrivial
whether it can be generalized to other finite groups of Lie type. Let us cite a comment of
Shoji from his book [H:04] (written in Japanese):

A preprint by Deligne—Lusztig was released when I was a student. I was
shocked about it; it was like that an iron-made steamship suddenly appeared
in a peaceful small village which was only based on the handicraft industry
before. For people peacefully living with GL,(F;) at that time, Deligne-
Lusztig theory was so surprising, almost like the devil’s work.

The second reason is that Deligne-Lusztig theory is expected to have an application to
the local Langlands correspondence. The local Langlands correspondence is also called the
non-abelian class field theory; roughly speaking, it predicts a natural connection between
representations of p-adic reductive groups (such as GL,,(Q,), Spa,(Qp), etc...) and Galois

7



representations. The expectation is that a certain case of the local Langlands correspondence
can be made from Deligne-Lusztig theory (e.g., [DR0Y]). @

2But nothing about this will be explained in this course! Maybe next semester???
8



2. WEEK 2: REPRESENTATIONS OF GLo(F,)

Aim of this week. The aim of this week is to construct/classify all irreducible represen-
tations of GLq(IF,), especially, write the character table. Through this example, we should
be able to encounter various basic notions on reductive groups and representation theory of
finite groups of Lie type. The explanation given here follows [BHU#, Section 6].

2.1. Group structure of GLy(F,). Let F, be a finite field of order ¢ and characteristic
p > 0 (hence ¢ is a power of p). Let GLo(FF,) denote the general linear group of size 2 with
Fy-coeflicients, i.e.,

GLa(r,) = {(% 1) € 1m(®)

In the following, we simply write G for GLy(F,). It is a basic fact that the order of GLy(F,)
is given by (¢* — 1)(¢* — q).

adfbceF;}.

Exercise 2.1. More generally, it is known that the order of GL,,(F,) is given by H?:_Ol(q" -
q"). Prove this.

We can classify the conjugacy classes of GLy(Fy) by looking at the characteristic poly-
nomials as follows. For an element g € GLa(Fy), let ¢4(x) € Fqlx] denote its characteristic
polynomial. Then we have the following three possibilities:

(1) ¢g(x) is of the form (x — a)? for some a € F.
(2) ¢4(x) is of the form (x — a)(x — b) for some distinct a,b € F.
(3) ¢g4(z) is an irreducible monic of degree 2.

We first consider the case (1). If ¢4(x) = (z — a)?, then the minimal polynomial of g is
either z — a or (z — a)?. In the former case, g is equal to

__<a 0)
=g o)

This element is central in G. Thus the conjugacy class of g is simply given by {z,}.
In the latter case, by theory of Jordan normal form, g is conjugate to

a 1
e (2 1),

By a simple computation, we can check that the centralizer of u, in G is given by ZU (see
Section 223 for the notation), which is of order ¢(¢ — 1). Hence the conjugacy class of u, is
of order |G|/q(q —1) = ¢*> — 1.

We next consider the case (2). In this case, g is necessarily conjugate to

0
tap = (8 b) .

The centralizer of ¢, is given by T (see Section Z33 for the notation), which is of order
(¢ — 1)%. Hence the conjugacy class of t,; is of order |G|/(g — 1)* = ¢* + q. We caution
that ¢, and t, p are conjugate if and only if (a/,b") = (a,b), (b, a). In particular, there are
(qgl) = (‘1_1)2& conjugacy classes of this type.

We finally consider the case (3). Suppose that ¢4 is an irreducible monic of degree 2.
The subring F,[g] of M2 (F,) is a degree 2 extension of F, (given by the minimal polynomial
¢g), hence isomorphic to F 2. The centralizer of g in G is given by F,[g]*, which is of order
¢®> — 1. (Indeed, the centralizer of g in M(F,) (let us write F) must be a commutative

9



subring containing F,[g]. Since it can be regarded as a F,[g]-vector space, by counting the
dimensions, we see that E must be F,[g] or M3(F,). However, the latter case is impossible
as My (F,) is not commutative. Thus E = F[g], hence the centralizer of g in G is given by
E* =TF,[g]*.) Hence the conjugacy class of g is of order |G|/(¢* — 1) = ¢* — ¢q. Note that,
by choosing an F,-basis of Fy[g] to be {1, ¢}, then the g-multiplication action on Fy[g] is

represented by
0 —b
Sa,b = 1 —a )

where we write ¢g4(x) = 2* + ax + b. This matrix represents the conjugacy class of g. An

‘122—_‘7 irreducible degree 2 monics in total. Hence the
number of conjugacy classes of this type is also given by L{‘].
Now we see that there are

easy computation shows that there are

a—1(@-2) ¢ —gq
(-1 g1 2 Tty
conjugacy classes of G in total. Hence, the number of irreducible representations of G must

be ¢° — 1.

TABLE 1. Conjugacy classes of GLy(F,)

representative | order of the conjugacy class parameter # of parameters
Za 1 ac€Fy g—1
Ug -1 a €F; q—1
tap ?+q a,beFX, a#b G=D=2)
Sab @ —q irr. deg. 2 monic qggq

2.2. Philosophy of induction. We next give some explanation on a general strategy to
construct irreducible representations. For this, here let G temporarily denote any finite

group.

Definition 2.2. For a representation (o, W) of a subgroup H of G, its induction to G is
defined by

nd$ o :={f: G— W | f(hg) = o(h)(f(g)) for any h € H and g € G},
where G acts via right translation, i.e.,
(- f)(g) == f(gz)
for any z € G and g € G.

Recall that the character of the induced representation Indg o can be expressed in terms
of the character of o and the group-theoretic relation between G and H as follows:

Theorem 2.3 (Frobenius formula). For any g € G, we have

@Indg a(g) = Z @U(a?gm_l).



So, in principle, we should be able to know all about the induced representation Indfl o
as long as the subgroup H and its representation ¢ are “well-understood”. Based on this
idea, one can try to construct irreducible representations of G using “well-understood”
irreducible representations of subgroups of G. Note that the dimension of Indg o is given
by |G : H] - dimo. Especially, if H is smaller, then the dimension of Indg o is larger. Thus
it is possible to expect that we can find more irreducible representations in Indfl o for small
H. Indeed, we have the following fundamental theorem:

Theorem 2.4. Let G be a finite group. Then the induction of the trivial representation of
the trivial subgroup to G decomposes as follows:

G ~ @ dim p
Indfyy 1= P,
p
where the direct sum is over the isomorphism classes of all irreducible representations of G.
It is beautiful that every irreducible representation is realized in the induction of the
trivial representation. However, we can also think that here too many irreducible repre-

sentations are mixed together, hence it’s difficult to distinguish them. So, for example, it
would be great if we could find a subgroup H of G which is simultaneously

e small enough that the induction to G can produce various irreducible representations
and
e large enough that the inductions are irreducible (or “almost” irreducible).

What we will see in the next section is an example of such a nice subgroup for GL2(F,),
which is called a “Borel subgroup”. (In fact, we can also find a family of such nice subgroups
for any finite group of Lie type, called “parabolic subgroups”.)

2.3. Principal representations of GLy(F,). We introduce the subgroups B, T, U of GLy(F,)

as follows:
a b
B:= {(0 d) € My(F,)

T:= {(3 2) € My(F,)

U:= {((1) ?) € My(Fy) |be Fq}.

Note that U is a normal subgroup in B and that we have the semi-direct decomposition
B =T x U. In particular, we have a natural surjection B — T by quotienting by U < B.
We let Z denote the center of G, which consists of scalar matrices:

s (g 2ot

a

a,deIF;,be]F‘q},

a,de]F;},

aGF;}.

Remark 2.5. In the context of theory of reductive groups, the subgroups B, T, and U are
called a Borel subgroup, a mazimal torus, and the unipotent radical (of B), respectively.

Definition 2.6 (Principal series representation). Suppose that x: T'— C* is a character.
Then, by pulling back x via B — T, we may regard it as a character of B (this procedure
is called the inflation). We call the induction Ind$ x of x from B to G a principal series
representation (for x).

11



Note that we have T = F; x F, hence any character x of T" can be expressed as
X = x1 X x2 with some characters x1 and x2 of Fy, ie., for any (t1,t2) € T, we have
x(t1,t2) = x1(t1) - x2(t2). We shortly write x1 X 2 for Indg X = Ind%()ﬁ X x2). Since the
dimension of x1 X X2 is equal to the index of B in GG, we have

N e O [C ) 1
| B (¢ —1)*q
Let us first investigate the principal series representations for x = xi1 X x2 such that
X1 # Xe-

Proposition 2.7. If x1 # x2, then x1 X X2 is an irreducible representation of G of dimension
q+ 1. Moreover, for two characters x1 X x2 and x)} K x5 of T,

dim(x1 X x2)

X1 X X2 ZX) XXy <= X1 Bx;=x1Hx2 or x2 K.
We next consider the case where x; = xa.
Proposition 2.8. (1) The principal series representation 1 x 1 = Indg 1 associated to
the trivial character of T is the sum of two irreducible representations of G:
e one is the trivial representation of G;
e the other is a q-dimensional irreducible representation of G, for which we write
Stg (we call the “Steinberg representation” of G).
(2) For any character x of F)f, we have x x x = (1 x 1) ® (x o det). In particular, we
have
X X X = (xodet) ®Stg ® (x o det).

We prove Propositions 274 and 278 simultaneously.

Proof. Fisrt, by Frobenius reciprocity (the adjunction formula between the induction and
restriction), we have
Homg(x1 X X2, X1 X Xb) = Homp (Resg(xl X X2), X1 X Xlz)
By applying the Mackey decomposition formula, we have
-1
Resg(Xl X XQ) = @ Indgﬂs_lBs Res%ﬁﬁiBs(Xl X X2)s7
s€e B\G/B

where (x1Xx2)* denotes the character of s7! Bs defined by (1 Xx2)%(s~1bs) = (x1Xx2)(b).
Now we use the Bruhat decomposition:

0 1
G = B U BwB, w.-(l O)'

Since w maps B to its transpose B and swaps the first and second factors of T =2 Fx xFx,
we get

P mdi-1p, Reshn g, (1 B x2)® = (x1 K x2) & Indf Res? (x2 B xa) .-
s€eB\G/B

s=1 s=w
gote that, on the right-hand side, x; X x2 and y X x; are regarded as characters of B and
B by inflation, respectively.) This implies that
Homp (Res% (x1 % X2), X1 X x5)
= Homp (x1 X x2, X1 ¥ x) ® Homp (Ind7 Res7’ (x2 ¥ x1), X1 ¥ x5).

12



The first summand on the right-hand side is equal to Homr(x1 X x2, X1 K x5). By Frobenius
reciprocity, the second summand is equal to Homp (XQ X x1, xp X Xlz) So we conclude that

(*)  Homg(x1 X x2, X1 x x5) = Homy (x1 B x2, x| B x5) ® Homy (x2 ® x1, X7 B x5).

In particular, this implies that

C X1 # X2,
En X =

deba xx2) {(C@C X1 = X2-
By Schur’s lemma, this says that x1 X x2 is irreducible when x; # x2 and decomposes into a
sum of two irreducible representations when x; = x2. So we obtained Proposition EZ2. (The
latter assertion of Proposition 74 can be checked by the formula (=)). When x1 = x2 = X,
we can easily check that y x x contains y o det. It’s also not difficult to check that y x x
is isomorphic to (1 x 1) ® (x o det). (For example, again use Frobenius reciprocity.) Then
Proposition 8 follows. O

So, how many irreducible representations have we obtained so far? Since there are (¢—1)
characters of F, the principal series construction produces

-1 Z+q-—2
2 —— 2
N——

X1=X2
X17X2

irreducible representations of GLy(F,) in total. Thus there should be exactly

(q271)7q2+Q*2:q2*q
2 2

more irreducible representations! These are called “cuspidal” representations.

2.4. Cuspidal representations of GLy(F,).

Definition 2.9 (Cuspidal representations). Let p be an irreducible representation of G.
We say that p is cuspidal if p is not contained in any principal series representation.

Remark 2.10. We caution that this definition is somehow misleading for understanding
the definition of a cuspidal representation in general. In general, there is a notion of a
“parabolic subgroup” of a finite group of Lie type. When G is a finite group of Lie type,
we say that its irreducible representation is cuspidal if it is not contained in the induction
of any representation of the “reductive part” of any nontrivial parabolic subgroup of G (so-
called “parabolic induction”). A Borel subgroup is a minimal parabolic subgroup. Because
any nontrivial parabolic subgroup is Borel when G = GLy(F,), we only have to care about
principal series representations in the above definition.

Lemma 2.11. Suppose that p is an irreducible representation of G. The following are
equivalent:

(1) p is cuspidal.

(2) The U-coinvariant py of p is zero.

(3) The U-invariant p¥ of p is zero.

(4) (Resg p, 1u) = 0.

Proof. We first note that

nd{ 1y = Ind$(Indf 1) = Indg( @ X)- = @ (Ind% x).

x: T—CX x: T—CX
13



Thus, by definition, p is cuspidal if and only if Homeg(p, Indg 1y) = 0. By Frobenius
reciprocity, this is equivalent to that HomU(Resg p,1y) = 0. As p is semisimple as repre-
sentation of U, this is also equivalent to Homy (1, Resg p) = 0. The equivalences between
(1)—(4) all follows from these observations. O

Now we construct all cuspidal irreducible representations of G “by hand”. By regarding
IFLQ] as a 2-dimensional F,-vector space, we embed F > into M>(F,). To be more precise, by
choosing an Fg-basis of F> (hence get F,2 = Fam, which is regarded as the space of rank 2
column vectors), the multiplication of o € F2 on Fg2 = IF;‘92 itself can be written by

()= 2 6)
b) Qg1 (22 b)-
Then the image of o € Fp2 in My(F,) is given by (al} ai2). Note that this embedding

depends on the choice of an [Fy-basis of IF;2, hence not canonical. We fix such an embedding
and define a subgroup S C G to be the image of F;z (note that S contains Z; it is nothing

but IFqX contained in IE‘ZQ). We also fix a nontrivial character ¢: U — C*.

Definition 2.12. For any character §: S — C* satisfying §9~! # 1, we define a virtual
representation my of G by

m9 = Ind§; (0| 7 ®4p) — Ind§ 6.

Here, the right-hand side is considered in the Grothendieck group of representations of G
(or, My can be simply regarded as a class function on G).

Proposition 2.13. The virtual representation mg is a (¢ — 1)-dimensional irreducible cus-
pidal representation.

To prove this proposition, let us first investigate the characters of my.

Lemma 2.14. The character values of wy are given as follows:
(1) Ory(2a) = (= 1)0(a) for a € F,
(2) Ony(ua) = —0(a) for a € Fy,
(8) Oxy(tap) =0 for distinct a,b € F,
(4) Or,(s) = —0(s) —0(s)? for s€ S\ Z.

Proof. The idea is to apply the Frobenius formula. Here let us only check (4).

First recall that S C G is defined by the multiplication action of Fg2 on Fg2 itself. This
implies that if s € S does not lie in Z C S, then the characteristic polynomial of s is an
irreducible monic of degree 2. Conversely, for any irreducible monic of degree 2, there exists
an s € S having the monic as its characteristic polynomial. (The point of this argument is
that any irreducible monic of degree 2 generates the degree 2 extension F 2 of F, in F,.)

Now let s € S be an element with irreducible characteristic polynomial 22 4 ax + b, hence
conjugate to s,,. We first compute the character of Ind§; (A7 K ¢) at s. By Frobenius
formula, we have

Omdg,, (0],84)(8) = Z 0]z R ) (wsz™").

reZU\G
zsx~teZU

However, since any element of ZU cannot have 2% + ax + b as its characteristic polynomial,
s cannot be conjugate to an element of ZU. In other words, the index set of the above sum
must be empty, hence Or,q¢_ (4| ,:y)(5) = 0.

14



We next compute the character of Indg 0 at s. Again by Frobenius formula, we have

Omag o(s) = Z O(zsz1).

Let us determine the index set. Note that S = F,[s]*. In particular, if zsz~! € S, then we
have Sz~! C S, which furthermore implies that Sz~! = S, i.e., * € Ng(S). Suppose that
we have an element & € Ng(S) \ S. Then the conjugation via z should induce a nontrivial
[F4-automorphism of Fy[s] (= F,2) (otherwise,  must be in Zg(S), which equals S). From
this, we see that the index set can be regarded as a subset of Gal(F,2/F,). In fact, there
indeed exists an element © € Ng(S)\ S. To see this, let us note that s and s? have the same
characteristic polynomials. Especially, there exists an element x € G satisfying zsz~! = s%.
Since both s and s? generate F,[s], this implies that zSz~! = S, hence z € Ng(S). Of
course, this element = cannot be in S. In summary, we get

Z Op(zsz™") = 0(s) + 6(s?).

Finally, recalling that 7y is defined to be Ind$;;(8]z ®¢) — Ind§ 0, we get the result. [
Exercise 2.15. Check (1), (2), and (3).
Now let us prove Proposition PZT3.

Proof of Proposition ZI3. To show that mp, it suffices to check that (m,m9) = 1. Note
that, even if we can show this, there is a possibility that 7y is the “minus” of an irreducible
representation. However, this possibility is excluded since the character value of my at the
unit element z; is given by (¢ — 1). (Also, we see that the dimension is (¢ — 1) from this.)

Recall that
<ﬂ9779 |(;|j£:(3ﬂe : We )
geG

(1) The sum (not divided by |G|) over the conjugacy classes of z, is

Y 1-(g-1ba) (g—1)fla) = > 1-(¢g—1)°=(¢—1)°.

a€Fy a€Fy

(2) The sum (not divided by |G|) over the conjugacy classes of u, is

Y @ =1 (=0@) (=0a)) = > (*=1) = (¢ = )(g— 1)

a€Fy a€Fy

(3) The sum (not divided by |G|) over the conjugacy classes of t,; is zero since each
character value is zero.

(4) By noting that the orbits of (S \ Z) by the action of Gal(F,2/F,) bijectively corre-
spond to the conjugacy classes of elements of the form s, ;. Hence, the sum (note
divided by |G|) over the conjugacy classes of s, 5 is

5 @) (8ls) — 0s)) - T00) — )

SESNZ

=T LS (o)~ 0()%) - (008) O,
SEF 5 ~Fg
15



By an elementary computation, we can check that this equals (¢* — ¢)(¢ — 1)%.

Therefore, we get

(mo, mo) = ﬁ : ((q —1P+ (@ == 1) +0+(* —g)g- 1)2) — 1.

Finally, let us check the cuspidality of my. It suffices to show that

1
(Res$ mg, 1) = il > O, =0.
uelU

Any element (§¢) with a € F)* is conjugate to uy = (§ 1 ). Hence,

Y Ony = Ony(21) + (4 = 1O, (u1) = (¢ = 1)O(1) = (¢ = 1)0(1) = 0.

uelU

Exercise 2.16. Complete the computation skipped in the above proof.

Proposition 2.17. For any 6;: S — C* satisfying 9?_1 #1 (i=1,2), we have my, = my,
if and only if 01 = 05 or 6, = 61.

Proof. By the character formulas of ©,,, we see that my, = mp, only if
01(s) + 01(s)? = O2(s) + 02(s)?

for any s € S. Recall that Artin’s lemma says that distinct characters of any finite group
are linear independent. Hence, by noting that 8¢ =# 0, the above condition is equivalent
to that 61 = 65 or 61 = 6%. Conversely, if this is satisfied, then we have 7y, = g, by the
character formula of ©,. O

Here, note that S is of order ¢ — 1, hence any character # of S satisfies 07" = 6. Thus
the condition 6, = 63 is also equivalent to 62 = 7. Proposition EZT7 enables us to count the
number of irreducible cuspidal representations obtained in this way. The group S is cyclic of
order ¢ — 1, thus there exactly (¢ — 1) characters of S satisfying §9~! = 1. In other words,
there exactly ¢® — ¢ characters of S satisfying #9=! # 1. Therefore the above construction

provides -4 irreducible cuspidal representations, hence all!

2.5. What is Deligne—Lusztig theory? (a bit more precisely). The construction of
gy presented above is somehow mysterious and seems difficult to generalize. So, we want a
more conceptual construction of 7y, which could work in a more general setting. We can
find a hint in Drinfeld’s observation.

Before we talk about “the curve” of Drinfeld, let us introduce the groups G’ := SLo(F,)
and S’ := SN G'. Note that S’ is identified with the norm 1 subgroup of IF;; ie.,

S"= Ker(Nr: F; — Fy).

In particular, S’ is cyclic of order (¢ + 1). We can also introduce the notions of principal
series or cuspidal representations for G’ in a similar way. Basically, the representation theory
of G’ can be “derived” from that of G. Especially, the cuspidal representations of G’ can
be constructed by restricting those of G to G’. Thus let’s talk about how to understand
cuspidal representations of G’ in the following.
Drinfeld investigated the following curve (see [?, Chapter 2]).
16



Definition 2.18 (Drinfeld curve). Let X be the curve defined by
X :={(z,y) € AZ |zy? — a9y =1}.

The curve X has the following properties:

e G'actson X by (¢}) - (2,y) = (ax + by, cx + dy);
e S"actson X by s- (x,y) = (sx, sy);
e the actions of G’ and S’ commute.
Because the étale cohomology has the functoriality in spaces, we can obtain a representation
of G’ x S’ on the étale cohomology of X. By cutting it along any character 6 of S’, we get
a representation of G’. In fact, this resulting representation is nothing but “my”. In other
words, Drinfeld’s curve gives a geometric realization of the cuspidal representation mg which
was constructed in a mysterious way previously!
Deligne-Lusztig theory exactly generalizes this idea. Let G be a finite group of Lie type.
The input/output of Deligne-Lusztig theory are as follows:
Input: a pair (5,0) of
e a “maximal torus” S of G and
e a character 0: S(F,) — C*.
Output: avirtual representation RS () of G(F,) (“Deligne-Lusztig virtual representaiton”).

For a given input (S,0), Deligne-Lusztig first defined an algebraic variety Xg over F,
equipped with an action of G(IF,) x S(F,). This is called the Deligne-Lusztig variety (associ-
ated to (G, S)); this is a far generalization of the Drinfeld curve. Deligne-Lusztig considered
its f-adic étale cohomology H'(X g, Q). Then, as explained above, we obtain a representa-
tion of G(F,) x S(F,) on H:(X§,Q,). By taking the alternating sum of the f-isotypic part
of each degree, we get the “output”:

R§(0) =) (-1)'HJ(XE,Q)[e]

i>0

Remark 2.19. (1) At this point, you do not have to be able to understand the meaning
of the terminologies such as “finite group of Lie type” or “maximal torus”. It is
also one of the purposes of this course to get familiar with these notions (through
various examples).®

(2) As its symbol suggests, H:(X§,Q,) is a Q-vector space; not a C-vector space.
However, by choosing an isomorphism Q, = C, we may convert H, g(Xg,@g) to a
C-vector space. In fact, the resulting representation Rg(@) with C-coefficients is
independent of the choice of such an isomorphism (“/-independence”, which is an
important part of Deligne-Lusztig theory).

(3) The subgroup S of GLy(F,) introduced in the previous section (or S” of SLy(F,)) is
an example of a “maximal torus”. With the above notation, we have my = RS (6)
for G = GLy(F,)" Recall that T = F x F is another example of a maximal torus
of GL3(F,). One surprising point is that Deligne-Lusztig theory also naturally
generalizes the principal series construction. Namely, for any character x of T' C
GLs, we have Ind$§ x = R% (x).

30n the other hand, I have to confess that I will only give a few words about the theory of étale
cohomology.
4Prcciscly speaking, we need “up to sign” here
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One of the highlights of the theory is that there exists an explicit formula of the Deligne—
Lusztig virtual representaiton RS (0) called “Deligne-Lusztig character formula”. We can
analyze the representation Rg;(&) through that formula; for example, we can prove that any
irreducible representation p of G(F,) can be realized in R (6) for some pair (S, 6).

18



3. WEEK 3: ALGEBRAIC GROUPS

Aim of this week. The aim of this week is to introduce the notion of an algebraic group
and its fundamental properties. The main references of this week are [Spr09] and [Bordll).

3.1. Comments on scheme theory. Let k& be an algebraically closed field. Let A% be
the n-dimensional affine space over k (here, let us simply understand that A% is the set

of n-tuples of elements of k). Roughly speaking, an affine algebraic variety is a subset of
A% consisting of simultaneous solutions to a tuple of polynomials in k[z1,...,z,]. We can
equip an affine variety with a topology called Zariski topology. A algebraic variety is a space
obtained by patching affine algebraic varieties.

From the modern viewpoint, the classical theory of algebraic varieties can be far more
generalized by the theory of schemes. For any commutative ring R, the affine scheme Spec R
is defined to be the set of prime ideals of R. We can equip Spec R with the Zariski topology
in a similar manner to the classical case. In addition, we can also introduce a further
structure on Spec R, that is, a sheaf of rings on Spec R; this makes Spec R so-called a locally
ringed space. A scheme is a locally ringed space obtained by patching affine schemes.

When a scheme X equipped with a morphism to Spec k (this amounts to that the rings R
defining X are k-algebras) satisfies certain conditions (“separated, reduced, of finite type”),
we can associate an algebraic variety to X. This algebraic variety is given to be the set of all
“k-valued points” of X. We’ll give a bit more explanation on the notion of “valued points”
later. Conversely, any algebraic variety can be realized in this way from a scheme. Roughly
speaking, an algebraic group is an algebraic variety equipped with a group structure. Thus
we have two choices of languages to study algebraic groups; the classical theory of algebraic
varieties and the modern theory of schemes.®

When an algebraic variety X has defining polynomials whose coefficients are in a subfield
k of k, we say that X is defined over k. In the language of scheme theory, this amounts to
that there exists a scheme X equipped with a morphism to Spec k such that its base change
to k (i.e., the fibered product of Xy — Spec k and Spec k — Spec k) is isomorphic to X. One
advantage of using scheme theory is that it makes it theoretically easier to treat algebraic
varieties over a field k which is not necessarily algebraically closed. This is particularly
important for us because eventually we want to discuss algebraic groups defined over a
finite field. On the other hand, we can understand algebraic groups in a more intuitive way
by appealing to the classical theory of algebraic varieties.

In any case, it is unavoidable to rely on these languages of algebraic geometry, but we
do not go into the details of algebraic geometry in this course.? Rather, our aim is to get
familiar with algebraic groups through several concrete examples.

3.2. Definition and examples of algebraic groups. Let & be a field. In the following,
let us furthermore assume that k is perfect. (In this course, eventually, k will be taken to
be a finite field F,.) We write I';, for the absolute Galois group Gal(k/k) of k.

By “an algebraic variety over k”, we mean a scheme X equipped with a morphism to
Spec k such that its base change X7 to Speck is an algebraic variety.

Definition 3.1 (algebraic group). Let G be an algebraic variety over k. We say that G is
an algebraic group over k if G is equipped with a group structure, i.e., morphisms of schemes
over k

SIndeed, [SpruY] is written via the theory of algebraic varieties while [Baral] is written via scheme theory.
6For example, sce [BpruY, Chapter 1] or [Bardll, Chapter AG]| for a summary on algebraic geometry.
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e m: G x; G —= G (“multiplication morphism”),
e i: G — G (“inversion morphism”), and
e ¢: Speck — G (“unit element”)
satisfying the axioms of groups. More precisely, the following diagrams are commutative:

mxid id xe

Gxp,Gx, G——G %, G G—————Gx, G

o l\OO\lm

Gxp,G—"—G Gx,G——"—=G

Gxp G2 G2 .Gx%,.G

id x zl O €l O li xid

Gx, G EELLINy ¢ PELLEYE X G
Here, € denotes the composition of the structure morphism G — Speck and e: Speck — G.

Remark 3.2. Suppose that G is an affine algebraic variety with coordinate ring k[G] (i.e.,
G = Speck|G]). Recall that the category of affine schemes is (anti-) equivalent to the
category of commutative rings. Thus giving G an algebraic group structure is equivalent to
defining ring homomorphisms corresponding to m, i, e and satisfying analogous axioms. For
example, the ring homomorphism corresponding to m must be a k-algebra homomorphism
R — R®j R. In general, a commutative ring equipped with such an additional structure is
called a Hopf algebra.

Various notions in the usual group theory can be formulated also for algebraic groups.
For example, for an algebraic group G over k, we can define its center Z(G), its derived
subgroup (commutator subgroup) Gaer = [G, G], and so on, as algebraic groups over k. The
notion of a homomorphism between algebraic groups is also defined in a natural way. For
an algebraic group G over k, its Zariski-connected component containing (the image of) the
unit element e is closed under the multiplication, i.e., G° is an algebraic subgroup of G over
k. We refer the identity component of G to it.

Example 3.3. (1) We put G, := Spec k[z] and define m, i, and e at the level of rings
as follows:
o m: klz] = klz] @ k[z]; z—2zl1+1Qx,
o i: k[z] = k[z]; z— —ux,
e c: klz] = k; xw—0.
Then G, is an algebraic group over k with respect to these operations. We call G,
the additive group over k.
(2) We put G, := Spec k[r, 2~ !] and define m, i, and e at the level of rings as follows:
o m: k[r] = klz, o7 @ k[z,27Y]; e 1w,
o i:klr] = klz]; x> a7l
o c:klx] > k; xzw— 1
Then Gy, is an algebraic group over k with respect to these operations. We call G,y
the multiplicative group over k.
(3) We put GL,, := Speck[z;;, D™' | 1 < i,j < n], where D := det(z;;)1<i j<n. We
define m, i, and e at the level of rings as follows:
o m(x;;) = 221 Tik @ Tky,
o i(z;;) := the (4, j)-entry of the inverse of the matrix (z;;)1<i j<n,
20



e ¢(z;5) := d;; (Kronecker’s delta).
Then GL, is an algebraic group over k with respect to these operations. We call
GL,, the general linear group (of rank n) over k. (Note that GL; = Gy,.)

In fact, it is not always practical to know the structure ring of an algebraic group and
the ring homomorphisms defining the algebraic group structure. Instead, by relying on the
philosophy of “the functor of points”, we may understand algebraic groups over k intuitively
as follows. Recall that any affine scheme X = Spec k[X] over k defines the following functor
(functor of points) from the category of k-algebras to the category of sets:

(k-algebras) — (sets): R+ X (R) := Homy(Spec R, X) (= Homg (k[X], R)).

(The set X (R) is called the set of R-valued points of X.) By Yoneda’s lemma, regarding X
as a functor in this way does not lose any information of X essentially. Moreover, if X is an
affine algebraic group over k, then the morphisms m, 7, and e induce a group structure on
the set X (R) of R-valued points of X. Hence the above functor takes values in the category
of groups. In other words, we may regard an affine algebraic group over k as a “machine”
which associates a group to each k-algebra. One practical way of treating (affine) algebraic
groups over k is to care only about the groups associated to (all) k-algebras. Recall that,
in our convention, an algebraic variety X over k is a scheme whose base change to k can
be regarded as an algebraic variety in the classical sense; as a set, this algebraic variety is
nothing but X (k).
Let us present several basic examples:

Example 3.4. (1) For a k-algebra R, we have G,(R) = R, where the group structure
on R is given by the additive structure of R. Indeed, we have

Ga(R) = Homy (Spec R, G,) = Homy (k[z], R) & R,

where the last map is given by f — f(x). This is why G, is called the “additive
group”.

(2) For a k-algebra R, we have G, (R) = R*, where R* denotes the unit group of R
with respect to the multiplicative structure of R. Indeed, we have

Gm(R) = Homy(Spec R, Gy,) = Homy (k[z, 2~ '], R) = RX,

where the last map is given by f — f(x). This is why G, is called the “multiplicative
group”.
(3) For a k-algebra R, we have

GLn(R) = {9 = (9i)i.; € Ma(R) | det(g) € R*}.
Indeed, by definition, we have
GL,(R) = Homg(Spec R, GL,,) = Homy,(k[z;;, D' | 1 <4,j < n], R).

The right-hand side is isomorphic to (at least as sets) {g = (gij)i,; € Mn(R) |
det(g) € R*} by the map f — (f(zi;))i;. It is a routine work to check that this
bijection is indeed a group isomorphism.

(4) The symplectic group Sps,, is an affine algebraic group such that the group of its
R-valued points is given as follows:

SPon(R) = {g = (9ij)i,; € GLan(R) | ‘gJ2ng = Jon},
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where Js,, denotes the antidiagonal matrix whose antidiagonal entries are given by
1 and —1 alternatively:

Jgn = 1

(5) Here let’s assume that the characteristic of k is not 2. Let J be an element of
GL, (k) which is symmetric, i.e., its transpose 'J equals J. Then the orthogonal
group (associated to J) O(J) is an affine algebraic group such that the group of its
R-valued points is given as follows:

O(J)(R) = {g = (9i)i; € GLa(R) | "gJg = J}.
This group is disconnected and has 2 connected components. The identity compo-
nent of O(J) is denoted by SO(J) and called the special orthogonal group (associated

to J).” When J is taken to be the anti-diagonal matrix whose anti-diagonal entries
are all given by 1, we simply write O,, and SO,,.

Here, we don’t explain how to define the structure rings of SO(J) or Sp,,, and also how
to introduce the group structure at the level of their structure rings. Only the important
viewpoint here is what kind of groups are associated as the groups of R-valued points!
(When we are only interested in the algebro-geometric nature of a given algebraic group,
we even look at only its k-valued points.) So, in this course, let us just believe that the
“functors” SO(J) or Sp,,, are indeed representable, i.e., realized as the functors of points of
some affine algebraic groups. This remark is always applied to any affine algebraic group
which we will encounter in the future.

3.3. Jordan decomposition. We first begin with the following proposition, which is a
consequence of the theory of Jordan normal form in linear algebra.

Proposition 3.5. Let g be an element of GL,, (k). Then there exists a unique decomposition
g = gs + gn such that
® gsdn = 9nls, .
e gs € GL, (k) is semisimple, i.e., diagonalizable in GL,(k), and
e g, € GL, (k) is nilpotent, i.e., all the eigenvalues are 0 (equivalently, some power
of gn 1is zero).

Proof. Let us briefly the sketch of the proof. We first work over the algebraic closure & (this
is the same as the separable closure of k since we assume that k is perfect).

We regard g € GL, (k) as an endomorphism of V := ", We let {ai,...,a,} be the set
of eigenvalues of g. Recall that the generalized eigenspace of g with respect to its eigenvalue
«; is defined by

Vi :=Ker(g — o, - In)™,
where n; is any sufficiently large integer (then V; is equal to the subspace {v € V |
(9 — a; - I,)™(v) = 0 for some m > 0}). Then the theorem of Cayley—Hamilton implies that
we have V =@._, V;.

"Note that Jon, is symmetric if the characteristic of k is 2 since —1 equals 1! When the characteristic
Y

is 2, we have to define orthogonal groups in terms of quadratic forms; so the point is that the notion of a

quadratic form is not equivalent to the notion of a symmetric bilinear form when the characteristic is 2.
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We put g; := gly;, € Endi(V;). If we put g;s := o, - Iaimv;, and g;.n, = ¢; — gis, then we

have

® g; s is semisimple,

® g;n is nilpotent, and

® GisGin = Yinlis-
Thus, by putting g5 := @D;_, gi,s and g, := D;_, gi,n, we get a decomposition g = gs + gn
satisfying the desired conditions. To check the uniqueness of such a decomposition, suppose
that we also have another such decomposition g = g% + g},. Then, since g, commutes with
g, g, preserves each V;. By noting that g; — (¢.)|v; = (¢,,)|v;, which is nilpotent, we see that
g and ¢, have the same eigenvalues on V;. As ¢ is semisimple, this implies that g, must be
equal to «; - Iqimv,. Hence we also get g, = ¢l,.

Next suppose that g € GLy, (k). Then, by what we proved so far, we can find a decomposi-
tion g = g + g, satisfying the desired conditions in GL,, (k). For any o € Gal(k/k), we have
o(g) = 0(gs) + o(gn). However, as we have o(g) = ¢ and this decomposition also satisfies
the desired conditions, the uniqueness property implies that o(gs) = gs and o(g,) = gn. In
other words, gs and g, belong to GL,, (k). |

The decomposition g = gs + g, here is called the additive Jordan decomposition of g.

Corollary 3.6. Let g be an element of GL,, (k). Then there exists a unique decomposition
g = gsgu Ssuch that

® JsGu = GuYs;

e g is semisimple, and

e g, is unipotent, i.c., all the eigenvalues are 1 (equivalently, g, — 1 is nilpotent).

Proof. Let g = gs + gn be the additive Jordan decomposition of g. Then we have g =
9s(14+g5tgn). Since g; g, is nilpotent (use that g; and g,, commute), 1+g; g, is unipotent.
Let us put g, := 1+ g5 'gn. As gs commutes with g, g = gsg. is a desired decomposition.

To check the uniqueness, let us assume that g = g.g., is another such decomposition.
Then, by putting ¢/, := g.(g,, — 1), we get the additive Jordan decomposition g = g. + g.,.
By the uniqueness of the additive Jordan decomposition, we have ¢, = g; and g, = g, O

The decomposition g = gsg,, is called the Jordan decomposition of g.
In fact, the notion of the Jordan decomposition can be extended to much more general
class of algebraic groups. The idea is to reduce the problem to the case of GL,,.

Definition 3.7. When an algebraic group G is isomorphic to a closed subgroup of GL,, for
some n, we say that G is a linear algebraic group.

Definition 3.8 (Jordan decomposition). Let G be a linear algebraic group over k. Let
p: G — GL, be a closed embedding of algebraic group.
(1) We say that an element s of G(k) is semisimple if p(s) € GL,, (k) is semisimple.
(2) We say that an element u of G(k) is unipotent if p(u) € GL, (k) is unipotent.
(3) For g € G(k), we say that g has a Jordan decomposition if there exist a semisimple
gs € G(k) and a unipotent g, € G(k) satistying g = gsgu = gu9s-

Proposition 3.9. Being semisimple/unipotent is independent of the choice of p. Moreover,
every element of G(k) has a Jordan decomposition uniquely.

Then, when can an algebraic group be linear? In fact, we have the following:

Proposition 3.10. Let G be an algebraic group. Then G is affine if and only if G is linear.
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We don’t give proofs of Propositions B9 and BI0. See, for example, [Spr0Y, Section 2.4].
(In both propositions, the point of the proofs is to consider the action of G on its coordinate
ring k[G], which gives rise to a faithful representation of G.)

Remark 3.11. The Jordan decomposition can be explained in a quite simple way when
the base field k is a finite field. Let us suppose that £ = F;, whose characteristic is p > 0.
Note that then, for any linear algebraic group G, the group G(k) of its k-valued points is
a finite group. In particular, any element g € G(k) is of finite order. In fact, we can show
that ¢ € G(k) is semisimple (resp. unipotent) if and only if the order of g is prime to p
(resp. p-power). Furthermore, appealing to these characterizations, we can show the unique
existence of the Jordan decomposition by an elementary arithmetic argument.

Exercise 3.12. Give a proof to the statement given in the above remark. To be more
precise, prove that, for any element g € G(k),
(1) g € G(k) is semisimple if and only if the order of g is prime to p,
(2) g € G(k) is unipotent if and only if the order of g is p-power,
(3) there exists a unique decomposition g = gsg, such that gsg, = gugs, gs is of prime-
to-p order, and g, is of p-power order.

3.4. Tori. We investigate linear algebraic groups consisting only of semisimple elements:

Definition 3.13 (tori/diagonalizable groups). (1) We say that an algebraic group T
over k is a_(k-rational) torus if it is isomorphic to Gy, for some r (called the rank
of T) over k.

(2) We say that an algebraic group D over k is diagonalizable if it is isomorphic to a
closed subgroup of a k-rational torus.

Proposition 3.14. A connected linear algebraic group G over k is a torus if and only if

G(k) consists only of semisimple elements.

Proof. See, for example, [Spr09, Corollary 6.3.6]. |

For an algebraic group G over k, we put
X*(G) = HOHIE(GE7 Gm),

i.e., the set of homomorphisms (as algebraic groups) from Gy to Gy, over k. Such a homo-
morphism is called a (absolute) character of G. As X*(G) has a natural group structure,
X*(G) is called the (absolute) character group of G. We also define the (absolute) cochar-
acter group of G by

X*(G) = HOII’IE(Gm, GE)

(any homomorphism from Gy, to Gy is called a (absolute) cocharacter).
Suppose that T is a k-rational torus of rank r. Then X*(T) is a free abelian group of
rank r equipped with an action of I'y, defined by

o(x):=oroxoo,!

)

for any o € I'y and x € X*(T). Here, the symbol “or” on the right-hand side denotes
the isomorphism of T3 obtained by the pull-back of o: Speck — Speck along the structure
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morphism (say f: T3 — Spec k):

or

T, — 7 T,

[l

Spec k —Z— Spec k
In fact, we have the following:

Proposition 3.15. The association T — X*(T) defines an equivalence of categories between

e the category of tori over k and
e the category of free abelian groups of finite rank equipped with a I'y-action.

Although any k-rational torus 7' is isomorphic to G”, over k by definition, it might
happen (quite often!) that 7' is not isomorphic to GI, over k. In the above equivalence, G,
corresponds to the free abelian group Z®" with trivial Galois action. We call the k-rational
torus G, the split torus (of rank r). In some sense, the nontriviality of the action of 'y on
X*(T) exactly measures how T is far from being split.

Note that, for any k-rational torus T of rank r, its cocharacter group is also a free abelian
group of rank r equipped with a Galois action. If we define a pairing (—, —) between X*(T')

and X, (T) by
Homz (G, G) x Homg(Gy,y, Gf) = Homg (G, Gr) = Z: (x, x") — xox”,

then (—, —) is perfect and equivariant with respect to the Galois actions. Here, the identi-
fication Homz(Gy,, G) = Z is given by [z — 2] <> n.

Example 3.16. Let k’/k be a finite extension. In general, for any linear algebraic group G’
over k', there exists a linear algebraic group over k denoted by Resy/ /, G' and called the Weil
restriction (along k' /k) of G'. As a functor of points, this linear algebraic group associates
G'(R ®y k') to any k-algebra R. By applying this construction to the multiplicative group
G over k', we obtain a linear algebraic group Resy//;, Gn such that (Resy ), Gu)(R) =
Gu(R®p k') = (R® k')*. (Note that, in particular, we have (Resy /, Gm)(k) = £'*.) In
fact, Resy//x G is a k-rational torus whose character group is given by Indll:’;/ Z as a free
abelian group equipped with a I'y-action. We call a torus which is isomorphic to a product
of tori of this form an induced torus.

Definition 3.17. Let G be a linear algebraic group over k. We say that a k-rational subtori
T of G is a (k-rational) mazimal torus of G if it is maximal among all k-rational subtori of

G.

Example 3.18. Let G := GL,,. Let T be the subgroup of G consisting of diagonal matrices.
Then it is obvious that 7' is defined over k£ and isomorphic to Gl ; especially, T is a k-
rational subtorus of G. Let us check that T is a maximal torus. To do this, we suppose
that T is contained in another k-rational subtorus 7" of G. By taking the centralizers
of T and 7”7 in G, we get an inclusion Zg(T) D Zg(T'). (Recall that Zg(T) = {g €
G | gtg! =t for any t € T}.) By an elementary computation, we can directly check that
Z(T) is equal to T itself. On the other hand, since 7" is commutative, Zg(T”) must include
T’. Thus we get T D T”, which implies that T = T".

Exercise 3.19. Prove the fact Zgy,, (T) = T, which is used in the above example.
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Proposition 3.20. Let G be a linear algebraic group over k. Then there exists a k-rational
mazimal torus of G. Moreover, all k-rational mazimal tori of G are conjugate over k.
More precisely, if Ty and Ty are k-rational mazimal tori of G, then there exists an element
g € G(k) satisfying To = gT1g~".

Proof. See, for example, [Spr0Y, 13.3.6. and 6.4.1.]. O

Note that this proposition does not say that all k-rational maximal tori are conjugate
over k.

Example 3.21. Suppose that k’/k is a finite extension of degree n. If we choose a k-basis
of k', then we can embed k' into M, (k) by sending = € k’ to the matrix representation of
the z-multiplication endomorphism of k' = k®". This embedding induces an injective group
homomorphism (k' ® R)* — GL,(R) for any k-algebra R functorially. In other words, we
get an embedding of a torus Resy//j Gy, into GL,. The image of this embedding gives a
k-rational maximal torus of GL,, which is not conjugate to the diagonal maximal torus over
k. Indeed, it has the same rank as the split diagonal maximal torus, it must be maximal.
But the Galois action on its character group is not trivial as explained in Example BI8.
Thus it cannot be conjugate to the split diagonal maximal torus over k.

In general, classifying all G(k)-conjugacy classes of k-rational maximal tori of a linear
algebraic group over k£ could be a very deep problem. However, when £ = IF;, and G is
“reductive”, we can classify them in a simple and beautiful way. Because this classification
is an important step for understanding Deligne—Lusztig theory, we will investigate it in
detail later (2 or 3 weeks later?).
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4. WEEK 4: REDUCTIVE GROUPS
4.1. Definition of a reductive group.

Proposition/Definition 4.1 ([Spr0Y, 6.4.14]). Let G be a connected linear algebraic group
over k.

(1) There uniquely exists a maximal closed connected normal solvable® subgroup of G
defined over k, which is called the radical of G. We write R(G) for the radical of G.

(2) There uniquely exists a maximal closed connected normal unipotent® subgroup of
G defined over k, which is called the unipotent radical of G. We write R, (G) for
the unipotent radical of G.

Definition 4.2 (semisimple/reductive groups). Let G be a connected linear algebraic group
over k.

(1) We say that G is semisimple if R(G) is trivial.

(2) We say that G is reductive if R, (G) is trivial.

Remark 4.3. In general, any unipotent group is solvable (see [Spr0Y, 2.4.13]). In particular,
R.(G) is contained in R(G). This means that if G is semisimple, then G is reductive.

Remark 4.4. In general, R,(Gy) could be different from the base change of R,(G) from
k to k. This means that the condition that a connected linear algebraic G group over k is
reductive in the above sense is not equivalent to the condition that G, is reductive. However,
such a phenomenon does not happen as long as k is perfect, i.e., we have R, (G)r = R,(Gf)
for any perfect k. In the situation where k is not perfect, a connected linear algebraic group
over k with trivial R, (G) is called a pseudo-reductive group. See [CGPTH, Section 1.1] for
details.

The following proposition basically follows from the definition of being solvable/unipotent.
Proposition 4.5. The unipotent radical R, (G) is the set of unipotent elements of R(G).

Proposition 4.6. Let G be a connected reductive group over k.
(1) The center Z(G) of G is finite if and only if G is semisimple.
(2) The derived subgroup Gaer := [G, G| is a connected semisimple group over k. More-
over, we have G = Z(G) - Gger-

Proof. See [Spr09, 7.3.1 and 8.1.6]. O

Now, let us introduce several practical propositions to determine the unipotent radical
of a given connected reductive group. As mentioned above, the unipotent radical behaves
consistently with the base change of the field k as long as it is perfect. Thus, in the rest
of this section, let us assume that k is algebraically closed and omit the word “over k”.
(But sometimes we will temporarily assume that & is not algebraically closed, e.g., when we
discuss the rationality.)

Definition 4.7 (Borel subgroup). Let G be a linear algebraic group. A subgroup B of G
is called a Borel subgroup of G if it is a maximal connected solvable closed subgroup of G.

8Solvability is defined in the same way as in the usual group theory, i.e., an algebraic group G is said to
be solvable when Gy, = {1} for sufficiently large n, where Gy, := [Gp—1,Gn—1] and G1 := G.
91.0., all elements are unipotent
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Theorem 4.8 (Lie—Kolchin’s theorem, [Spr0Y, 6.3.1]). Let B be a connected solvable closed
subgroup of GL,,. Let B, be the group of upper triangular matrices of GL,,. Then B is
conjugate to a subgroup of B, .

Note that, in particular, B,, is a Borel subgroup of GL,, by Lie-Kolchin’s theorem.

Proposition 4.9. Let G be a connected linear algebraic group. All Borel subgroups of G
are conjugate.

Proof. See [Spr09, 6.2.7]. O

Corollary 4.10. Let G be a connected linear algebraic group. Then its radical R(G) equals
the identity component of the intersection of all Borel subgroups of G.

Proof. By definition, R(G) is contained in a Borel subgroup. Since R(G) is normal in G and
all Borel subgroups of G are conjugate, R(G) is contained in the intersection of all Borel
subgroups of G. As R(G) is connected, it must be contained in the identity component of
the intersection. Since the identity component of the intersection of all Borel subgroups of
G is closed, connected, normal, and solvable, it must be equal to R(G) by the maximality
of R(G). O

4.2. Examples of reductive groups.

Example 4.11 (tori). Any torus T is reductive. Indeed, since T is commutative, hence
solvable, R(T) is T itself. Since all elements of T" are semi-simple, R, (T) is trivial.

Non-Example 4.12 (additive group). The additive group G, is not reductive. Indeed,
since G, is commutative, hence solvable, R(G,) is G, itself. However, since G, is a unipotent
group™, R,(G,) also equals G,.

Example 4.13 (general linear group). The general linear group GL,, is reductive. To
check this, note that B,, is a Borel subgroup of GL,,, hence its any conjugate is also a Borel
subgroup of GL,. In particular, the opposite B, (i.e., the subgroup of lower triangular
matrices) is also Borel. Hence their intersection, which is the diagonal subgroup T of
GL,,, must contain R(GL,). This implies that all elements of R(GL,,) is semisimple, hence
R,(GL,,) is trivial.

Exercise 4.14. Prove that R(GL,) = Z(GL,,).

Example 4.15 (symplectic group). The symplectic group Sp,,, is reductive. Indeed, if we
put B to be B, N Spy, (i.e., the subgroup of Sp,, consisting of matrices of the upper-
triangular form), then we can show that B is a Borel subgroup of Sp,,,. (See the following
exercise.) Similarly, its opposite B := By, N Sp,,, is also a Borel subgroup of Sp,,,, Thus
the same argument as in the case of GL,, implies that R, (Sp,,,) is trivial.

Example 4.16 (orthogonal group). Let us assume that the characteristic of k is not 2. Let
J}, € GL, (k) be the anti-diagonal matrix whose anti-diagonal entries are given by 1. Then,
by the same argument as in the previous case, we can show that the special orthogonal
group SO, = SO(J),) is reductive. (Note that, for any symmetric matrix J, the special
orthogonal group SO(J) is reductive. But an explicit description of its Borel subgroups
depends on the choice of J and more complicated.)

L0For example, this can be seen by choosing an embedding of G, into a general linear group to be
Ga = GLa:z— (}%).
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Example 4.17 (unitary group). Here, let us assume that & is not algebraically closed and
take a quadratic extension k' of k. Let o be the nontrivial element of Gal(k'/k). Let
J € GL, (k') be a hermitian matrix, i.e., ‘o (J) = J. We define the unitary group U(J) by

U(J)(R) :={g € GLy(R®x k) | 'o(g)Jg = J}.

(In particular, we have U(J)(k) := {g € GL, (k') | ‘o(g9)Jg = J}.) Then, by the same
argument as in the previous cases, we can show that the special orthogonal group U(J) is
reductive.

Exercise 4.18. We put B := By, N Sp,,,- Then prove that B is a Borel subgroup of Sps,,.
Hint: let’s discuss as follows:

(1) By definition of a Borel subgroup, there exists a Borel subgroup B’ of Sp,,, contain-
ing B. (So our goal is to show that B’ is in fact equal to B.) Show that there exists
a Borel subgroup B$,, of GLa, containing B’ which is given by B), = 2By,z~! for
some z € GLa,. (Use: Lie-Kolchin’s theorem and the fact that all Borel subgroups
are conjugate.)

(2) Check that the following matrix is an element of B.

1 1 0 ... 0
0 |
1

(Diagonal entries are 1, the entries above the diagonal are 1, and all other entries
are 0.)

(3) By (2), in particular, we have g € B, = xBa,x~!. From this, deduce that x must
belong to By, hence B, equals Ba,.

(4) Show that B’ = B.

4.3. Classification of connected reductive groups via root data. Over an alge-
braically closed field, isomorphism classes of connected reductive groups can be classified in
terms of linear algebraic data called root data.

Theorem 4.19 ([Spr0Y, 9.6.2, 10.1.1)). There exists a bijection between
o the set of isomorphism classes of connected reductive groups and
e the set of isomorphism classes of reduced root data.

Let us introduce the definition of a root datum.

Definition 4.20 (root datum). A root datum is a quadruple (X, R, XV, RY), where
e X and XV are free abelian groups of finite rank equipped with a perfect pairing
(—,—): X x XV — Z and
e R and RY are finite subsets of X and XV (called the sets of roots and coroots)
equipped with a bijection R <+ RV: a — oV
satisfying
(1) for any a € R, we have (o, a) = 2,
(2) for any a € R, we have s,(R) = R and s (RY) = R".
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Here, s, and s denote the automorphisms of X and XV given by

sa(r) =2 — (z,0")a and s)(zY)=2" — (a,2")a".

We say that a root datum (X, R, XV, RV) is reduced if for any o € R, we have RN Qa =

{xa}.

In the following, we explain how to construct the map in Theorem BT9. Thus our aim is
to construct a root datum from a given connected reductive group G. Here, we follow the
construction given in [Car85, Section 1.9)].

We first take a maximal torus T of G. We put X := X*(T) and XV := X,(T). Note
that then X and XV have a natural perfect pairing (—, —): X x XV — Z.

Suppose that U is a minimal nontrivial closed unipotent subgroup of G normalized by
T. Then, in fact, U is isomorphic to G,. By fixing an isomorphism ¢: G, =N , we get an
element a € X satisfying

t-u(z) -t = 1(aft) - x)
for any z € G,. This element « is independent of the choice of ¢. Furthermore, if U’ is
another (different to U) minimal nontrivial closed unipotent subgroup of G normalized by
T, then the associated element of X is also different. Thus it makes sense to write U, for
U. We call a a root of T in G and U,, its root subgroup. We put R to be the set of roots of
Tin G.

It can be proved that —a is also a root when « is a root. Moreover, the subgroup
(Uq, U_q) generated by U, and U_, is isomorphic to SLy or PGLy := SLy /{£1}. Further-
more, in any case, there exists a homomorphism ¢: SLy — (U, U_,) satisfying

¢((51)=Ua and ¢((1}))="U-a.

This homomorphism ¢ maps any diagonal element of SLs into 7. Thus, we can define a
cocharacter a¥ € XV by
— y 0
()= ((5,))-

We call oV the coroot associated to a. We put RV to be the set of all coroots obtained in
this way.

Proposition 4.21. For any connected reductive group G, the quadruple (X, R, XV, RY)
forms a reduced root datum.

Example 4.22. Let G := GL,,. We take T to be the diagonal maximal torus. Then we
can choose a basis of X*(T') to be {e;},, where e;: diag(t1,...,t,) — t;. In other words,
we have

X = X*(T) = éZei.
i=1

Similarly, we can choose a basis of X, (T') to be {e; }I_;, where e}’ : t — diag(1,...,1,¢,1,...,1),
where t is put on the i-th entry. In other words, we have

XY = X(T) = Pze).
i=1

Any minimal nontrivial closed unipotent subgroup U normalized by T is of the form

Uij = {uwij(x) | z € k},
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where u;;(x) denotes the matrix such that the diagonal entries are 1, (4, j)-entry is z, and
all other entries are 0. We define an isomorphism between U;; and G, by

L Ga — Uiji e ’U,”(.T)
We can easily check that the action of T' on Uj; is given by
toug(@) -t = g ti/t),

where ¢t = diag(ty,...,t,). In other words, the root determined by the subgroup U;; is
e; — ;. We can also check that its corresponding coroot is e}’ — e}/. Therefore we have

R={e;—e¢j|1<i#j<n}, RV ={e) ¢} |1<i#j<n})
4.4. Classification of reductive groups: more concrete version.

Definition 4.23 (isogeny). We say that a homomorphism f: G — G’ of algebraic groups
is an isogeny if it is surjective and has finite kernel. We say that two algebraic groups G
and G’ are isogenous if there exists an isogeny between G and G'.

Recall that, any connected reductive group G can be written as G = Z(G) - Gder, where
Gger 1s semisimple. Especially, we have a surjective homomorphism f: Z(G) X Gger —
G: (z,9) = zg. Since Z(G) N Gy is contained in Z(Gqer), which is finite, f is an isogeny.
In other words, any connected reductive group is realized as the quotient of Z(G) X Gger by
its finite subgroup. Thus, let us discuss how to classify semisimple groups in the following.
(Being semisimple can be expressed in terms of root data: a connected reductive group G
is semisimple if and only if R spans Xg := X ®z Q as a Q-vector space.)

We say that a semisimple group G is adjoint if its center Z(G) is trivial. In fact, for any
semisimple group G, its quotient G/Z(G) is the unique adjoint group isogenous to Gj this
is denoted by G,q. The adjoint quotient G,4 is a semisimple group whose center is minimal
(trivial) among all semisimple groups isogenous to G.

On the other hand, for any semisimple group G, there uniquely exists a semisimple group
“Gge” such that any isogeny to G can be lifted to an isogeny from Gg. to G; this group
is called the simply-connected cover of G. The simply-connected cover Gy is a semisimple
group whose center is maximal among all semisimple groups isogenous to G.

GSC

I\

G —»G—»G"

N

Gad
Proposition 4.24. Let G be a semisimple group.

(1) We say that G is simply-connected if RV spans X" over Z.
(2) We say that G is adjoint if R spans X over Z.

Example 4.25. Let G := GL,, and Z be its center. We put SL,, := {g € G | det(g) = 1}
and PGL,, := GL,, /Z.™ Then we obviously have a natural map SL,, — PGL,,, which is
surjective. Moreover, this map has finite kernel; it is given by {z € Z | det(z) = 1}, which

11Here, the quotient is taken as an algebraic group. In general, for any linear algebraic group G' and its
closed subgroup H over k, we can define and prove the existence of the quotient of G by H (see [Spr0Y,
5.5]). One difficult point to care about is that (G/H)(R) might not be equal to G(R)/H(R). (But at least
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is isomorphic to the group of n-th roots of unity. Hence SL,, — PGL,, is an isogeny. On
the other hand, the quotient map GL,, - PGL,, is not an isogeny since its kernel is given
by Z, which is not finite. In fact, SL,, is simply-connected and PGL,, is adjoint.

Definition 4.26 (almost simple group). We say that a semisimple group G is almost simple
if it does not contain any nontrivial closed normal subgroup of positive dimension.

Proposition 4.27. Let G be a simply-connected (resp. adjoint) group. Then G is written
as a product of almost simple simply-connected (resp. adjoint) subgroups.

Definition 4.28. We say that a root datum ¥ = (X, R, XV, RV) is reducible if there exist
nonzero root data Uy = (X1, Ry, Xy, RY) and Uy = (X3, R, X5/, RY) such that ¥ = U Wy
(in the obvious sense) and ¥y and Ws are orthogonal. We say that W is irreducible if it is
not reducible.

Proposition 4.29. Let G be an almost simple simply-connected (or adjoint) group with
root data W. Then G is almost simple if and only if VU is irreducible.

By the discussion so far, the classification problem of semisimple groups is now reduced
(“modulo isogeny”) to classifying all almost simple simply-connected semisimple groups.
Moreover, it is equivalent to classifying all irreducible reduced root data such that RV spans
XV.

The miraculous fact is that there are very limited number of such groups! Such groups
can be parametrized by combinatorial objects called Dynkin diagrams. Among them, the
types A,, B,, Cp, and D,, are called classical types, and the types Eg, E7, Eg, Fy, and Go
are called exceptional types.

Example 4.30 (type A,). Let G := GL,,+1. Then we have Gger = SLp41. It’s simply-
connected, and its adjoint quotient is PGL,,41. There are of type A,.

Example 4.31 (type A,). Here let k be a non-algebraically-closed field. Let k&’ be a
quadratic extension of k and J € GL,4+1(k’) be a hermitian matrix. We put G := U(J).
Then we have Gger = SU(J) (consisting of determinant 1 matrices). It’s simply-connected,
and its adjoint quotient is PU(J)." There are of type A,. Here, note that, the above
classification theorem of connected reductive groups is for groups over an algebraically closed
field. So the point here is that U(J) and GL,41 are not isomorphic over k, but isomorphic
over k.

Exercise 4.32. Let k be a non-algebraically-closed field. Let k' be a quadratic extension
of k and J € GL, (k") be a hermitian matrix. Prove that U(J) and GL,, are isomorphic over
k. More concretely, prove that the group

U(J)(k) ={g € GLy(k®r k') | 'o(9)Jg = J}

is isomorphic to GL,, (k). Here, if you want, please choose a hermitian matrix .J in any way
you prefer.

Example 4.33 (type B,,). Let G := SO2,11. Then we have Gger = G. It’s adjoint, and its
simply-connected cover is so-called the “spin group” Spin,, ; (two-fold cover of SOgy,41).
There are of type B,.

we have the equality for R = k. Thus, in this example, we may think of PGL,, (k) as the quotient of GLy, (k)
by its center.)
12Pm not sure if this is a standard notation.
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Example 4.34 (type Cy,). Let G := Sp,,,. Then we have Gge; = G. It’s simply-connected,
and its adjoint quotient is PSp,,, (Spy, is its two-fold cover). There are of type C,,.

Example 4.35 (type D,,). Let G := SOs,. Then we have G4y = G. Its simply-connected
cover is Spin,,, (two-fold cover of G), and its adjoint quotient is PSOg,, (SOg,, is its two-fold
cover). There are of type D,,.

4.5. Rationality. Let us finally discuss the rationality. From now on, let us again assume
that k is a perfect field.

Definition 4.36. Let G and G’ be connected reductive groups over k. We say that G is a
k-form of G’ (or G’ is a k-form of G) is they are isomorphic over k.

Example 4.37. The previous exercise says that U(J) is a k-form of GL,,.

Definition 4.38. We say that a connected reductive group G over k is split if it has a split
maximal torus over k, i.e., a maximal torus which is isomorphic to a product of Gp,’s over
k.

Proposition 4.39. For any connected reductive group G over k, there uniquely exists (up
to isomorphism,) a split connected reductive group G’ over k such that G is a k-form of G'.

Definition 4.40. We call a finite group a finite group of Lie type is it is realized as G(IF,)
for some connected reductive group G over F,. We say that a finite group of Lie type G(Fy)
is

e of Chevalley type if G is split, and

e of Steinberg type if G is not split.
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5. WEEK 5: DELIGNE-LUSZTIG VARIETIES

5.1. Frobenius endomorphism. In the following, we let & = F,. Note that then the
absolute Galois group Gal(Fq /F4) is a pro-cyclic group isomorphic to 7. This group has the
Frobenius automorphism F': Fq — Fq; x +— x? as its (topological) generator.

Now let us suppose that X is an affine algebraic variety over k. Recall that, in our
sense, this means that X is a scheme equipped with a morphism to Speck such that its
base change X3 to Speck corresponds to an algebraic variety in the classical sense. Let
k[X] be the coordinate ring of X, i.e., X = Speck[X] (hence X7 = Speck[X], where
k[X] = k[X] ® k). We define a ring endomorphism F* of k[X] by

FkX]@rk = k[X]@pk; fOam fi®a.

(Note that this is a well-defined ring homomorphism since k is of characteristic p!) By abuse
of notation, we write I': X3 — X7 for the endomorphism of X7 induced by F'*. Naively, I
can be thought of as the entry-wise g-th power map.

In the following (and actually, so far in this course), we often simply write “g € X” to
mean that g € X (k) = Xz(k). Then it makes sense to talk about the image F'(g) of g under
the Frobenius morphism. Following the definition, we can easily check that the set of fixed
points X = Xz(k)¥ is nothing but X (k).

We finally note that a closed subvariety Yz of Xt is k-rational if and only if Y7 is stable
under F; this fact is a special case of so-called the Galois descent (see [Spr0Y, 11.2]).

5.2. Definition of a Deligne—Lusztig variety. Let G be a connected reductive group
over k = F,. Let F': Gy — Gy be the Frobenius endomorphism of G. (Note that F' is
compatible with the Hopf algebra structure of the coordinate ring of G, hence F' is a group
endomorphism of Gz.)

Definition 5.1 (Deligne-Lusztig variety). Let T' be a k-rational maximal torus of G. We
take a Borel subgroup B of G containing T'. Let U be the unipotent radical of B. We define
an algebraic variety X 5 (over k) by

Xfcp={9€G g 'Flg) € FU)}.
We call XTGcB the Deligne—Lusztig variety associated to T (and B).

Remark 5.2. Recall that a Borel subgroup of G is a maximal connected solvable closed
subgroup of G. Since any subtorus of GG is connected solvable and closed, we can always
find a Borel subgroup B of G containing a given maximal torus T of G. But be careful that
B might not be taken to be k-rational even when T is k-rational (hence U also may not be
k-rational).

Let us fix a T in the following and shortly write X for X& .
First suppose that ¢ € G and 2 € X. Then we have

(g2)"'F(gx) =2~ g7 F(9)F(z) = 2~ g~ gF () = 2~ 'F(x) € F(U).

In other words, the element gz € G again belongs to X. Thus we get an action of G on X
by left multiplication.
Next suppose that ¢t € T and « € X. Then we have

(xt) " F(zt) =t 27 F(2)F(t) =t a7 ' F(x)t e tT ' F(U)t = F(U),
where we used that T normalizes F(U) in the last equality. In other words, the element

xt € G again belongs to X. Thus we get an action of T on X' by right multiplication.
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Note that the actions of GF and T on X obviously commute. Hence we get an action
of the direct product group G x TF on X.

This observation is very important; by the functoriality, the étale cohomology of X also
has an action of G x T, In other words, we can construct a representation of G x T
The aim of this course (Deligne-Lusztig theory) is to investigate the representations of G¥
realized in this way through the geometry of X

5.3. Classification of maximal tori. Deligne—Lusztig varieties are determined by the
choice of a k-rational maximal torus of G. Then, how many k-rational maximal tori does G
have (up to k-conjugacy)? Let us investigate it (following [Car8H, 3.3]).

We first note the following fact:

Proposition 5.3. Any connected reductive group G over k possesses a k-rational Borel
subgroup. =

Let us fix a k-rational Borel subgroup By of G. Let T be a k-rational maximal torus of
G contained in By. We call this maximal torus Ty the “base torus” (this is our temporary
terminology). We write Ng(Tp)/To for the normalizer group of Ty in G and Wg(Tp) =
N¢(To) /Ty for the Weyl group of Ty in G. We often write Wy for W (Ty) := Na(To)/To in
short. Note that, since T} is k-rational, so is Ng (7). Hence we have a natural action of F
on Wy. We say that two elements wy,ws € Wy are F'-conjugate if there exists an element
v € Wy satisfying wo = vwlF(v)_l. Note that this is an equivalence relation on Wj.

Now let T be a k-rational maximal torus of G. Recall that all maximal tori of G are
conjugate (over k). Thus let us choose an element g € G satisfying T = 9Ty, where
9(—) := g(—)g~!. Since both T" and Ty are k-rational subgroups of G, T and Tj are stable
under F'. Hence we get

FOT, = F(OTy) = F(T) =T = 9Ty.

In particular, we have 9_1F(9)T0 = Tp. In other words, the element g~ F(g) belongs to the
normalizer Ng(Tp) of Ty in G. We let w be the image of g~'F(g) € Ng(Tp) in the Weyl
group We (To).

Lemma 5.4. The F-conjugacy class of w € Wy is well-defined, i.e., independent of the
choice of g € G satisfying 9Ty = T. Moreover, two G -conjugate k-rational mazimal tori
of G give rise to the same F-conjugacy class of Wy.

Proof. Suppose that g1,g2 € G are elements satisfying 91Ty = T and 92Ty = T. Let w; and
wsy be the images of g7 ' F(g1) and g5 ' F(g2) in Wp, respectively.

As we have 91Ty = T = 92T}, we have gl_lgg € N¢(Tp). Hence, if we put v to be the
image of gflgg in Wy, we get wy = v~ tw F(v).

It is easy to check the latter assertion. (|

By this lemma, we see that the above procedure T +— w induces a well-defined map
{k-rational maximal tori of G}/G*-conj. — W/ F-conj.
Proposition 5.5. This map is bijective.

To show this proposition, we introduce following famous fact, which is known as Lang’s
theorem.

1 general, a connected reductive group G over k (any field) is said to be “quasi-split” if it has a
k-rational Borel subgroup. The proposition says that any connected reductive group over Fy is quasi-split.
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Theorem 5.6 ([Spr0Y, 4.4.17]). Let G be a connected algebraic group over k = F,. Then
the map Gy — Gz: g~ g~ F(g) is surjective.

Proof of Proposition BZ. Let us first show the surjectivity. Let w € Wy and n € Ng(Tp) be
any its representative. By Lang’s theorem for G, we can find an element g € G satisfying
g F(g9) = n. If we put T := 9Tp, then the condition ¢g~'F(g) = n € Ng(Tp) implies that
T is F-stable. Hence T is k-rational.

Let us next show the injectivity. Suppose that 77 and 75 are k-rational maximal tori
of G which give rise to the same F-conjugacy class of Wy. If we write T} = 91T, and
Ty = 92Ty, then we have g7 'F(g1) = n= g, ' F(g2)F(n)ty for some elements n € Ng(Tp)
and tg € Tp. By noting that F(g2)F(n)to = tF(ge)F(n) for an element ¢ of T5 and applying
Lang’s theorem for T5 to t, we can find an element s € Ty satisfying s7'F(s) = t. Hence we
get

91 Flg1) =n"tgy ts T F(s)F(g2) F(n),
which implies that F(sgang;') = sgang; ', i.e., sgang; ' € GF. If we put g to be this
element, then we have
ng — 991TO — ngnTo — STQ — T2~
Hence Ty and Ty are G¥-conjugate. O

In the following, for any element w € Wy, let T,, denote a k-rational maximal torus
of G corresponding to the F-conjugacy class of w. Let us describe the rational structure
of T, in terms of the base torus Ty. Let g € G be an element satisfying T,, = 97y. By
replacing g with an element of gNg(Tp) if necessary, we may assume that the image of
g 1F(g9) € Ng(Tp) in Wy is exactly w. Then, the action of F on T, is transferred to the
composition of Int(w) and F on Tp through the isomorphism Int(g)~*: T\, — Tp:

Int(g)

Tw — TO gtg_l |
FJ I
TwIWITO F(g)F(t)F(g9)~' —— g 'F(g9)F(t)F(g)'g = Int(w) o F(t)

Example 5.7. Let G = GL,,. In this case, the base torus Tj can be taken to be the diagonal
maximal torus. Thus we have Ty = (qu )™ (if we loosely identify Ty with To(F,)) and the
action F' on Tj is given by
(t1,to, ... tn) — (1,82, ... t2).
The Weyl group Wy can be naturally identified with the subgroup of permutation matrices
of GL,,, hence isomorphic to &,,.
(1) We first consider the case where w € &,, is trivial. In this case, T, is nothing but
T itself. Hence TF = T{" = (F)™.
(2) We next consider the case where w € &,, is the cyclic permutation (12 ... n) of
length n (this element is so-called a “Coxeter element”). The action Int(w) o F' on
To is explicitly written by
(t17t27 e 7t’ﬂ> — (tfrlwt(]]_ R 7ti*1)'
Thus (t1,t2,...,tn) € Tp is fixed by Int(w) o F if and only if (t1,t2,...,t,) =

(ta,¢?...,t2 ), which is equivalent to

titos ) = (b9, 47 and #9" =+,
1 1 1
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In other words, T is identified with IF;n, hence is of order ¢ — 1.

(3) We finally consider the general case. The Frobenius F acts on Wy trivially, thus
the F-conjugacy of Wy is nothing but the usual conjugacy. Recall that the conju-
gacy classes of &,, correspond to the partitions of n bijectively. Suppose that the
conjugacy class of w € &,, corresponds to a partition (ny,ns,...,n,) of n, where
ny>--->n.>0and ny +---+n,. =n. ™ Then, by a similar argument to (2),
we can check that T,/ is identified with F)%., x - x F5,. Hence the order of T} is
given by (¢™ —1)---(¢" — 1).

As demonstrated in the above example, it is not very difficult to describe k-rational
maximal tori of G as long as the descriptions of the base torus Ty and its Weyl group
explicitly.

Let us finally mention a general proposition on the order of T,,. We first note that the
actions of F' and Wy on X*(Tp) are induced as follows:

FO)(@) :==x(F(t))  forany x € X*(Tp), t € To,
w(x)(t) := x(w ttw) for any x € X*(Tp), t € To.
Similarly, the actions of F' and W on X, (7)) are induced as follows:
FO)(®) == PO (®) for any x” € Xa(To), & € Gun,
w(x")(t) := wx" (t)w™* for any x¥ € X.(Tp), t € G,.
Then it is a routine task to check that the maps on X*(T') and X,.(T') induced by F in a
similar way are identified with F o w™ and w=! o F on X*(Tp) and X, (Tp), respectively
(see [Car85, Proposition 3.3.4]). This leads to the following (see [Car85, Proposition 3.3.5]):
Proposition 5.8. The order of TE is given by |det(w™ o F —id | X.(Ty)r)|- More explicitly,
if we write F' = qFy (then Fy is an automorphism of X.(To)r of finite order) and let x(—)
be the characteristic polynomial of Fy* ow on X, (Ty)g, then we have TE = x(q).
Remark 5.9. Note that Fj is the identity when G is split.
Exercise 5.10. Compute the order of T for all k-rational maximal tori T of Sp,,,.

5.4. Some variants. Now we introduce of several variants of the Deligne-Lustig variety.
Later (after next weeks), it will turn out that all of these variants are technically convenient.
(The description given here follows [DL76, 1.18-1.20] and [CargH, 7.7].)

Let T be a k-rational maximal torus of G. As before, we take a Borel subgroup B of G
containing 7T'. Let U be the unipotent radical of B. Recall that

Xfep={9€G|g'Flg) € FU)}.

Note that X5 is also stable under the right multiplication by U N F(U). We define
algebraic varieties X$ 5 and XG_ 5 (over k) by

Xfcp={9€G|g7'F(g) € F(U)}/(UNF(U))

Xfcp={9€G|g ' Flg) € FU)}/T"(UNFU)).
Then X 5 is a GF-equivariant U N F(U)-torsor over qucB and chB is a Gf-equivariant
T*-torsor over X%_ .

G (UN FU))-torsor & T torsor G
XrcB XrcB XrcB-

Hpor example, the trivial permutation corresponds to (1,...,1) and the cyclic permutation (12 ... n)
of length n corresponds to (n).
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Now assume that T corresponds to w € W. What we want to do in the following is to
understand the above varieties in a more concrete language based on flag varieties. For this,
again let us fix a k-rational Borel subgroup By of G and a base torus Ty C By. We define
the variety B to be the quotient G/Bgy of G by By. (By a fundamental fact in the theory of
algebraic groups, this is a projective variety.) Note that the k-rational points of By can be
identified with the set of all Borel subgroups of G via map g — 9By. This can be checked
by using the following facts:

(1) all Borel subgroups of G are conjugate, and
(2) for any Borel subgroup B of G, we have Ng(B) = B.

We call B = G/By the flag variety of G.
Proposition 5.11. We have bijections
Wy = Ng(To)/To <5 Bo\G/By <> G\(B x B).

Here, the first map is n — BnB and the second map is g — G(By,9By). (The action of G
on B x B is given by a diagonal conjugation, i.e., g(B1,B2) = (9B1,9B3)).

Proof. The bijectivity of the first map is known as the “Bruhat decomposition”. See, for
example, [Spr0Y, 8.3]. The bijectivity of the second map can be checked again by the
above-mentioned fundamental properties (1) and (2) of Borel subgroups. O

Let O(w) denote the cell of B x B corresponding to w € W under the above identification;
explicitly, this is given by O(w) = G(By, " By). When a pair of two Borel subgroup (B, Bz)
belongs to O(w), we say that By and By are in relative position w.

We define a set X (w) to be the subset of B consisting of all Borel subgroups B of G such
that B and F(B) are in relative position w:

X(w) = {gBO € G/Bo | (gBo,F(gBo)) S O(’LU)}
= {gB() c G/B() | gilF(g) S B()”U.)BQ}.

Since X (w) is locally closed in B, X (w) has a variety structure. We put B := G/Up; hence
B is a Tp-torsor over B. By choosing a representative w € Ng(Tp) of w € Wy, we define a
similar subset X (w) of B as follows:

X () :=={gUo € G/Uy | F(gUp) = gUntir}
={gUy € G/Uy | g7'F(g) € UpirUp}.

Then the covering B — B restricts to a covering X () — X (w), which is GF-equivariant.
Let us compute the fiber of this map. Suppose that gU, € )~((w)7 hence gBy € X (w). The
fiber of B — B at gBy is simply given by {gtUy | t € Ty}. It is not difficult to check that
gtUp belongs to X (w) if and only if wF(t)w~' € Upt. By noting that both wF(t)w~! and
t belong to Tp, this is furthermore equivalent to that wF(t)w™! = t, i.e., t € Tént(w)OF.
(Indeed, wF(t)w~1t~! must be an element of Ty N Uy = {1}.) Therefore, we conclude that

X () - X(w)

is a GF-equivariant Tént(w)OF—torsor. We note that Tém(w)OF is identified with T'f" by the
map Tgnt(w)OF = Tt gtg™L.
All the relations between the varieties we introduced so far are summarized as follows:
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Proposition 5.12. Suppose that T =T, for a w € W. Let x € G be an element such that
W= " F(z) belongs to Ng(To) and lifts w (hence T = *Ty). We take B to be ® By, hence
U = *Uy. Then the map g — gz induces a bijection from the GT -equivariant T -torsor
XSG p — XSG p to the GF -equivariant T torsor X () — X (w) (TF and T)™
are identified under the map t — g~ ‘tg).

Xfcp
/(UﬁF(U))l
X§p o5 X(0)—— B

/TFl i/Téut(’w)oFl

X'ZC":CB g»—’)\‘g'} X(’U}) B
5.5. Example: GL, case. Let us investigate the variety X (1) in the case where G = GL,,
and w = (12...n) € &,. Let T) be the diagonal maximal torus of G and By the upper-
triangular Borel subgroup of G.

Definition 5.13. Let V be a finite-dimensional k-vector space. A flag of V is a sequence
of subspaces F = (0 =V, C V1 € --- C V. = V). We say that a flag F is complete if
dimV, = 1.

Let V := IF?” and {e;}7; be the standard basis of V (i.e., e = (1,0,...,0) and so
on). Let Fyq be the complete flag of V given by V; = EB;.:l]quj. We call Fyq the
standard flag of V. Note that the set of points of B = G/By parametrizes the complete
flags of V. Indeed, G acts on the set of complete flags via natural multiplication, i.e.,
g- Vo Q- V) :=(9g(Vo) € --- € g(V)). Tt is easy to see that this action is transitive
and that the stabilizer of Fyq is nothing but By.

Definition 5.14. Let V be a finite-dimensional k-vector space. A marked flag of V is a
flag ( 0=V C Vi € --- €V, =V) equipped with nonzero element v; € V;/V;_; for each
1< <r.

Note that the standard flag Fstq can be upgraded to a marked complete flag with mark
{e; € V;/Vi_1}_;. Then, similarly to above, we see that the set of points of B = G/U,
parametrizes the marked complete flags of V.

Recall that O(w) parametrizes pairs of Borel subgroups of G whose relative position is

w. Let (B, B’) be a pair of Borel subgroups of G. Let F) = (0 = VO(/) C Vl(') - C
Vi = V")) be the complete flag of V corresponding to B,

Exercise 5.15. Check that (F,F’) is in relative position w if and only if (F, F’) satisfies
the following conditions:

Vi+V/=Vipg (1<i<n-1),
VitV =V
Next recall that X (w) parametrizes Borel subgroups B of G such that (B, F(B)) belongs

to O(w). By the above exercise, this is equivalent to that a complete flag F = (0 = V) C
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Vi € - CV, =V) corresponding to B satisfies the following:
Vit F(V;)) =Vizn (1<i<n-—1),
{V1 + F(Vpo1)=V.

We now consider X (1). Similarly to above, we can check that X (1) parametrizes marked

complete flags (F, {v1}? ) satisfying
vit1 = F(v;) (mod V;) (1<i<n-—1),
{vl = F"(v1) (mod F(v1),...,F(v,—1)).
Exercise 5.16. Check that this condition is equivalent to that
Vi AF() A~ AF" o)) = F(v)) AF(v1) A--- A F" (o)
(and both sides are nonzero), which can be also written as
Fuy AF() A~ AF" Huy)) = (=)™ ooy AF(v) A--- AF" L (0y).
Let us explicate this equality by writing v1 € V' via the standard basis as v; = Y .-, Ti€;.

Since F acts on V via ¢-th power on the coefficients, we have that F'(v) = Y i, x?l €;.
Therefore, the above equality is equivalent to that

j—1 j—1
(det(x! icijen)’ = (=)™ det(z?  )i<ij<n-

Since both sides are necessarily nonzero, this is equivalent to
_ Jj—1 -1
(=1)" 7 (det(z! izigen)’ =1

This is quite close to (and more complicated than) the Drinfeld curve! In fact, X ()
exactly generalizes the Drinfeld curve.

Exercise 5.17. Verify that X () exactly coincides with the Drinfeld curve {(z,y € A% ) |
P

zy? — 2%y = 1} when G = SLjy and w is the Coxeter element, i.e., the unique nontrivial
element of the Weyl group. (CAUTION: In the case of special linear groups, we cannot
simply take the representatives of the Weyl group elements to be permutation matrices
because of the determinant condition. In particular, w cannot taken to be (§{). Instead,
for example, we can use (_01 (1)) But then we get a nontrivial sign contribution to the

defining equation of X (w)).
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6. WEEK 6: DELIGNE-LUSZTIG REPRESENTATIONS

6.1. Quick overview of étale cohomology. In the following, we quickly introduce the
basic properties of the étale cohomology for algebraic varieties. (Here, we do not even give
the definition of the étale cohomology. Carter’s book [Car8H, Appendix| has a beautiful
summary of the étale cohomology theory, so please look at it if you want to know more
about some details.)

Let us briefly recall the notion of £-adic numbers. Let £ be a prime number. We consider
the inverse system of finite rings

= TV S 0T — - — LT — D)L,

where the transition map Z/¢"*Z — Z/¢"Z is given by the natural surjection. The inverse
limit of this system forms a ring, which is called the ring of £-adic integers and denoted by
Zy:
Zy = LZ/@”Z ={(@n)n € [[ 2/0"Z | Zri7 = 20}
n>1
Since Zy is an integral domain, it makes sense to consider its fractional field; it is called the
field of ¢-adic numbers and denoted by Q,. ™

Lemma 6.1. Let Q, be an algebraic closure of Q;. Then Q, is isomorphic to the complex
number field C as an abstract field. ™

Exercise 6.2. Prove this lemma. Hint: note that both Q, and C are algebraically closed
fields of characteristic 0 and the same cardinality.

Now let k be a finite field [F; of characteristic p > 0. In the following, let ¢ be a prime
number distinct to p. For any algebraic variety X over k = F, and for each i € Z>, we can
associate a Q,-vector space H, HX, @@) called the compactly supported (i-th) étale cohomology
of X with Q,-coefficient. In this course, we simply refer to it by the -adic cohomology of
x. =

It is known that H!(X,Q,) satisfies various “basic” properties. For a moment, let us
introduce only the following:

Theorem 6.3. (1) For any X, H{(X,Q,) is finite-dimensional.
(2) For any X, H.(X,Qy) # 0 only for 0 <i < 2dim(X).
(3) For any proper™ morphism of algebraic varieties f: X — Y over k, a Q,-vector
space homomorphism f*: H{(Y,Q,) — H!(X,Qy) is canonically (functorially) as-
sociated (for each i).

For references on these facts, see [Car8H, Section 7.1].
Now suppose that X is an algebraic variety over k. Then we have the Frobenius endo-
morphism F': X7 — Xz. Thus, by the functoriality, we also have an endomorphism F™* of

15 Another equivalent way of defining Qg is to complete the rational number field Q with respect to the
f-adic distance. But the above definition seems better in this context because the f-adic cohomology is
defined by taking the limit of torsion coefficient (Z/¢™Z-coeflicient) cohomologies.

L6Note that, however, Qe and C cannot be topologically isomorphic.

7 There is also the “(i-th) étale cohomology of X with Q,-coefficient”, so this terminology is a bit too
abbreviated. But we do not mind because we only use the compactly supported one in this course.

18Here, we don’t give the definition of the properness of a morphism of algebraic varieties. We only note
that any isomorphism is proper and also a Frobenius endomorphism is also proper.
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Theorem 6.4 (Grothendieck-Lefschetz fixed point theorem). We have
X7 =D (1) Te(F | Ho(X, Q).

i>0

One of the important application of the fixed point theorem is the following /-independence
result: Suppose that X is furthermore equipped with an action of a finite group G. Then,
by the functoriality of f-adic cohomology, we obtain a representation of G on a finite-
dimensional Q,-vector space g — (g~ !)*. (Here it is better to take the inverse of g since

(—)* is contravariant.) By abuse of notation, let us simply write “g” for the action (g~—1)*
on H(X,Qy).

Theorem 6.5. Suppose that an element g € G satisfies go F' = F o g as an endomorphism
of X3 Then the number

D (=1 Tr(g | HA(X,Qy))
i>0

is an integer independent of £ (called the “Lefschetz number” of g).

Proof. Here we need the fact that, for any n > 1, the endomorphism go F™ of X7 associated
to another Fyn-rational structure of X7. Let us write X,, for the algebraic variety over Fy»
determined by this rational structure. Then X9°F" is the set of [F4n-rational points of X,
hence finite.

We first investigate the following formal series:

R(t) = — Y |XP°F"[-t" € Z[t] € Qu((t)-

n=1

Since g and F* are commuting endomorphism of V := @,., H:(X,Q,) (note that this is

finite-dimensional), we can simultaneously triangulate g and F*. Let vq,...,v; be a set
of simultaneous eigenvectors (d := dim V) with eigenvalues ay,...,aq € Q, for ¢g* and
B1y...,Bq € Q, for F*. Here, we may assume that each v; is contained in HI(X,Q,) for
some 7. For each j =1,...,k, we define a sign €; by
1 if v; is contained in an even degree cohomology,
AR —1 if v; is contained in an odd degree cohomology.

Then, by applying the fixed point formula to X,, over Fy», we get
d

= aiB.

j=1

|Xg0Fn

Therefore, we get

[eS) oo d
_Z‘XQOF”|'tn:_zzejajﬁ;z.tn
n=1

n=1 j=1

Zejaj ZB” tn

j=1

d
Z 0431 EQ(’( )-
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In particular, R(t) is a rational function which does not have a pole at ¢ = co. Let us write
R(t) = p(t)/q(t) with polynomials p(t),q(t) € Q,[t]; then, by noting that R(t) is initially
given by a formal series with Z-coefficients, we can easily check that the coeflicients of p(t)
and ¢(t) can be taken to be in Q. In other words, we have R(t) € Q(t).

On the other hand, we note that R(c0) is given by Z?:l €;aj, which is nothing but
Yiso(=1)"Tr(g | HA(X,Qy)). Since R(t) is independent of ¢ (by its definition) and belongs
to Q(t), we have that Zizo(_l)i Tr(g | H:(X,Qy)) is a rational number which is independent
of £. Moreover, since g is of finite order, o; € Q also must be of finite order. In particular,
Yiso(=1)! Tr(g | HI(X,Qy)) = Z;‘l:1 €ja; is an algebraic integer. As QNZ = Z, we get
Yiso(=1)Tr(g | HI(X,Qp)) € Z. 0

We let L(g, X) denote the Lefschetz number of g.

6.2. Deligne-Lusztig representation. In the following, we let k be a finite field IF, of
characteristic p > 0. We fix a prime number ¢ # p and also fix an isomorphism ¢: Q, = c.
Let G be a connected reductive group over k.

Recall that, for any k-rational maximal torus T of G and a Borel subgroup B containing
T™ the Deligne Lusztig variety XTGC p is defined; this is an algebraic variety over k equipped
with an action of G¥ x T¥. Therefore, its f-adic cohomology H:(X- 5, Q,) is a finite-
dimensional representation (on a Q,-vector space) of G x TF.

Now suppose that #: TF — C* is a character. Then, through the fixed isomorphism ¢,
we may regard 0 as a @;—Valued character of TF. Let us write 0, := 110 6: TF — @Z
Then it makes sense to consider the 6,-isotypic part H: (XS 5, Q,)[0,] of HI(XE 5, Qy),
which is a finite-dimensional representation of G on a Q,-vector space.

Definition 6.6. We call the alternating sum of HE(X§- 5, Q,)[6,] the Deligne-Lusztig (vir-
tual) representation of G associated to (T,6,) and write R$(6,) for it:

REcp(8.) =Y (~1)'Hi(XF 5, Q)[0.].
i>0
By abuse of notation, we also write R?C g(60,) for the character of the Deligne-Lusztig
(virtual) representation (called Deligne—Lusztig (virtual) character).

Remark 6.7. Let us say a bit more about the notion of the 6,-isotypic part H: (X5 5, Q,)[0.].
By definition, it is the maximal subspace of H, é(ngC 5, Q) whose action of T is given by
0,,ie.,t-v=0,(t) for any t € T¥ and v € H.(XE_ 5, Q,) (such a subspace always uniquely
exists since any representation of Tt on a finite-dimensional vector space is semisimple).
More explicitly, H: (XS 5, Q,)[0.] is realized as the image of the following endomorphism of

o c
Hé(XTGCB7QZ): 1
-1
T > 0.7t
teTF
Now let us discuss the (-independence of the Deligne-Lusztig representation. At this
point, the coefficients of the Deligne-Lusztig representation is taken to be QQ, and its con-

struction depends on ¢: Q, = C. Hence, the Deligne-Lusztig character is also a class function
on GF valued in Q.

19Here, B is a subgroup of G which may not defined over k. So, precisely speaking, it might be better

«

to write “ a Borel subgroup B containing 73”.
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We note that the Deligne-Lusztig variety XTGC p might not be defined over k. However,
there exists a finite extension &’ of k such that qufc p is defined over k. Indeed, suppose that
T splits over k' = Fyn. Then we can choose a Borel subgroup B containing 7" so that it is
defined over k’. This is equivalent to that U satisfies F™(U) = U. Hence, if g € G satisfies
g 1F(g) € F(U), then we have F"(g) "1 F(F"(g)) = F"(g~'F(g)) € F*(F(U)) = F(U). In
other words, ngc p is a subset of G which is stable under F*. Thus, by the Galois descent,
XTGC g is defined over k’. Note that the Frobenius endomorphism of X:,GC p associated to this
k’-rational structure is given by F™.

Now let us apply Theorem B3 to the action of G¥ x T'F on XchB. Any (g,t) € GF xTF
satisfies (g,t) o F" = F™ o (g,t). Indeed, for any = € XF_, we have

(9,t) o F"(z) = gF" (x)t = F" (gat) = F" o (g,1)(x)

(note that g and t are fixed by F). In other words, the (g,t)-action on X satisfies the
assumption of Theorem BH. Hence the Lefschetz number of (g,t) is an integer independent
of ¢:

L((g:t), XFcp) = Y (=1) Tr((g.t) | Hi(XFc 5. Q) € Z

i>0
Proposition 6.8. For any g € G, we have

R$cp(0.)(9) = F| Z (9,1), Xfcp)-
teTF

Proof. By Remark 671, we have
RE-p(0.)(9) = Y (=1)' Te(g | HI(XFc 5, Q)[6.])

i>0

= Z - F| Z 9 ) | HZ(XTCBvQE))
i>0 teTF
TF| ZT? Z )| Hi(Xfep, T0))

— F| > 0.7 L((g.1), Xfic ).

teTF
O

Note that, though the isomorphism ¢: Q, = C, we can regard R%C (0,) as a C-valued
class function on G¥'. By the above proposition, then its values is given by

|TF| Z 9 -t ﬁ((gﬂ ) XTCB)

teTF

which is independent of ¢ (and also of ¢). Let us write R 5(6) for the virtual representa-
tion/character of G with C-coefficients obtained in this way.

Example 6.9. Let us present an example in the GLy-case without any justification. Recall
that (Week 2) irreducible representations of GLy(F,) are constructed by two different kinds
of inductions:

(1) To any character x of Fy x Fy, we can associate a principal series representation

GL2(Fq)
IndB(]qu) X
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(2) To any character 6 of IFqX2 satisfying #9~1 # 1, we can associate a cuspidal represen-
tation 7g.

Also recall that (Week 5) G¥'-conjugacy classes of k-rational maximal tori of a connected
reductive group G over k can be classified by the F-conjugacy classes of Weyl group of G.
When G = GLy, its Weyl group W is equal to &2 = {1, s} with trivial F-action. So there
exist exactly two GF-conjugacy classes of k-rational maximal tori of GLy:

(1) The one T corresponding to the trivial element 1 € W is split; 71 (F,) = (FX)2.

q
For any character x of T1(F,), we have R%cB(X) = Indgﬁ; (iF")

(2) The other one T corresponding to the non-trivial element s € W is non-split;
T (F,) = quz. If we take a character 6 of Ty(F,) satisfying 09~ # 1, then we have
R%CB(Q) = —W@.mm

6.3. Split case: principal series. Let us first investigate the Deligne—Lusztig representa-
tion in the case where G is split and T is a split maximal torus (“base torus”) Tp. Then we
can find a Borel subgroup B of G containing 7' which is defined over k. Let 0: TH — C*
be any character. Since B is equal to the semi-direct product of its unipotent radical U
and T (T normalizes U), we have a natural surjective homomorphism B - B/U = T. By
inflating through this homomorphism, we can regard 6 as a character of BY. We define the

principal series representation of GY' (associated to ) to be Indgi 0.

Proposition 6.10. We have RS _(6) = Indgi 6.

Proof. We let BY denote the set of k-rational Borel subgroups of G. We note that any
two k-rational Borel subgroups of G are GF'-conjugate; in particular, BF is a finite set. We
define a morphism 7 from X to BY by

T Xfp={9€G|g'F(9) €U} - B"; g~ gBg*

(note that F(U) in the definition of X&_ j; is equal to U since U is k-rational). This morphism
is well-defined; indeed, if g € G satisfies =1 F(g) € U (say g~ *F(g) = u), then we have

F(gBg™') = F(9)BF(9)~" = guBu™'g~' = gBg™".

Hence gBg~" is a k-rational Borel subgroup of G. Moreover, 7 is surjective. To check this,
let us take a k-rational Borel subgroup B’ of G. Then there exists an element g € G
satisfying B’ = gBg~'. since g"'F(g) = 1 € U, g belongs to X 5 and satisfies (g) = B’.

Therefore, we obtain a disjoint union decomposition Xffc p into finite number of closed

subvarieties:
XYQCB = |_| W_l(Bl)-
B’eBF

Recall that, Xfch has an action of G¥' x TF given by (z,t): g + xgt. We introduce
an action of GI' x Tt on BY by (z,t): B’ — xB’z~!. Then 7 is GI' x T¥-equivariant,
ie., m((z,t) - g) = (x,t) - 7(g). Note that the action of GF' x TF permutes the closed
subvarieties 771(B’) (for B’ € BF). The resulting action G x T of on the finite set
{m=Y(B") | B' € BT} is transitive and the stabilizer of 7=1(B) is given by B¥ x TF. In this
setting, we have that the class function

GF' x TV - Z: (g,t) = L((g9,1), X 5)

1

20Note that the Deligne-Lusztig representation itself can be defined even if 8 does not satisfy the condition
9I—1 £ 1.
21Here, a Borel subgroup B containing Ts cannot be taken to be the standard upoper-triangular one.
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is given by the induction of
BY x TF — 7. (b,t) — L((b,t), 7 1 (B))

(This is a general fact which holds for the Lefschetz number of a variety equipped with a
finite group action; see [CarX5, Property 7.1.7]).

Hence, by Proposition B8, the Deligne-Lusztig character Rgc g(0) is given by the induc-
tion of the following class function from B to G

Let us compute £((b,t),7~1(B)). By recalling that Ng(B) = B, we see that 7~ 1(B) is

given by

XS N Ng(B)=X5-5NB=T"U.
Note that each fiber of the quotient map THU —» TFU/U is isomorphic to U, which is
furthermore isomorphic to an affine space AY™U (this is a general property of an unipotent
group). In fact, it is known that such a map (“affine fibration”) does not change the
Lefschetz number, i.e., L((b,t), 7~ 1(B)) = L((b,t),TFU/U) (see [Car8d, Property 7.1.5]).
Here, BF x T acts on T¥U/U in an obvious way, that is, (b,t) - sU = bstU.

Now note that THFU/U = TFUY JUY is a finite set. Thus L((b,t), TFUY JUT) is equal
to the cardinality of the set (TFUF /UF)®Y of points of TFUF /UF fixed by (b,t) (see
the exercise below). For any sUY € THUY /UF | we have (b,t) - sUF = sUT if and only
if bstUF = sUY, which is equivalent to b € t~1U¥. This implies that the fixed points
set (TFUF /UT)®Y is empty if b ¢ t'UF and equal to TFUF /U if b € t7'U". Since
|TEUY JUF| = |TF|, we get

. ITF| ifbet UF,
£(,8), 7 (B)) = {0 it bt U

Therefore, RS - 5(0) is given by the induction of

b= su s ﬁ S 00 - £((su, 1), 71 (B)) = 0(s).
teTF

This means that RS ;(6) is the induction of the inflation of 6, i.e., Indgi 6. O

Exercise 6.11. Prove the following claim:
Let X be a finite set (this can be regarded as a 0-dimensional algebraic
variety | |, x Spec k). Suppose that g is an automorphism of X. Then we
have L(g, X) = |X9|.
Hint:
(1) Show that the Frobenius endomorphism F' induced from the obvious k-rational
structure | |,y Speck is the identity of X.
(2) Define a formal power series R(t) in the same way as the proof of Theorem EH and
do the same argument.
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7. WEEK 7: DELIGNE-LUSZTIG CHARACTER FORMULA

Let G be a connected reductive group over & = F, and F' its associated Frobenius
endomorphism. We fix a k-rational maximal torus 7" of G and a Borel subgroup B of G
containing T'. We also fix a character #: T — C*. Then we have the Deligne Lusztig
virtual representation RY_5(0) of GF. By abuse of notation, we also write R ;(6) for
the Deligne Lusztig virtual character, which is a class function G¥' — C defined to be the
trace of the Deligne-Lusztig virtual representation. Today’s aim is to establish a character
formula for RE_ ;(6).

F

7.1. Deligne-Lusztig character formula. We write G£ and G ; for the set of semisim-

ple (equivalently, prime-to-p order) and unipotent elements of G (equivalently, p-power
order), respectively. In the following, for any g € G and h € G, we write 9h = ghg~*.
Similarly, for any g € G and a subgroup H C G, we write YH = gHg™!.

Definition 7.1. We define a function Q%: GI, — C by Q% := R¢ 5(1)|gr . We call

unip
QS the Green function (of G associated to T).

We note that, for notational convenience, we simply write “Q%” although a priori Q%

depends on the choice of a Borel subgroup B containing T'. (But, in fact, later it will turn
out that Q% does not depend on B!)

To state the Deligne-Lusztig character formula, let us recall that any element g € G
has the Jordan decomposition g = su, where s € G is a semisimple element and u € GF
is a unipotent element such that su = us.

Theorem 7.2 (Deligne-Lusztig character formula). Let g € G with Jordan decomposition
g = su. We shortly write G for the centralizer of s in G, i.e., Gs = Zg(s) ={x € G| zs =
sx}. Then we have

1 B o
RE-p(0)(9) = TGOF Z 0z sz) - Qup (u).
(G i
zel
z tszeT?
Let us explain why the right-hand side of this formula makes sense. We first note the
following result (see [Car8d, 1.14]).

Lemma 7.3. (1) For any s € GL, the identity component G° of its centralizer G is a
connected reductive group defined over k.
(2) Any unipotent element of G lies in G2. In particular, when g € G has the Jordan

decomposition g = su, its unipotent part u belongs to (G2)F.

Let us look at the index set of the sum in the Deligne-Lusztig character formula. When
x7lsz € T, we necessarily have the opposite inclusion Zg(z~tsx) D Zg(T). Here, it is
easy to check that Zg(z 1'sz) = 27 'Zg(s)x. On the other hand, it is known that the
centralizer of a maximal torus in a connected reductive group is the maximal torus itself,
ie., Zg(T) = T (see [Spr0Y, 7.6.4]). Hence, we have 271 Zg(s)z D T, or equivalently,
T = 2Tz~ C Zg(s) = Gs. Since T is connected, this furthermore implies that *T" C G¢.
Furthermore, it is known that (BNG2)° is a Borel subgroup of G¢ and UNG?, is its unipotent
radical. #

In summary, when 2~ 'sz € T, we obtain a k-rational maximal torus *T" of a connected

reductive group G. Thus it makes sense to consider the Green function Q?T of G5 associated

22Here, note that U N G2 is already connected!
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to *T and (B N G2)°. Since u belongs to (GS)X . it also makes sense to look at the value

. unip’
of QfT at u.

Thus the Deligne-Lusztig character formula reflects an inductive nature of the theory of
reductive groups. The contribution of the semisimple part s is given just by 6, which is very
simple. On the other hand, the contribution of the unipotent part u is given by the Green
function, which is independent of § and taken in G. Hence, ultimately, the Deligne-Lusztig
characters of G are governed by the Green functions for G and all its “smaller” reductive
subgroups.

7.2. Outline of the proof of DL character formula. The key of the proof of the
Deligne-Lusztig character formula is the following general result, which is called Deligne—
Lusztig’s fixed point formula:

Theorem 7.4 (Deligne-Lusztig fixed point formula). Let X be an algebraic variety over
k and g is an automorphism of X of finite order. Let s and u be automorphisms of X
such that s is of prime-to-p order, u is of p-power order, and g = su = us. Then we have
L(g,X) = L(u, X*), where X*:={z € X | s(x) = z}.

Unfortunately, I cannot explain the proof of this theorem in this course. Please look at
[DL76, Theorem 3.2] if you have an interest.

Now suppose that ¢ € G has the Jordan decomposition ¢ = su = us. As disxussed in
the last week, we have

Rcnl0)(0) = Ty 3 000" - Ll(9.0). Afp).
teTt

Let us compute each £((g,t), XTGC ) using the Deligne-Lusztig fixed point formula.

Recall that the action of (g,t) on X5 5 = {z € G | 27 'F(z) € F(U)} is given by
x + grt. We note that the order of TF is prime-to-p. (Indeed, if we suppose that 7' splits
over Fgn, ie., Tr,, = G, for some r, we have T* = T'(F,) C Tg, . (Fgn) = (F,%)".) Hence
the order of ¢ is also prime-to-p. Thus, the decomposition (g,t) = (s,t) o (u, 1) satisfies the
assumption of the Deligne-Lusztig fixed point formula.

We determine (XS ;). In the following, we simply write X' := X&_ .

Proposition 7.5. We have

X(S,t) — |_| X(s7t)($)7
zeGf /(G9HF
It:.971

where we put X0 (z) := XD N 2G?.

Proof. Suppose that y € X ie., y € G is an element satisfying syt = y and y~'F(y) €
F(U) (say y~'F(y) = v). By applying F to syt = y, we get sF(y)t = F(y), thus syvt = yv.
Combining syvt = yv with syt =y, we get yt~'vt = yv, hence t vt = v. This means that
u belongs to Gy = Zg(t). As w is unipotent, u furthermore lies in GY. Let us apply Lang’s
theorem to GY, which asserts that the map

G = GY: 2z 27 F(2)
is surjective; we can find an element z € G satisfying 271 F(2) = v.
We put = := yz~!. Then F(z) = F(y)F(2)™! = yov~ 127! = yz7! = 2, ie., v € GF.
Note that we have y € xGy. Furthermore, we have
xz =y = syt = s(xz)t = sxtz
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(use that z € G; in the last equality), hence “t = s~ 1.

From the disxussion so far, we have obtained

X0 =) xeh().
zeGY /(GDF
mt:S—l
It is obvious that the union is disjoint. (Il

Let us investigate each summand X(**)(z). Note that, since t € TF, we have T' C G?.
Moreover, By := (B N Gy)° is a Borel subgroup of G with unipotent radical U N G} (see
the paragraph after Lemma [23). Therefore, it makes sense to consider the Deligne-Lusztig
variety for G} associated to T' C By:

GY o — o
Xrlpe ={y € G |y~ F(y) e UnGy).
This is a variety equipped with an action of (G$)¥ x T*¥. On the other hand, X (z) is
stable under the action of the subgroup (G2)¥ x T of GF x T* on X.

Proposition 7.6. Let x € G be an element satisfying “t = s~ 1.

phism of varieties

Then have an isomor-

po: X0 () = XI(“;EBg ry e aly,
which is equivariant with respect to the actions of (G2)¥ x TF on XY (x) and (G2)F x TF

on Xf&o(BﬂG?)o. Here, (G2)F' x TF and (G2)F x T are identified by (2,t') — (x7Lzx,t').

Proof. Suppose that y € X8 (2), ie., y € G2 is an element satisfying syt = y and
y~1F(y) € F(U). Then we have x~ 'y € G} and thus
(@™ 'y) T F(z7ly) =y F(y) € FU)NGF = F(UNGY).
_ 1 GY ’ GY

In other words, ¢, (y) = 2~ 'y belongs to XTcBg- Conversely, for any element ' € XTcB;),
we can check that ¢ 1(y) = zy’ € XN ().

Let us check the assertion on the equivariance. What we have to prove is that, for any
(z,t) € (GO)F x TF and y € X5 (2), we have

pa((2,t) - y) = (@7 22, 1) - pa(y).

The left-hand side is given by . ((2,t') - y) = p.(2yt’) = x~1zyt’. The right-hand side is
given by (x7lzz,t') - . (y) = (z7 2, ) - (27 1y) = 27 tzz(zty)t’ = a7 Lzyt’. So these
indeed coincide. ]

Now let us start the proof of the Deligne-Lusztig character formula:

Proof of Theorem [7-3. We have

RS (0)(g) = ﬁ S0 £((g,1), XE-p).
teTF

By applying the Deligne-Lusztig fixed point theorem to (g,t) = (s,t) o (u, 1), we get

L((9:), Xficp) = £((w, 1), (Xfp) 7).
By combining the above propositions, we get

s — GY
[’(u7 (Xilch)( 7t)) = § E(x 1U$,XTC35).
zeGF /(G)HF
It2871
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Hence we get

G - Gy
RTCB( (9) |TF| Z Z L(x 1U$aXTéBg)
teTr xeGF/(G;?)F
Ti—g1
1 1 G
A S et
teTF t zeGF
zt:S—l

Note that the internal sum is nonzero only when there exists an element z € G¥' satisfying

t =2 1s7lz. In this case, |(GO )E] = [(G2)F], hence the above equals
|TF| G Z Z o(t Lz uz, XTcBo)
teTF gegF
Ti—g -1

We note that the set {(¢,z) € TF x G | 2t = s “1}is bljectlve to{r e G |z sz e T}

by (t,x) . By also noting that £(z~lux XTcBo) = L(u, XchBO) we rewrite the above
double sum:

1 1 _
TR A ET Z Oz s )t L(u, XITcBO)
TG 2,
mfmlszTF
1 B o
= T . @) Ll Xrepy)
s zeGt 7
z tsxeT¥

Here, in general, we have

1
Qg(u) = W 'E(UaXTGcB)-
Indeed, by definition, we have
Qg( ) |TF| Z ‘c u t) XTCB)
teTF

By using the Deligne-Lusztig fixed point formula to (u,t) = (u,1)-(1,t), we have £((u,t), Xf-p) =
L((u,1), (X 5)EY). However, (XE- ;)1 is nonempty only when ¢ = 1 (indeed, z €
qucB is fixed by (1,¢) if and only if 2t = ). Thus we get
1
QF(u) = Wﬁ(quﬂch)'

Therefore, we finally obtain

R%CB@:W Y o) QS w).

Corollary 7.7. We have R¢5(0)|qr = QF for any character 0: T* — C*.

unip
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Proof. Let g € GE . (hence its semisimple part s is 1 and unipotent part u is g). Then, by

unip
applying the Deligne-Lusztig character formula to g, we get
1 - e
REcp(0)(9) = (GF] Z 0(z " sz) - Qu5(u)

zeGF
z " tsweTt

1
zeGF

It is not difficult to check that, in general, we have R - 5(0)(g9) = RS 5(*0)(g), where *¢
denotes the character of *T* defined by “0(%t) = 0(t). In particular, when 6 = 1, hence get

Q% (u) = Q%+ (*u). By also noting that the Green function is invariant under conjugation
(since it is the restriction of a Deligne-Lusztig character, which is a class function), we get
Qg(u) = Q% ("u) = Q% (u). Hence the most right-hand side of the above equalities is
QF (u). |

Definition 7.8. We say that a semisimple element s € G is regular if G¢ is a maximal
torus of G.

Example 7.9. Let G = GL,. Let T be the diagonal maximal torus of G. We consider
an element s = (49) € T. Then, since s is already diagonalized, s is semisimple. Let us
compute the centralizer G5 = Zg(s) of s in G.
e When a = b, s commutes with any element of G. Thus Gs = G, hence G2 = G° = G.
Hence s is not regular in this case.
e Suppose that a #b. If g = (% ) € Za(s), we have sgs™

w0 D6 Y (2 )
g 0 b/ \z w/\0 b a~lzb w ’

we necessarily have y = z = 0, i.e., g € T.. Conversely, we obviously have T' C Z(s).
Hence we get G5 =T, so G =T, which means that s is regular.

! = g. Since

Exercise 7.10. Let G = GL,, and g € G. Prove that g is regular semisimple if and only if
the characteristic polynomial of g has n distinct roots. (Hint: compute the centralizer of g
in G by looking at the Jordan normal form of g.)

Exercise 7.11. Let G = GL,,. Recall that G¥-conjugacy classes of k-rational maximal tori
of G correspond bijectively to the conjugacy classes of &,, (see Week 5 notes). Let S be a
maximal torus of G corresponding to the cyclic permutation (12 --- n) € &,,. Count the
number of regular semisimple elements in S¥ = F;n.

Corollary 7.12. Suppose that s € G is a reqular semisimple element. If s is not conjugate
to any element of T*, then we have RS 5(0)(s) = 0. If s is conjugate to any element of
TF (suppose that s itself belongs to TT' ), then we have

REcp0)(s)= > 6z 'sa),
zEWGF(T)
where Wer (T) := Ngr(T)/TF.

Proof. By the Deligne-Lusztig character formula, we have

1 _ o
REepO)s) = gm0 s0)- Q).
s zeGt
z tszeT?
51



Since the index set is empty if s is not conjugate to any element of T, we get the first
assertion.

To show the second assertion, let us suppose that s € T¥. Then, we must have G° =
Zc(8)° D Zg(T) = T. Since G is a maximal torus of G, this implies that G5 = T. By
the same argument, the condition 2~ 'sz € TF of the index set implies that T = z~'T'z.
In other words, € Ngr(T). Conversely, any element z € Ngr(T) satisfies z71sz € TF.
Thus, by noting that QX.(1) = 1 (this can be checked by going back to the definition), we
get

Rch(e)(s)zﬁ S oalsn= S 6 lsa).

zENGLF (T) €W, r (T)
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8. WEEK 8: INNER PRODUCT FORMULA FOR DELIGNE-LUSZTIG REPRESENTATIONS

8.1. Inner product formula for Deligne—Lusztig representations. Let G be a con-
nected reductive group over k = F,. Recall that the C-vector space C(GT) of class functions
on G* has an inner product (—, —) given by

()= gz X o) Fola)

geGF

Our next aim is to compute the inner product of two Deligne-Lusztig representations.
To state the theorem, we introduce some notations. For k-rational maximal tori 7" and T’
of G, we put

Ngr(T,T') :={neG" |"T =T},
Wer (T, T') := Ngr (T, T"))TF = T'""\Ngr (T, T).
(Recall that, in our notation, "T" denotes nTn~!.) Note that, for any w € Wgr (T,T") and
a character §: T — C*, we can define a character “6 of T'F by
(') == O(w ' w).

(This definition is independent of the choice of a representative of w.)
Theorem 8.1 (Inner product formula). Let T and T' be k-rational mazimal tori of G. Let

B =TU and B’ =T'U’ be Borel subgroups of G containing T and T’, respectively. For any
characters 0: T¥ — C* and §': T'F — C*, we have

(REcp(0), RFrcpi(0") = [{w € War (T, T') | "0 = ¢'}].
Before we prove this theorem, we explain several important consequences.

Corollary 8.2. The Deligne—Lusztig representation Rch(Q) is independent of the choice
of a Bore subgroup B C T. The Green function Q% is also independent of B C T.

Proof. Recall that QF := R¥-5(1)|gr . Thus it is enough to show the first assertion.
Let us take any Borel subgroup B and B’ containing 7. Our task is to show that
R%-5(0) = RS p/(0) (here, both are regarded as class functions on G¥'). Equivalently, it
suffices to show that
<RgCB(9) - RgCB’ (9), RgCB(e) - RgCB’ (0)) =0.

The left-hand side equals

(REcp(0), REc5(0)) — 2(RFp(0), R pi(0)) + (REcp: (), REc i (0)).
This equals 0 since we have

(REcp(9), REcp(0)) = (REcp(0), Rfc 5/ (0)) = (REc i (0), REc o (6))
by the inner product formula. O

From now on, let us simply write RY(6) instead of R$-5(6). (But, in the proof of the
inner product formula, we will again write R 5(6).)

Corollary 8.3. Suppose that T and T’ are k-rational mazimal tori of G which are not
GF -conjugate. Then, for any characters 6 of T and 0" of T, we have

(RE(0), RF.(0')) = 0.
Proof. This is clear from the inner product formula; if 7' and 7" are not G¥'-conjugate, then

Ngr(T,T") is empty. O
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Remark 8.4. Note that even if (R%(0), R (6)) = 0, it might happen that R% () and
R%,(#") have a common irreducible constituent. For example, the inner product of virtual
representations m; + o and m; — 7o is zero, when 7 and mo are irreducible.

Corollary 8.5. If we write

R?(e) = Z nppv
P
where p runs all isomorphism classes of irreducible representations of GT', we have

> n2={we Wer(T)| "0 =0}].

In particular, R$(0) is irreducible up to sign if and only if we have {w € Wgr (T) | ¥6 =
0} ={1}.

Proof. This follows from the inner product formula (choose (T7,6’) to be (T,60)) and the
general fact that, for irreducible representations p; and py of G, we have

1 if p1 = po,
0,,,0,,) =
< P1 ﬂ2> {O ifp1¥,02.
O

Definition 8.6. We say that a character 6: TF — C* is regular (in general position) if
{w € Wgr(T) | *0 = 0} = {1}. (Note that, by the above corollary, this is equivalent to
that R%(6) is irreducible up to sign.)

8.2. Weyl groups of k-rational maximal tori. The inner product formula suggests that
it is practically very important to determine the set Wgr (T, T) and its “action” on T%.
Suppose that Ngr (T,T") is not empty. If we fix any element ng € Ngr (T,T"), then we get
a bijection

Ngr(T) = Ngr(T,T'): n— ngn.
Similarly, if we fix any element wy € Wgr (T, T") (as long as this set is not empty), then we
get a bijection

Wer (T) = Wer (T, T'): w — wow.
Therefore, it is essentially enough to investigate the action of Wgr (T') on T.

Recall that Wgr (T) := Ngr(T)/TF. We also introduce Wg (T)F := (Ng(T)/T)¥. Note

the following lemma:

Lemma 8.7. We have Wgr (T) = We(T)F.

Proof. Let Ngr (T) — Ng(T) be the natural inclusion, which induces an inclusion Ngr (T') /T —
N¢(T)/T. The image of this inclusion is obviously fixed by F, thus we get a natural inclusion

Wer(T) = Ngr(T)/TF — (Ng(T)/T)" = Wg(T)F.

To show the surjectivity, let us take an element w € Wg(T)¥ and its representative
n € Ng(T). Since w is fixed by F, there exists an element ¢ € T satistying F'(n) = nt. We
apply Lang’s theorem to t € T'; then we can find an element s € T satisfying s~ 1 F(s) = t.
We let n' :=ns~!. As we have F(n') = F(n)F(s)~! = F(n)t 1s™! = ns™! = n/, we have
n' € Ngr(T). Moreover, obviously n’ and n maps to w. This completes the proof. O

23Since Wer (T, T') is not a group, it is better to say “how Wr (T,T") transports T' to T'”
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Based on this lemma, let us consider Wg(T)¥ instead of Wgr (T). We review how the
(GF-conjugacy classes of) k-rational maximal tori of G are classified. Let By be a k-rational
Borel subgroup G and Tj be a k-rational maximal torus of G contained in By. We write
Wy for the Weyl group Wy := Wg(Ty) := Ng(To)/To.2 Note that this is a finite group on
which F' (the Frobenius endomorphism of G) acts. In Week 5, we (Cheng-Chiang) discussed
that there exists a bijection

{k-rational maximal tori of G} /G*-conj. — W/ F-conj.

Let w € Wy. Let us recall how to produce a k-rational maximal torus 7T,, corresponding
to w. We take a representative n € Ng(Tp) of w and apply the Lang’s theorem to n; we
can find g € G satisfying g1 F(g9) = n. If we put T, := 9Ty = gTpg~!, then T gives a
k-rational maximal torus of G corresponding to (the F-conjugacy class of) w under the
above bijection. The action of F' on T, is described as follows:

Int( )

Twe——To gtg™* 't
To g to F(9)F(t)F(g)~" —— g 'F(g)F(t)F(g9)~'g = Int(w) o F(t)

Hence, in particular, we have an isomorphism
Int(g): Tolnt(w) =N TF. t gtg™t.

Note that Int(g) also gives an identification Wy = We(To) = Wa(Tw): w i gwg™!, which
induces

Int(g): Wént(w)OF = Wal(T, )F; w— gwg L.

Example 8.8. Let G = GL,, and Ty be the diagonal maximal torus of G. Then Wj is
naturally identified with &,,, which is realized as the subgroup of permutation matrices in
GL,,(F,). In this case, the Frobenius action F on W) is trivial.

(1) When w = 1, we have
Ty °F = TF = {diag(t1,.. ., tn) | t; € FX).

The action of ng(w)OF = Wy = 6,, on this group is given by the natural permu-
tation action.
(2) When w is the cyclic permutation (12 ... n), we have

Tlnt(w = {diag(t1,t?.. ?n_l) |t € Py}

(see Week 5 notes for details). Note that Wh]t(w = Wént(w) is nothing but the
centralizer of w = (12 ...n) in &,,. We can check that it is the subgroup (w)
n—1 n—1 n—1 n
generated by w. Since w(ty,t?...,t7 )= (f... 7 ) = (F... ¢ 1),
the action of (w) on Tgnt(w)OF is identified with the action of Gal(Fgn /Fy) on F,.

24Caution: this is the “absolute” Weyl group taken in G, while we consider the “relative” Weyl group
taken in G¥ in the inner product formula.
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8.3. Example: the case of GLjy. Let G = GLy. Recall that we exactly have two non-
isomorphic k-rational maximal tori of G (up to GF-conjugacy): the split one 7' and the
non-split one S.

(1) For the split one T', we have T* = T(F,) = (F})? and Wer (T) = Sy; &5 acts on
(F;)Q by swapping two entries. Therefore, for any character x = x1 X x2 of (F;)Q,
we have that

e R%(x) is irreducible (up to sign) if x1 # x2 (X is regular), and
e R%(x) consists of two irreducible representations (up to sign) if x1 = x2.

(2) For the non-split one S, we have ST = S(F,) = qug and Wer(S) = Z/2Z; /27

acts on F 5 via Gal(Fy2/IFy). Therefore, for any character 6 of IF 3, we have that
e RE(0) is irreducible (up to sign) if 09 # 6 (6 is regular), and
e RE(0) consists of two irreducible representations (up to sign) if 9 = 6.

Recall that, in Week 6, we proved that RS- 5(x) = Ind%(x). Also recall that, in Week

2, we proved that Indgzﬁgq) X is irreducible when y; # x2 and consists of two irreducible

representations when x; = x2. Therefore, the computation in the bove example is perfectly
consistent with those!

Exercise 8.9. For any 6 of S satisfying 0971 # 1, we have RS (6) = —my.
Hint: Recall that the irreducible representations of GLy(F,) are classified as follows (see
Week 2 notes):

(1) Characters of GLa(F,); x o det for a character x: F.

(2) Character twists of the Steinberg representation; St ® (x o det) for a character
x: Fy.

(3) Irreducible principal series representations; Indg x for x = x1 X x2 where x1 # xo.

(4) Trreducible cuspidal representations; 7y for a character 6’ of F;z satisfying 0’7 # 0'.

Exclude the first three possibilities by using the inner product formula for R%(x) and
R%(0), which implies that necessarily have RS (0) = £y for some ¢’. Then compute the
characters of RS () at regular semisimple elements using the Deligne-Lusztig character
formula. Compare it with the character computation on my: demonstrated in Week 2.

8.4. Proof of inner product formula for DL representations. We first prove the inner
product formula for Deligne-Lusztig representations by admitting the following;:

Theorem 8.10 (Orthogonality relation for Green functions). Let T and T" be k-rational
mazimal tori of G. Let B and B’ be Borel subgroup of G containing T and QS and Q%
associated Green functions. Then we have

1 G G |Ngr (T, 1))
|GF‘ Z QT(U)QT’(U): |TF|‘T/F| .
ueGlI:nip
Proof of Theorem B. Recall that the Jordan decomposition implies that we have the fol-
lowing bijection:

o\ F 1:1 F.
|_| (GS)umip — G 1w su.
seGEL
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By using the Deligne—Lusztig character formula, we have

(RTcp(0), Rfcp(0'))

1 -
= gr1 2 Fico(0)9) Ffcp@)(0)
geGF
1 1 1 @ P eR
:|GF| Z Z [(G2)F|? Z 0(x sx)QzT(u) Z 0 (y Sy)QyT,(u)
s€EGH ue(GL, s zeGF yeGF
z lszeTt y lsyeT'F
1 1 _ S — a° DNCIVEN
e > ICALE S 00y Tsy) Y. Qur(w)Qi ().
seGE 0 F z,yeG? ue(G)E
z tszeTt
y*lsyeT/F

Here, note that the values of Green functions are integer (exercise). By applying the or-
thogonality relation for Green functions (for G¢), this equals

1
G 2

sEGE

1 7|N(G0)F($T,yT,)‘
E O(x~Lsz)0 (y~—Lsy 2
|(G§)F‘ i yeGF ( ) ( ) |“7TF| . |yT/F|

z " tszweT?

y tsyeT't
Y S 0 )0 () - [Nigeyr (T, VT
[GF| £ [(GS)F[-[TFP2 A A G St
s€GE z,yeGF
w_lswETF
y lsyeT'F

Here, we note that the following two sets are bijective by the map (x,y,n) — (z,y " 'nz,n)
and its inverse (x,naxn/~1,n) < (x,n',n):

{(z,y,n) € GF x G" x GF |27 sz e T" ,y sy € T, n € Ngoyr ("T,YT")},
{(z,n/,n) € G¥ x Ner (T, T') x (G)F | 27 sz € TF}.

Hence, the above sum equals

1 1
=yt Z TR E Z O(x~ " sx)0' ((nen'—1)~1s(nan/-1)).
GT (G- ITT]
seGE zeGF
n'€Ngp (T,T")
ne(G)*

z " tsweTt

As n commutes with s, we have

9/((mcn'_1)_1s(mcn'_1)) — 9/(77//1’_18.’1371/_1) _ n/—1

0'(x sx).

In particular, this is independent of n € (G2)¥. Thus we get

1 o N T
s€GE zeGF
n'€Ngr (T,T")
z  szeT?
We finally note that the following map is surjective
{(s,2) € GE x GF | a7 tsx € TV} - TF: (5,2) = 27 1sa.
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Moreover, each fiber is of order |G¥'|. Therefore, we get

1 _ Y v YTy
7\GF| TP Z Z 0(x 1330)” 0'(z—1sx)

s€GE zeGF
n'€Ngp (T,T")
z " tszeT?

:ﬁz S o)

teTF n'€Ngr (T,T")

-y ﬁ S o o)

weW,r (T,T) teTF

_ Z {1 lf 9 - w 0/,
- 3 w g
weW o (T.17) 0 if6# 0,
— {w € Wer(T,T') | *0 = 0},
|
Exercise 8.11. For any connected reductive group G over k and its k-rational maximal
torus T, prove that the Green function Q%(—) is Z-valued.
Hint: Describe the Green function using a Lefschetz number by going back to the defini-
tion. Then utilize the fact that the Lefschetz number is an integer.
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9. WEEK 9: SEMISIMPLE CHARACTER FORMULA AND EXHAUSTION THEOREM

Recall that we proved the inner product formula for Deligne-Lusztig representations by
assuming the orthogonality relation for Green functions. The aim of this week is to partially
prove the orthogonality relation. More precisely, we introduce another result which we call
the “disjointness theorem” and then deduce the orthogonality relation from the disjointness
theorem.

Chart: Disjointness Theorem (Theorem H3, not proved this week)

Shis weelk Orthogonality relation for Green functions

s Wk T ner product formula for Deligne-Lusztig representaitons
(the second = is in fact <= ).

After that, we also prove that any irreducible representation can be realized in some
Deligne—Lusztig representation.

9.1. Geometric conjugacy and disjointness theorem. Let G be a connected reductive
group over k = [F, with associated Frobenius endomorphism F'. Suppose that 7" is a k-
rational maximal torus of G. Note that then we have T = T(F,-) for any r € Z~,. We
define the norm map N, from TF" to TT by

No:TF = TF: st F(t)---FrY(t).

Note that, if T = Gy, then N, is nothing but the usual norm map from TF = qur to
TH =TF). Recall that the norm map from F. to T* = F) is surjective. In fact, the same
property holds for the norm map for any T

Lemma 9.1. The norm map N,: TF — TF is surjective.

Exercise 9.2. Prove this lemma.
Hint: Suppose t € T¥. Apply Lang’s theorem for F": T — T to t; then we get an s € T
satisfying F"(s)s~! = t. Show that F(s)s~! belongs to T¥" and maps to ¢ under N,..

Definition 9.3. Let T and 7" be k-rational maximal tori of G. We say that characters 6 of
TF and @' of T'F are geometrically conjugate if (T, 0o N,) and (T”,6'oN,.) are GF" -conjugate
for some r € Z, i.e., there exists z € G satisfying 7’ = *T and 6’ o N, = *(§ o N,.).

Note that if § and 0" are conjugate, then they are geometrically conjugate (r can be taken
to be 1).

The following theorem is a key to the proof of the orthogonality relation (for convenience,
let us call the following the “disjointness theorem”):

Theorem 9.4 (Disjointness theorem). Let T and T' be k-rational maximal tori of G. Sup-
pose that characters 0 of T¥ and 0" of T'F are not geometrically conjugate. Then Rch(G)
and RS, p/(0") do not contain a common irreducible representation.

Remark 9.5. (1) The precise meaning of “a virtual representation R contains an ir-
reducible representation ¢” is that “if we write R as the sum ) o pp over all (iso-
morphism classes of) irreducible representations (n, € Z), then n, # 0”. Each
coefficient n,, is often called the “multiplicity” of p in R.
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(2) Recall that, as a corollary of the inner product formula, we obtained that “if # and
¢" are not G-conjugate, then (RS- 5(0), RS /(")) = 0”. On the other hand, the
statement of Theorem U is stronger than the equality (RS 5(0), RY, 5/ (6)) = 0.
Thus both the assumption and the conclusion of Theorem B are stronger than (a
consequence of) the inner product formula.

9.2. Orthogonality relation for Green functions. Recall that, for any connected re-
ductive group G with center Z, the quotient group G,.q4 := G/Z is of adjoint type (i.e.,
a connected reductive group with trivial center). Moreover, it is not difficult to see the
following.

e For any k-rational maximal torus T of G, its image T,q in G,q is a k-rational
maximal torus of G.q.

e The natural quotient map G — Gaq induces a bijection G ;) ELLN Gfd,unip.
Lemma 9.6. For any u € anip, we have Q% (u) = Q%dd (u), where u € Gfdunip is the
image of u.

Sketch of Proof. This follows from an alternative description of the Green function in terms
of the variants of the Deligne—Lusztig varieties. A bit more precisely, the Green function
QS can be also interpreted as the Lefschetz number of the action of Gl.ip on the variety
« quc 5 (see Week 5 notes). We can easily check that X%C p is canonically isomorphic
to X%‘dchad, which implies that Q%(u) = Q%‘; (2). See [DL76, Definition 1.9] and its
preceding remark for more details. O

Theorem 9.7 (Orthogonality relation for Green functions). Let T and T' be k-rational
mazimal tori of G. Let B and B’ be Borel subgroup of G containing T and Q% and Q%
associated Green functions. Then we have

1 Ngr (T, T’
uermp
Proof. The asserted identity is trivial if G is a torus. We handle the general case by the
induction on dimG. (Note that any 1-dimensional connected reductive group is a torus.)
We also note that the desired identity does not change even if we replace G with Gnq. (The
Green functions do not change by the previous lemma; all other numbers are multiplied by
the same number.) Thus we may suppose that G is of adjoint type in the following.
Here, let us remember the proof of the inner product formula. For any characters 6 of
TF and ¢ of T'F', we first computed (RY (), RS, 5 (0')) as follows:

(%) <RgCB(9>7Rg’CB’(9/)>
:ﬁZ ﬁ S ety Tsy) Y. QU (w).

s€EGE z,yeGF u€(G) ip
z lszeT?
vy~ lsyeT'F
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Then we utilized the orthogonality relation to rewrite this as follows:

1 _ [ S Y
.= 7|GF| NGVAE Z Z 0(x 13;10)" 0" (z—tsx)

s€GE zeGF
n'€Ngr (T, T")
z tszeTt
1 P Y
— .= Z ﬁze(t)w 0'(t)=---.
weWqr (T,T7) teT¥

The point here is that, in the current setting, the same computation works for any s # 1.
This is because, since G has trivial center, any nontrivial semisimple element s satisfies
dim G2 < dim G, hence we can apply the induction hypothesis to GS. (Note that the
condition that s # 1 is rephrased as the condition that ¢ # 1 in the last sum.) On the other

hand, for s =1, the contribution to (=) is simply given by

1 -
ueGE

unip

Therefore, we see that (m) is equal to

ﬁ > Qe+ Y ﬁ S e ).

wEG ip WEWr (T,T) teTF~{1}

s=1 s#1
Here note that the second term for s # 1 can be computed as follows:

3 ﬁ ST oo

weWor (T,T7) teTF {1}
1 —0 |LVCF(717v”
- TR oo (t) - — =2 2]
S g 2 00 - e
weWqor (T,17) teTF
T,T
= {w e Wgr (T, T') | "0 = 0'}| — WCTT(FE)'

In other words, we obtained
1 PR

(Wer (T, T7))|

= (Rfcp(0), R cp(0) — {w € Wer (T,T') | 0 = 0'}] + TF

This shows the following:
To obtain the orthogonality relation for Q¢ and Q% it is enough to find
just one example of a pair (6,0’) satisfying the inner product formula for
(RS p(0), R, -5 (0")) (of course, in a way which is not based on the or-
thogonality relation)!

We first consider the case where either 7% or T'F has a nontrivial character; we may
assume that TF has a nontrivial character 8. Note that, since the norm map for a torus is
surjective (Lemma ECT), § cannot be geometrically conjugate to the trivial character of 7%
Thus, by the disjointness theorem (Theorem BA), we have (RS 5(6), R /(1)) = 0. On
the other hand, obviously we have |[{w € Wgr (T,T') | *0 = 1}| = 0.
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We next consider the case where TF" and T'F do not have a nontrivial character; this is
equivalent to that |T¥| = |T'F| = 1. In this case, ¢ must be 2 and 7' and 7" must be split
over k. (We leave this for an exercise below.) This implies that 7" and 7" are G¥'-conjugate

to a split k-rational maximal torus Ty and also that RY_ (1) = RS, -5/ (1) & IndgéFm 1 (we
proved this in Week 6), where By is a k-rational Borel subgroup of G containing Ty. Then
we can check that

F F
(RS cp(1), RS (1)) = (Ind$y 1,IndGy 1) = [Wor (T)

(let me also leave this for an exercise!). On the other hand, obviously we have [{w €
Wer(T,T') | 1 = 1}| = [Wgr (T)].

Therefore, in both cases, we found an example of a pair (6, 6) satisfying the inner product
formula. This completes the proof. O

Exercise 9.8. Let T be a k-rational maximal torus of a connected reductive group G over
k. Prove that |T¥| = 1 only when ¢ = 2 and T is split over k.
Hint: utilize the formula of |T'¥| in terms of the character group of T'; see Week 5 notes.

Exercise 9.9. Prove that
(IndGy 1, IndGp 1) = [Wer (T)].

Hint: Recall that we proved this in the GLy case in Week 2. In fact, the same argument
works; combine (1) Frobenius reciprocity, (2) Mackey decomposition formula, and (3) Bruhat
decomposition.

9.3. Steinberg representations. Recall that, for G = GLo, the principal series represen-
tation Indg 1 is the sum of two irreducible representations; the trivial representation and the
Steinberg representations. (In this subsection, we temporarily omit the symbol “F” in the
induced representations to make the notation lighter.) In fact, the notion of the Steinberg
representation can be generalized to any connected reductive group over k.

Instead of explaining its definition in general, let us present an example of GL3. Let G :=
GL3 and B be the upper-triangular Borel subgroup of G. We consider the principal series
representation Indg 1. Then, as in the GLy case, Indg 1 contains the trivial representation.
However, the different point is that Indg 1 contains further more irreducible representations.
To see this, let us consider the following subgroup:

* * *
Pg,l = * k% ok C G.
0 0 =

Since B is contained in P, 1, the associativity of the induction implies that
Ind% 1 = Ind$, | (Ind?' 1) > Ind§, | 1.

Then, how about subtracting Indg2 , 1 from Indg 1?7 In fact, the remaining representation
is still not irreducible! So let us also consider the following subgroup:

* * *
PLQ = 0 = = C G.
0

Then, for the same reason as above, we have Indg 1> Indg1 , L. In fact, Indg1~2 1is a

different subrepresentation from IndIGD2 , L. So, how about subtracting both Indg1 , 1 and
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Indlcp‘;1 1 from Indg 1? This also does not work because both Indg1 , Land Indlc';z1 1 contains

the trivial representation, but the multiplicity of the trivial representation in Indg 1 is
exactly one! In other words, the trivial representation is subtracted doubly. We shouldn’t
give up here; how about considering the following representation:

(Ind§ 1) — (Ind, , 1) — (Ind3, | 1) + 1.

In fact, this gives an irreducible subrepresentation of Indg 1! This is the definition of the
Steinberg representation of GL3(Fy).

In general, the Steinberg representation is defined according to a similar idea. The sub-
groups P o and P, are examples of so-called parabolic subgroups of G. The idea is to
consider a certain signed sum of the induced representations from all parabolic subgroups
based on the “inclusion-exclusion principle” as in the GL3 case. The Steinberg representa-
tion can be investigated independently of Deligne—Lusztig theory. The precise definition of
the Steinberg representation of G* (let us write St) and its basic properties are summarized
in, for example, [Car8H, Chapter 6].

Therefore, in this course, let us just believe the existence of the representation Stg of G
satisfying the following properties.

Proposition 9.10 (Character formula for Stg). For any g € GF', we have

(=1)"¢77es - Stao(1)  if g = s is semisimple,
0 otherwise.

Sta(g) = {

Here, for any connected reductive group G over k, we let rg denote its k-split rank, i.e., the
dimension of the mazximal k-split torus of G.

Proposition 9.11 (Dimension formula). We let By be a k-rational Borel subgroup of G
with unipotent radical Uy. Then we have Stg(1) = |UL|.

Exercise 9.12. Show that the above propositions in the case where G = GLs.
9.4. Character formula for DL representations on semisimple elements.

Theorem 9.13 (Dimension formula). We have

G"]

RE(1) = (~1)re'T. 77| - Sta(1)

= (=177 |GT T,

where (=), denotes the prime-to-p part.

Proof. In fact, |[Uf'| is equal to the p-part of |GF|. On the other hand, |T| is prime-to-p
for any k-rational maximal torus of G. Hence, by the dimension formula of the Steinberg
representation, we have
F P GT|
G = T S
Thus our task is to show the first equality.

Recall that R (1) = Q$(1) by the definition of the Green function. By the same reasoning
as in the proof of the orthogonality relation, we may assume that G is of adjoint type.
Moreover, by induction on dim G, we may assume that the identity holds for G¢ for any
semisimple s # 1.
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We first consider the case where TF does not have a nontrivial character. Recall that, in
this case, T must be a split maximal torus Ty. Thus we have

ar| |aF) 67|
RE(1) — dimna®h 1 = 161 _ - .
() 5 L= BE T o] T Ste ()]

We next consider the case where T has a nontrivial character #. Recall that the Steinberg
F
representation St is contained in R%(]l) = Indgém 1. Thus, by applying the disjointness
theorem to RY(#) and RS, (1), we get

(R$(0),Stg) = 0.

On the other hand, we can also compute (R%(6), Stg) directly by using the Deligne-Lusztig
character formula and the character formula for Steinberg representations as follows:

(RS(0), Ste) = ﬁ S RE(9)(9) - Staly)
geGF

:ﬁz > RE(0)(su) - Sta(su)

s€GE uwe(Go)E

1 -
seGE
1 1 x G: rG—rgo
= QF o\F Cep L) T TRGE):

z tszeT?

The idea of the proof is similar to that of the orthogonality relation. We divide the above
sum according to s = 1 or s # 1. For s = 1, the summand is Q%(1) - Stg(1). For s # 1, by
the induction hypothesis, the summand is given by

|(Gi)F\ Do T0(s) - QUR(1) - (~1)7 7R - St (1)

zeG¥
z " tszeT¥
1 —ro [(GDT] -
. TO(s) - (—1)ree T, 1\Ts) L YT L Gt (1
@ 2, D FT-Steem Y o)
z7tszeT?
1 rg—rrx
ded
z7tszeT?
Therefore, since (R% (), Stg) = 0, we get
G (=yre— _
QF(1)-Ste()+ > T Y tos)=o.
s=1 s€GEN{1} zeGF

s#1
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By the same trick as in the proof of the orthogonality relation, the second term (the s # 1
part) on the left-hand side is equal to

F F
Tr U S 00) = i (<17

teTF~{1}
(we used that 6 is a nontrivial character). Hence we get
F
G rg—r ‘G |
)= (=1)err. 2 1
|

Corollary 9.14 (Deligne-Lusztig character formula on semisimple elements). For any s €

F
Gz, we have

1 TGy —TT
R%w)(s):'}F'?StGg(l) zgj *0(s).

z tszeT?
Proof. By the Deligne-Lusztig character formula and the dimension formula, we have
1 = G°
REO) = gayr 2 “0)-Q5()

zeGF
z tsweTt

1 N (A
- (). (—1)eerT . N\Fs) |
@ 2, U e S

z tszeT?

LD S
= s).
T S () 2,

z " lszeTt

Exercise 9.15. Show that the above corollary implies that R% () ® Stg =2 Ind?it 6.
Hint: Use the Frobenius character formula for induced representations.

9.5. Exhaustion theorem. For any s € G, we let 1(, denote the characteristic function
of the G¥-conjugacy class G - s := {zsz™! | & € G'} of s, ie.,, 1g): G — C is a class
function such that
1 geGF.s,
1, =
1(9) {0 g¢ G -s.

We write T for the set of k-rational maximal tori of G (literally, all such tori; not G¥'-
conjugacy classes). For any T € Tg, we write (T'F)Y for the set of characters of TF.

Proposition 9.16. For any s € GL, we have
1 ra—rmr —_
S o 2 ()T REE) = (Gl 1y

SsETET 0e(TF)V

Note that (GF'), denotes the centralizer of s in GF.
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Proof. We put u := LHS and p’ := RHS. To show that u = ', it is enough to check that
(u—p'yp—p'y = 0. For this, it suffices to show that all of (i, u), {(u, 1'), and (i, 1') are
equal.

Let us first compute (u, ). By using the inner product formula, we get

S > > o) (s) 1 (RE(6), RE.(9)))

seTeTG 0e(Tr)Y
seT' €T e G(T’F)v

5 Y. > ()70 (s) - [{w € Wer(T,T) | 0/ = "6}].
Stg

seTeTG oe(Tt)V
s€T'e€Ta g E(T/F)\/

(1, 1) =

Here, we change the index sets by noting the following bijection:

{((T,0),n) €I x G |s€T,s€"T}

L {(T,0),(T'0),n) eI XTI xGF |s€T,s €T ,n€ Ngr(T,T'),0 ="}
. (T, 0),n) = (T, 0),("T,"0),n)

where we put Z to be the set of pairs (T,0) of T € T and 6 € (T'¥)V. Then the above sum
equals

1
_— 6(s)~1-"0(s).
Sta () [T7] > (5) (5)
(T,0),n)eZxGF
seT
se™T

We note that the sum of §(s)~1" - §(s) = O(s~'n~lsn) over all characters 6 of Tt is zero
when s7'n~lsn # 1 and equal to |TF| when s~ 'n~lsn = 1 (equivalently, n € (G¥),).
Therefore, the above equals

1 o (GF)
SioErrr] 2 T =gy e Tels el
¢ (1T x(G), G
se

We note that Stg(s) = (—1)"¢7"(@)°Stge (1) and also that s € T' if and only if T' C Gf

(hence {T € T¢ | s € T'} is nothing but 7. ). Then, by using the fact that |Tge| = Stge (1)?
(see [CarRH, Theorem 3.4.1]), we arrive at

(e, 1) = [(GT)sl.

Let us next compute (u,p’). We note that, for any class function f € C(G), we have
<fv ]]-[s]> = f(S) Indeed,

_ ! _IGT S UGP
Ut = ey 3 1606l = =g o) = 1)
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Keeping this in mind, by using the Deligne—Lusztig character formula on semisimple ele-
ments, we get

(s i) = (s )

Y3 e RE0)()
seTeTG e(TF)V
(e

Z ST (s T e Y 07(s)
seTeTcee(TF) |TF] - Stgs (1) A

(=1)remres -1,.-1
I DD DI e Gt

F|. St
) st ocmry aegr TT1Steg(1)

z lszeT?

Here we carry out a similar argument to the previous computation; the sum of 9( “lolsy)
=1

over all characters 6 of T is zero when s 1z~ 1sz = 1 and equal to |T| when s~

(equivalently, = € (GF),). Hence the above equals
1 (—1)"e"es
Stg(s) seTeTs Stcg(l)

Again noting that the index set is equal to Tge and that Stg(s) = (—1)7¢7"@°Stge (1),
we conclude

Gl

(1) = 1(G)sl
by using [Car85, Theorem 3.4.1].
Let us finally compute (i, '):

(1) = w'(s) = [(GT)sl.
O

Corollary 9.17. Let p be an irreducible representation of GF'. For any s € GE,, we have

T2 > VT (p RE)).

SGTGTG 0e(TF)Vv

ss’

O,(s) =

Proof. As noted in the proof of the previous proposition, we have ©,(s) = (0,,4') with
the notation as there. By the proposition, we get ©,(s) = (0,, u); this is nothing but the
right-hand side of the asserted equality. ]

Theorem 9.18 (Exhaustion theorem). For any irreducible representation p of GY', there

exists a k-rational mazimal torus T of G and its character 6 such that p is contained in
RE(0).

Proof. Apply the previous corollary to s = 1; then we get

0,(1) Z Yo ()T (o, RE(D)).

TETG 0e(TF)v

StG

The left-hand side is the dimension of p, hence not zero. Thus the right-hand side is also
not zero. In particular, (p, R (#)) must be nonzero for at least one (T, 8). O
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10. WEEK 10: PROOF OF THE ORTHOGONALITY RELATION FOR GREEN FUNCTIONS

Recall that we proved the inner product formula for Deligne-Lusztig representations by
assuming the following:

Theorem 10.1 (Disjointness theorem). Let T and T be k-rational mazimal tori of G. Sup-
pose that characters 0 of T¥ and 0" of T'F are not geometrically conjugate. Then Rch(H)
and RS, p/(0') do not contain a common irreducible representation.

The aim of this week is to prove the disjointness theorem.

10.1. Preliminary reduction. Before we prove the disjointness theorem, let us introduce
some purely-algebraic lemmas. Recall that, for any representation (p,V) of G¥', its dual
(contragredient) representation (pY, V") is defined by Vv := Homc(V,C) and

(0" (9)(v"),v) = (", p(g™")(v))
forany g € GF,v eV, vV € VV.

Lemma 10.2. For any representation p of G, we have ©O,v(g) = O,(97!) = O,(g).
Exercise 10.3. Prove Lemma IIA.
Lemma 10.4. We have RS 5(0)Y = R 5(671).

Proof. By Lemma [, to prove the assertion, it suffices to check that RY_5(0)(g9) =
RE-5(071)(g) for any g € G¥'. If we write g = su for the Jordan decomposition of g, then,
by the Deligne-Lustig character formula, we have

Reo00) = e > a5 Q)
zizgszGTF
— m Z 9*1(1-*131') . Q?,I;(u) — Rch(afl)(g)

zeGF
z " tszeT?

(Recall that the Green function is Z-valued and that § = §~1). O

Lemma 10.5. Let R and R’ be representations of G¥'. Then R and R’ contain a common
irreducible representation if and only if R® R’V contains the trivial representation of G

Proof. Let us write R = Zp nyp and R’ = Zp n,p. Here, note that n,,n), € Z>¢ since R
and R’ are “genuine” (not “virtual”) representations of G'. Then we have

R®RY = ann;/p@) oY,
pip’

where p and p’ run all (isomorphism classes of) irreducible representations of G¥'. Note that
p® p"V contains 1 if and only if Homgr (1, p ® p’v) # 0. Since we have
HomGF(]lv P& p/V) = HOIHGF (plv p)
(so-called the Hom —® adjunction), it is furthermore equivalent to that p = p’ since p and
p' are irreducible. Moreover, in this case, Homgr (o', p) is 1-dimensional by Schur’s lemma.
In other words, p ® p’v contains 1 with multiplicity one. Therefore, the multiplicity of
the trivial representation 1 in R ® R’V is given by Zp npn,. Since n,,n), € Zxo, we have
>, npn, # 0 if and only if there exists p satisfying n,nj, # 0, i.e., both R and R’ contains
p. |
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Now let us start to prove the disjointness theorem. Suppose that 6 of T¥ and ¢’ of T'F are
characters not geometrically conjugate. Our goal is to show that RS 5(6) and RY, -5 (6')
have no common irreducible constituent. To show this, it is enough to show the following:

Proposition 10.6. If 6 of TF and 0" of T'F are characters not geometrically conjugate,
then HY (XS5, Q)07 ® HI(XE - 5,Q,)[0] do not contain the trivial representation for
any 1,j € Zxo.

Indeed, since we have
REcp(0™ )@ REcp(0) = Y HUXfep Q07" @ HI(Xfic 5, Q)[0],
1,J€Z>0
Proposition A implies that RS - 5(07') ® RS, - p/(0") do not contain the trivial representa-
tion. Then, by Lemmas A and M4, we see that R ;(0) and RS, -, (6') do not contain

the same irreducible representation.

Remark 10.7. Here is a “dangerous bend”. To show that R¥()Y = RZ(#~!) in Lemma
34, we utilized the Deligne-Lusztig character formula; taking the alternating sum is
crucially important for this. In other words, it could be possible that each individual
H{(XE-5,Q,)[0]Y is not isomorphic to Hi (X 5,Q,)[0~!]. Therefore, we cannot discuss
in the following way: &

If Hi(XE 5, Q[0 ® HI(XE - 5, Qp)[0] do not contain the trivial repre-

sentation, then H! (XS 5, Q,)[0] and HI (XE -5/, Q,)[0'] do not contain the

same irreducible representation (this part is wrong for the above reason).

Hence, in particular, R 5(6) and R%, -/ (') do not contain the trivial

representation.

By the “Kiinneth formula”, we have
Hf(XTGCB X ‘Xlg’cB’ﬂ@Z) = @ Hé(Xichv@Z) ® Hg(XIC’icBH@Z)
i+j=k
(this is a general fact about f-adic cohomology, which holds for any product X; x Xs of
algebraic varieties X; and Xo; see [CarRd, Property 7.1.9]). This isomorphism is G¥' x T x
T'F_equivariant. Here, on the left-hand side, we consider the action of G¥ x TF x T'F on
XE_p x X& - p given by (g,t,t') - (z,2') := (gat, g2't’). Therefore, we get

HE(Xfep X Xficp, Q)07 KO = @ Hi(Xf 5, Q)0 @ HI(XF 5, Q)[0]-
it+j=k
Hence, by putting 8 := ' K ¢, it is enough to show that
HE(Xfep % Xficp, Qo) 6]
does not contain the trivial representation for any k, or equivalently,
— F
Hf(XTGCB X XTG’CBHQZ)G 6] =0

for any k (the upper G denotes the GF-invariant part).
Now we appeal to another fact on the ¢-adic cohomology (see [Car835, Property 7.1.8]):

o r _
Hf(XTGCB X XﬁcB’»QZ)G = Hf((chB X chBf)/GFer),

25 have to confess that I was enough stupid to try this at the beginning.
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where (X§_ 5 x X& p/)/GF denotes the quotient of Xf- 5 x X§ -5 by the action of the
finite group G¥' (given by g - (z,2") = (g, gz')).

We summarize our discussion so far. The disjoint theorem for RY 5 (6) and RS, 5 (0)
is now reduced to the following:

Claim. If § and ¢’ are characters of TF and T'F not geometrically conjugate, then
H{ (Xfp x Xf.cp) /G, Q,)[0) =0
for any k € Z>o, where we put 6 := 071 K ¢'.

10.2. Reformulation of geometric conjugacy. Let Z,) be the localization of Z with
respect to the prime ideal (p), i.e.,

Zpy :={a/bcQ|a,bcZ,pib} CQ.

Note that the groups Rf and Z,)/7Z are isomorphic. A naive explanation of this fact is
as follows. Recall that, for any n € Zsq, Fpn is generated over F,, by the solutions to the
equation zP" —z = 0. Hence IF;” is a subset of F; consisting of the solutions to 2?" ~1 -1 = 0,
i.e., the subset of (p™ — 1)-th roots of unity. Thus, if we fix its generator (,»_1, then we can
define an isomorphism

Fr = 5agZ/Z: Cpn_y > k.

Since F, = Un€Z>0 Fpn, by choosing the generators (,»_; in a “coherent way”, we can
extend the above isomorphism to
F, = lim —1:7/7.
n€Zso
The right-hand side is nothing but Z,)/Z (note that any prime-to-p positive integer divides
p" — 1 for some n € Zg).

As we can see from this construction, we do not have a canonical choice of an isomorphism
F; = Zp)/Z. In the following, let us fix such an isomorphism.

Now let T be a k-rational maximal torus of a connected reductive group G over k. Recall
that its cocharacter group X.(7) = Hom(G,,,T) has an action of the Frobenius F, which
is given by v = F' oy. We write X.(T)(,) := X«(T) ®z Zp). Let us consider the following
short exact sequence:

0—>Z—>Z(p) —>Z(p)/Z—>0.

Since X, (T) is a free Z-module, this induces
0= X.(T) = Xu(T)p) = Xu(T) ®z (Zpy/Z) — 0.
Since the Frobenius action preserves each term, we get a commutative diagram
00— Xu(T) —— Xu(T)p) —— Xu(T) ®z (Z(p)/Z) —— 0
JFI J{Fl JFI
0 —— X, (T) —— Xu(T)(p) — Xu(T) @z (Z)/Z) —— 0.
Therefore, by applying the snake lemma, we get an exact sequence

Ker(F = 1] Xu(T) () — Ker(F = 1| Xu(T) @z (Z) /2))

— Cok(F — 1| X.(T)) = Cok(F — 1| X.(T))).
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Lemma 10.8. The kernel of the endomorphism F' — 1 of X.(T) ®z (Zy)/Z) is isomorphic
to TF.

Proof. Recall that we have fixed an isomorphism F; = Zp)/Z, hence we have X, (T) ®z
(Zpy/Z) = X (T) @z FZ. We consider the following map:

X.(T) @2 F, = T(F,)=T:v@ x> ~(x).
Then this is a well-defined homomorphism, which is consistent with the Frobenius actions
on the both sides. Moreover, this is a bijection (for example, we can easily check it by fixing
an isomorphism T 2 G’ ). Hence the kernel of the endomorphism F — 1 of X.(T) ®z EIX is
identified with TF on the right-hand side. ]

Lemma 10.9. The endomorphism F —1 of X.(T')(,) is an isomorphism. In particular, the
connecting homomorphism

TF — Cok(F — 1| X.(T)) = X.(T)/(F — 1) X.(T).
constructed above is an isomorpshim.

Proof. Note that X, (7)) is contained in X.(T)q := X.(T) ®z Q. To show that F' — 1 is
an isomorphism, it is enough to check that the determinant of F' — 1 is a prime-to-p integer.
(Then, the inverse matrix to /' — 1, which is taken in X, (7T")q, has its entries in X. (7))

Recall (from Week 5) that the endomorphism F' of X, (T)q is equal to gFp, where ¢
denotes the g-multiplication map and Fy is an endomorphism of X, (T")g of finite order.
This means that det(F — 1) is expressed as [];_;(¢¢; — 1), where r = dim T and ¢; is a root
of unity. Let K := Q(¢; | ¢ = 1,...,r); then each ¢(; — 1 belongs to the ring of intergers
Ok of K. It suffices to check that q(; — 1 is not contained in pOp, but this is clear because
q¢; — 1 is equivalent to —1 modulo pOk. |

We have obtained an identification
X (T)/(F-1)X,.(T)=TF.
In particular, if a character 6 of T is given, then we can regard it as a character of X, (7).

Proposition 10.10. Let T and T’ be k-rational mazimal tori of G. Let 6 and 0’ be char-
acters of TY and T'F. Then 6 and @' are geometrically conjugate if and only if there exists
g € G such that T' = 9T and the induced map Int(g): X.(T) = X.(T") transfers 0 to ¢’.

The proof of this proposition is not difficult, but we omit; see [Car8H, Propositions 4.1.2
and 4.1.3]. When the latter condition of the above proposition is satisfied, let us say “the
characters of X, (T) and X,(T") induced by 6 and 6’ are geometrically conjugate”.

10.3. Structure of the quotient of Deligne—Lusztig varieties. Let us investigate the
structure of the quotient variety (X5 5 x X% - p/)/GF. We write S for this quotient variety.
We put
S ={(u,v,2) € F(U) x F(U'") x G | uF(z) = zu'}.
Proposition 10.11. The following map is bijective and TT x T'F -equivariant:
0: S =8 (2,2)) = (27 ' F(x), 2’ F(2'), 2~ '2).

Here, T* x T'F acts on the left-hand side by (t,t') - (v,2') = (xt,xt') and on the right-
hand side by (t,t') - (u,u’,2) = (¢t~ ut,t'" u/'t' t712t'). Furthermore, this bijection is an

isomorphism of algebraic varieties.
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Proof. The well-definedness of the map can be easily checked by recalling the definition of
the Deligne—Lusztig variety:

XG pi={reG|2"'F(z) € FU)}.

The equivariance is also clear.

Let us check the injectivity of the map. Suppose that (z,z'), (y,y’) € XﬁcB X XﬁcB,
map to the same element, i.e,

(@7 Fa), o' (), a7"a") = (y 7 F(y),y T F ),y 1Y)

By comparing the first entries, we see that yz=' € G¥; in other words, there exists an
element g € G¥' satisfying y = gx. Similarly, by comparing the second entries, there exists
an element g’ € G satisfying v/ = ¢’2’. Finally, by looking at the third entries, we obtain
g = ¢’. This means that (z,2’) and (y,y’) are in the same G¥-orbit.

Let us next check the surjectivity. Suppose that (u,v’,2) € S,ie.,u € F(U),v € F(U"),
z € G satisfy uF(z) = zu'. By applying Lang’s theorem to u and u/, we can find an
element z,2’ € G satisfying 271 F(z) = u and 2’ "' F(2’) = /, respectively. Note that then
zzaz'~' € GF. Indeed, we have

F(zza'™') = F(2)F(2)F(2)™! = (zu) - (v 2u) - (2'u') 7! = z22’ 7L,

Hence, if we put g := xz2’~! € G, then we have ¢(z, gr') = (u, v, 2).

To show that this bijection is in fact an isomorphism of algebraic varieties, we need more
about algebraic geometry. We do not explain the details in this course; please see [CargH,
Proof of Theorem 7.3.8, 221-222 pages]. |

By this proposition, our task is furthermore reduced to show the vanishing of H:(S’, Q,)[6]
for each i € Z>o. The idea of computing the cohomology of &’ is to divide &’ into “cells”,
where the cohomologies are more computable. The key is the following general fact, which
is a generalization of the decomposition GLy = B U B({ })B used in Week2:

Theorem 10.12 (Bruhat decomposition). We have the following disjoint union decompo-
sition:
G= || BuwB,
weWg(T)
where w € Ng(T') is any representative of w € Wg(T). Here, each BwB is locally closed
and equal to UTWwU,,, where Uy, := U Nw™ ' Uw.2 Moreover, for any w' € Wg(T), the
union | | BwB s closed, where “<” denotes the “Bruhat order” on the Weyl group.

w<w’

Let us first rewrite the Bruhat decomposition in a way more useful for our purpose.
Recall that B be a Borel subgroup of G containing 7" with unipotent radical U. Since T is
k-rational, F'~!(B) is also a Borel subgroup of G containing T'; its unipotent radical is given
by F~1(U). The same statement holds for B’ = T'U’. We fix g € G satisfying 97" = T
and 9F~Y(B') = F~Y(B) (hence YF~1(U") = F~1(U)). For each w € Wg(T), we fix its
representative w € Ng(T') and put

Gw = (UN"U)TugU'.

Lemma 10.13. We have G = |, ey,
and satisfies the same closure relation as the Bruhat decomposition G = |_|w€WG(T) BwB.

1) Gw. Moreover, each G, is locally closed in G

26The symbol U denotes the unipotent radical of the “opposite” Borel subgroup B. You can just think
of it as a generalization of the lower-triangular Borel subgroup of GLy,.
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Proof. By the Bruhat decomposition, we have
G= || vriv,= || UTeUNw ' (T)w)
weWq (T) weWq(T)
By inverting the both side, we get
G= || Wnw'@wuw'TU= || (UN"T)TU.
weWg(T) weWea(T)
(Here, in the second equality, we replaced w with w=!.) Since we have U’ = U, we get
G= || @n“Oywurv,
wGWG(T)
By multiplying both sides by g from the right, we get
G= || @n“Ourgt'= || Gu
weEWg(T) weEWea(T)

(note that Tw = wT).
The assertion on the topology follows from by the above proof (we just rewrote each
cell). O

Recall that
S ={(u,u',2) e F(U) x F(U') x G | uF(z) = zu'}.
For each w € W, we put
S ={(u,u,2) € F(U) x F(U') x Gy | uF(z2) = zu’}.

Then we obviously have 8" = ||, ey, () Sty and each cell S, is locally closed in &’. More-
over, it can be easily checked that each G,, is stable under the left T-multiplication and the
right T’-multiplication. This implies that S/, is stable under the action of T x T'F on &'.
Therefore, by a property of ¢-adic cohomology (see [Car85, Property 7.1.6]), we have the
following:

If H(S!,,Q,)[0] = 0 for each i € Z>o and w € Wg(T), then we have
Hi(S',Q,)[0] for each i € Z>o.
Note that, by a property of the Bruhat decomposition, the natural product map
(UNYU) x Tig x U — (UNYU)TwgU" =: Gy

is bijective Thus we have

S, ={(u,v',v,a,v") € F(U) x F(U') x (UN"U) x Tig x U | uF(vav') = vav'u'}.
We finally introduce the following variety for each w € Wg(T):

SV ={(& ¢ v,a,0") € F(U) x F(U') x (UN"YU) x Tig x U' | £F(a) = vav'¢'}.
Then it is easy to verify that the map
(u, v, v,a,0") = (uF(v),u'F(v')"!, v, a,0")
gives an isomorphism of varieties S/, = S./. Moreover, under this isomorphism, the action
of TF x T'F on 8, is transformed into an action on S!/ given by
(t,t) - (&€ v,a,0") = (t7 1, 71 ot t  at 'Y,

Let us summarize our discussion so far. Now the proof of the disjointness theorem is
reduced to the following:
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Claim. If § and ¢’ are characters of TF and T'F not geometrically conjugate, then
HE(S,,Q)[0] =0
for any k € Z>o and w € Wg(T), where we put 6 := -1 X ¢'.

10.4. Proof of the disjointness theorem. We introduce a subgroup H,, of T x T" as
follows:

Hy = {(t,t") e TxT' | F{t")t'"* = F(ug) " (F(t)t™ ) F(ig)}.

Thus is a closed subgroup of 7' x T” contains T'F x T'F. The crucially important property
of this subgroup is the following:

Lemma 10.14. The action of T x T'F on S extends to an action of H,, which is given
by the same formula.

Proof. For any (t,t') € H,, and (§,£',v,a,v") € Sl), let us check that (¢,¢) - (£,&,v,a,v") =
(t=tet, =1t ot t—tat’ '~ 10't’) belongs to S!. Recall that
(t, ) - (&, v,a,0") = (t7 et /71 Yot 7 Lat! £ 1Y),
Thus the right-hand side of the defining equation of 8! (i.e., “¢F(a)”) is given by
(t7ret) - F(t™at') =t Y&t F(t) ' F(a)F ().
On the other hand, the left-hand side of the defining equation of S/ (i.e., “vav’€””) is given
by
(t~tot) - (tTat’) - () - () =t oad €Y = tTLEF (a)t!

(we used the defining equation of S/ in the second equality). Hence these coincide if and
only if we have

tE(t) ' F(a)F (') = F(a)t'.
By putting a = swg for some s € T, this is equivalent to
tF(t) ' F(ig)F(t') = F(wg)t’

(we used that F(s) commutes with ¢F(#)~!). This is nothing but the defining equation of
H,. O

Proposition 10.15. Let X be an algebraic variety with an action of a connected algebraic
group H. Then the action of H on H(X,Q,) is trivial.

By this proposition, the action of HS on HE(S!, Q,) is trivial. In particular, the action
of (T x T'"FYN HS on HI(S! Q,) is trivial.

Now let us complete the proof of the disjointness theorem. We write 6 and 6’ for the
characters of X, (T) and X, (7T”) induced by 6 and ', respectively. By the characterization
of the geometric conjugacy, our task is to show the following:

Claim. Suppose that
H(S,,Q,)[6] #0

for some i € Zso and w € Wq(T), where we put 6 := = X ¢’. Then 6 and §' are
geometrically conjugate.
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We suppose that H!(S',Q,)[0] # 0. Then, since (T¥ x T'F) N HE acts on this space
trivially, we have that 8 = =1 X ¢’ is trivial on (TF x T'F) N HY.

We define a group homomorphism

¢:TxT —T; (1) F(ig)t'F(ig) 't
We consider the “Lang map” of T'x T’ (note that this is a group homomorphism since T x T’
is abelian):
L:TxT —TxT; (tt)— (POt P,

Then, by definition, we see that H,, C T x T” is nothing but the kernel of ¢ o L.

We look at the maps on cocharacter groups induced by ¢ and L.

Lemma 10.16. Let S be a k-rational subtorus of T. Let X,.(T) - X.(T)/(F — 1) X,.(T) =
TF be the surjective homomorphism constructed above. Then the image of X.(T) N (F —
1)X.(9), is contained in T¥ N S.

Exercise 10.17. Prove this lemma. Hint: Go back to the construction of the identification
X.(T)/(F — 1)X.(T) = T* in Section 2 (the connecting homomorphism of the snake
lemma).

We apply this lemma to HS C T x T'. Then we see that, under the homomorphism
X (T)® X (T') —»TF x1'F,
the subgroup (X.(T) & X, (T")) N (F — 1)X.(H)(p) is mapped into (TF x T'F) N HY,. In

other words, the character (9=, 0") of X, (T)® X, (T") is trivial on (X, (T)® X, (T")) N (F —
DXL (Hg) )

Lemma 10.18. We put M := Ker(¢: X.(T)® X (T") — X.(T)). Then M is contained in
the kernel of (671,60").

Proof. Let m € M. Since (X, (T) ® X.(T"))/(F — 1)(X.(T) ® X, (T")) is isomorphic to
TF x T'F | its order is finite and prime-to-p. Thus there exists a prime-to-p integer n € Z
such that nm = (F — 1) for some £ € X.(T) ® X.(T"). As (F —1)§ = nm € M, we
have that £ € Ker(¢ o L) = X.(Hy) = X.(Hg). Hence m belongs to (F — 1) X.(HY) ),

which means that m lies in the kernel of (9’1,5’ ) by the remark in the paragraph above
Lemma. O

Let v € X,(T). Then, by the definition of M, (v,Int(F(wg)) ov) € X.(T) & X (1)
belongs to M. Hence, by the above lemma, (§~1,6") maps (v, Int(F(ig))o~) to 1. In other
words, we have

071 () - 0'(Int(F(ibg)) 0 7) = 1.
Equivalently, we have

6(7) = #/(Int(F(1hg)) o).
This means that the characters 6 and 0’ are geometrically conjugate.
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11. WEEK 11: CUSPIDAL REPRESENTATIONS

Recall that, in Week 2, we investigated cuspidal representations of GLy(F,). We first
defined principal representations of GLa(F,) by considering the induction from Borel sub-
groups, and then defined the cuspidality. The aim of this week is to first generalize the notion
of the cuspidality to any finite group of Lie type and investigate it from the viewpoint of
Deligne—Lusztig theory.

11.1. Parabolic subgroups. Let G' be a connected reductive group over k = F,,.

Proposition/Definition 11.1. (1) Let P be a k-rational closed subgroup of G. We
say that P is a k-rational parabolic subgroup of G if P contains a Borel subgroup
of GE

(2) For any k-rational parabolic subgroup P of G, there exists a k-rational connected
reductive subgroup L of P such that P is the semi-direct product P = Lx Up, where
Up is the unipotent radical of P. We call such an L a k-rational Levi subgroup of
P. We call the decomposition P = L x Up a Levi decomposition.

Remark 11.2. (1) By definition, G and any k-rational Borel subgroup of G are obvi-
ously parabolic subgroups; these are maximal/minimal parabolic subgroups.
(2) Note that a Levi subgroup of a given parabolic subgroup is not unique in general.

Example 11.3. Let G = GL3.

(1) We put
* * X
P=[x*x x x| CG.
0 0 =
Then this is a k-rational parabolic subgroup of G. The unipotent radical of P is
given by
1 0 =
Up=10 1 x ] CP.
0 0 1
Hence, for example, a Levi subgroup of P can be taken to be
x % 0
* x 0] CP.
0 0 =
(2) We put
x ok k
P=10 x x| CG.
0 % =

Then this is a k-rational parabolic subgroup of G. The unipotent radical of P’ is

given by
1 *x =x
UP/ = O 1 O C P/.
0 0 1
Hence, for example, a Levi subgroup of P’ can be taken to be
* 0 0
0 * x| cP.
0 *x =
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Recall that there always exists a k-rational Borel subgroup of G since k = Fg; let us fix
such a By. We call a k-rational parabolic subgroup P standard parabolic if P contains B.

Fact 11.4. Any k-rational parabolic subgroup of G is G(k)-conjugate to a k-rational stan-
dard parabolic subgroup of G.

The above definition of a parabolic subgroup is too abstract. So let us also introduce a
concrete description of (standard) parabolic subgroups. In the following (in this subsection),
we assume that G is split for simplicity. But the theory does not change even when G is
non-split.

Recall that reductive groups are classified by root data “(X, R, XV, RY)”. Let us first
review how (X, R, XV, RY) is associated to G (Week 4). We let Ty be a split k-rational
maximal torus of G contained in By. Then X and XV are defined to be X*(Ty) and
X.(Tp). The sets R and RY are finite subsets of X and XV; these are called the sets of
roots and coroots. An element o € X belongs to R if and only if there exists a closed
subgroup U, of G such that

e U, is isomorphic to G, (fix v: G, 2 U,), and
e U, is normalized by Ty-conjugation and satisfies

tou(z) -t =(alt) - x)
for any t € Ty and z € G,.

Let us call a root o € R a positive root if its associated root subgroup U, is contained in
the unipotent radical Uy of the fixed Borel subgroup By. We write R, for the subset of R
of positive roots. We put R_ := —R, and call an element of R_ a negative root. Note that
R_ is also a subset of R since we have —R = R.

Fact 11.5. (1) We have R=R; UR_.

(2) There exists a unique subset A = {ay,...,oq} of Ry such that any positive root is
uniquely written as a Zxo-linear combination of ai,...,0q; a = Zé=1 n;a; (n; €
Z>o).

We call A the set of simple roots. Note that, by this fact and the definition of R_, any
negative root is uniquely written as a Z<-linear combination of simple roots.

Remark 11.6. Recall that, the construction of root datum (X, R, XV, R¥) depends on the
choice of Ty, but does not on By. On the other hand, the notions of a positive root and a
simple root depends on By.

Now let I be any subset of A. We consider the following subset R; of R:
!
Ry := {a:ZniaieR’niinfiél}.
i=1

We define a k-rational closed subgroup P; of G by
Pr = <T0,Ua | o€ RI>.

For example:
e When I = A, we have Ra = R and P = (Tp, U, | @« € R) = G.
e When I =, we have Ry = Ry and Py = (Ty,U, | @ € Ry) = By.
In particular, in general, P; is a k-rational closed subgroup of G containing By, hence a
standard parabolic subgroup.
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Fact 11.7. The above construction gives an order-preserving bijection

{I c A} ELLN {k-rational standard parabolic subgroups of G}: I — Pr.

Moreover, each P is equipped with a natural Levi subgroup (we call the “standard Levi
subgroup”) Ly, which is given by

L] = <T0,Ua | a € R(I)>’
where

1
RY = {a:;niaieR‘ni:O zfzgé[}.

Example 11.8. Let G = GL3. Let Ty be its diagonal maximal torus. As usual, we choose
By to be the upper-triangular one.

* ok ok
By:=0 * x|,
0 0 =

then both P and P’ contains By, hence are standard. The set R of roots is given by
R = {:l:(€1 - 62), :|:(62 - 63), :|:(61 - 63)}.

The corresponding root subgroups are as follows:

1 % 0 1 0 0
Uel—eg = 01 0], U62—61 = * 1 0],

0 0 1 0 0 1

1 0 0 1 0 0
U627€3 = 0 1 = 5 U€37€2 = 0 0 5

0 01 0 1

1 0 =« 1 0 0
Usew=[0 1 0), Uyey=[0 1 0

0 0 1 * 0 1

Thus the positive roots are e; — ea, €3 — e3, e; — e3. The negative roots are es — e1, eg — ea,
es — e1. The set of simple roots A in this case is given by {e; — e2,e3 — e3} (indeed, we
have e; — e3 = (e; — ea) + (ea — e3)). We can check that the standard parabolic subgroups
corresponding to subsets of A are as follows:

* ok ok
Pr=1|* *x x|,
E O
* ok *
P{elfeg} = * * b) P{ezfeg} = O * )
0 0 0
k%
P@ = 0 =
0 0
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11.2. Parabolic induction. Let P be a k-rational parabolic subgroup of G. Let L be
a k-rational Levi subgroup of P and Up be the unipotent radical of P; hence we have
P = L x Up. Note that, as Up is connected, we can check that (P/Up)¥ = P¥'/UE by the
usual argument via Lang’s theorem. In particular, we have a canonical surjection (quotient)

PF - PP UL =~ (P/Up)F = LF.
Definition 11.9. Suppose that o is a representation of L. By pulling back o to P via

F
PF — LF | we regard o as a representation of PF. We call its induction Ind%r o to GF the
parabolic induction of o.

Example 11.10. Recall that a Borel subgroup is a minimal parabolic subgroup. Thus
let us take P to be By. In this case, a Levi subgroup of By can be taken to be Tj. The
parabolic induction of a 1-dimensional representation (Indgg x for a character y: B — C*)
is nothing but the principal series representation, which was introduced before.

Definition 11.11. Let p be a representation of G¥. We say that p is cuspidal if there does
not exist a pair (P, o) of a proper k-rational parabolic subgroup P C G with a Levi L and

a representation o of L such that (p, Indgi o) #0.

We explain why the cuspidal representations are so important. Suppose that p is a
non-cuspidal irreducible representation of G¥. Then, by definition, there exists a pair

F
(P1 € G,o01) such that p is contained in Indglp o1. We may assume that such a oy is

=

irreducible. Let us consider what will happen if o7 is not a cuspidal representation of L.
F

Then, again by definition, oy is contained in Ind?,ﬁw o9 for some proper parabolic subgroup
2

P, C L; with a Levi Ly and an irreducible representation oo of Lg . We can continue this
procedure, but not forever because there cannot exist an infinite chain of proper parabolic
subgroups. In other words, eventually we arrive at a pair (P, o), where o is a cuspidal
irreducible representation of L¥.

Exercise 11.12. Prove the associativity of the parabolic induction.

Proposition 11.13. Let p be a representation of GF'. The following are equivalent:
(1) p is cuspidal;
F
(2) for any k-rational parabolic subgroup P with a k-rational Levi L, we have {p, Indgg 1)
0.

Proof. Note that
Indffy 12 Indfr(Indfr 1) = @ Mmdfro,
o€lrr(LF)
where the sum is over all irreducible representations of L (we used that PF/UE = LT).
Therefore, we have (p, Indgg 1) = 0 if and only if (p, Indgi o) = 0 for all irreducible
representations o of L¥. O

11.3. DL’s cuspidality criterion. Suppose that T is a k-rational maximal torus of G
contained in a k-rational parabolic subgroup P of G. Let L be a Levi subgroup of P and
Up the unipotent radical of P. Then, under the map P — P/Up = L, T is mapped to a
k-rational maximal torus of L isomorphically (the kernel of the map is T'N Up, which is
semisimple and unipotent, hence trivial). Let us again write T for the k-rational maximal
torus of L determined in this way.
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Proposition 11.14. For any character 0: TY — C*, we have Indgi (RE(0)) = RE(0).

Proof. Let us fix a Borel subgroup B of G such that T'C B C P. Note that we can always

find such a Borel subgroup. (Indeed, by definition, P contains a Borel subgroup of G, say

B’. Let T' be any maximal torus contained in B’. Then, as any two maximal tori of a

connected linear algebraic group are conjugate, T and 7" are P-conjugate, say T = pT’p~!.

By putting B := pB’p~!, we get a desired Borel.) Let U be the unipotent radical of B.
We introduce a set P as follows:

P:={P' C G| P is a parabolic subgroup of G which is G*'-conjugate to P}.

Note that we have a bijection G¥'/P¥ op given by y — yPy~! (here, we use a fact
that, for any parabolic subgroup P, its normalizer group Ng(P) is P itself). Recall that
the Deligne-Lusztig variety ch g is defined by

XS p={ze G|z 'F(x) e F(U)}.
For each P’ € P, we define a subvariety XTCfC g(P’) of ch g by
XS p(P):={reG|2"'F(z) € FU), zPz~" = P'}.
Claim. We have X&_, = Upep XS p(P).

Proof of Claim. The union on the right-hand side is obviously contained in the left-hand
side and also disjoint. Thus it is enough to check the converse inclusion. Let x € X. Then
our task is to show that there exists P’ € P satisfying xPz~! = P’. In other words,
it suffices to show that there exists y € G¥ satisfying xPx~! = yPy~!. Since we have
r71F(x) € F(U) C F(B) C F(P) = P, we have an element z € P such that z71F(z) = 2.
By applying Lang’s lemma to z € P, we can find an element p € P satisfying 271 F(z) =
p~1F(p), or equivalently, xp~1 € G¥'. Then we have zPz~! = (xp~1)P(xp~*)~1. So y can
be taken to be xp~!. O

Here, we appeal to a general fact that By := L N B is a Borel subgroup of L with
unipotent radical L N U. Thus it makes sense to talk about the Deligne-Lusztig variety
XTLcBL associated to T' C By, C L.

Now let us suppose that « € X5 z(P’), where P’ = yPy~! with y € G¥. Then, since
rPr~t = P’ = yPy~!, we have y~ 'z € Ng(P) = P. If we again write y~ ' for the image
of yz=1 in L under the map P — P/Up = L, then we have (y~'z) ' F(yz=1) =271 F(x) €
F(U), hence (y~tz)"'F(yz~!) € LN F(U) = F(LNU). In other words, yr~! belongs to
X%C B, - Thus we obtain a morphism

XTGCB(PI) — XTLCBL rx ey,

which is an isomorphism whose inverse is simply given by yx < x.
Therefore, in summary, we get a decomposition

XIGCB = |_| XIC“;CB(P/) = |_| yX%CBL'
P'eP yeGF /| PF

It is not difficult to check that this decomposition implies that the representation of G

realized on H!(X{- 5, Q,) is nothing but the induced representation of the representation of

PF realized on Hi(Xf g, , Q) (through the map P¥ — L¥). By also noting that the above

decomposition is equivariant with respect to the right TF-translation action, we conclude

that RS (6) 2 Ind$r (RL(6)). O
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Definition 11.15. We say that a k-rational maximal torus T' of G is elliptic if T is not
contained in any proper k-rational parabolic subgroup of G.

Corollary 11.16. If the Deligne—Lusztig representation R%(F)) contains a cuspidal irre-
ducible constituent, then T must be elliptic.

Proof. Let us suppose that T is not elliptic, hence there exists a proper k-rational parabolic
subgroup P with a k-rational Levi subgroup L. Let p be any irreducible representation
contained in R$(6). Then, by the previous proposition, we have R$ () = Indgi RE(0).
This means that there exists an irreducible representation p; of LY contained in R (6)

such that p is contained in Indgi pr. Hence p is not cuspidal. ]

Then, how about the converse statement? In fact, when the Deligne-Lusztig represen-
tation is irreducible (recall that we call such representation “regular”), the situation is
understandable:

Proposition 11.17. Suppose that S is an elliptic k-rational mazimal torus of G. If
n: ST — C* is a regular character, then (—1)"¢="s RS (n) is an irreducible cuspidal repre-
sentation of G¥'.

Proof. Recall that, in the proof of the exhaustion theorem, we established a formula

StG X e RE0) = (G 1y

5€T€TG 0e(TF)V

for any s € GE. In particular when s = 1, we get

o X X (T RG0) = 671,

TETG 0e(TF)V

Note that we have |GF|- 1y = Ind?lp} 1. We utilize this formula for any k-rational Levi
subgroup L of a k-rational parabolic subgroup P:

StL Z S (1T RE(0) = Indfy) 1.

TeTL 0e(TF)V

We apply the parabolic induction from P¥ to G¥ to the both sides. Since we have
F
nd$ - (Ind{ {1} 1) Indgp 1 (Exercise), the previous proposition implies that

)= RE(0) = IndG 1.

TeT oe TF)v

Since

e there are |U5|-many lifts of a k-rational maximal torus T of L to a k-rational
maximal torus of P,

e Stg(1) =St (1) - UL,

e rg = rp, (this follows from that L is a k-rational Levi),

we get

)'o7"T . RE(9) = Indffy 1.
TeTp «9e(TF)v
81



Now we prove the cuspidality of the irreducible representation (—1)"¢~"s R¢(n). (Recall
that the irreducibility follows from the regularity of n and the dimension formula.) Our task
is to show that, for any proper k-rational parabolic subgroup P of G, we have

(=177 R§(n), Ind£ 1) = 0.
By using the previous decomposition, we have

(=)o~ R§(n), Indf 1) = StG Z Y (1T (RE (n), RE(6)).

TeTp 0e(TF)V

By the inner product formula, each summand is given by
{w e Wer(S,T) | “n =03

However, by the assumption that S is elliptic, .S cannot conjugate to any k-rational maximal
torus T of P; in particular, this summand is zero. O
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12. WEEK 12: UNIPOTENT REPRESENTATIONS AND LUSZTIG’S JORDAN DECOMPOSITION

12.1. Langlands dual and geometric conjugacy. Let G be a connected reductive group
over k = F, as usual (F' denotes its geometric Frobenius endomorphism). For simplicity, in
the following discussion, we assume that G is split.

Recall that split connected reductive groups over k are classified by root data. Let
(X,R,XV,RY) the root datum determined by G (if we take a k-rational split maximal
torus Ty of G, then X and XV can be taken to be X*(Tp) and X.(Tp), respectively). We
note that the swapped quadruple (XV, RV, X, R) also satisfies the axioms of a root datum.
We call this root datum the dual root datum of (X, R, XV, RY). Again by the classification
theorem of reductive groups, there exists a split connected reductive group over k whose
root datum is given by (XY, RY, X, R). We call this reductive group the Langlands dual
group of G. Let G denote it (we use the same symbol “F” for the geometric Frobenius of
G) Hence, if we take a k-rational split maximal torus Ty of é, then we have XV = X*(’f’o)
and X = X, (Tp).

Remark 12.1. (1) The Dynkin diagram of G is the dual diagram of that of G in the
sense that the underlying diagram is the same and the directions of arrows are
reversed. In particular, among A,,, By, C,, D,, Es, E7, Eg, F, Go, only B,, and
C,, are swapped under taking the dual; all other diagrams are self-dual.

(2) The Langlands dual group G is simply-connected (resp. adjoint) if and only if G is
adjoint (resp. simply-connected).

type of G type A,_1 type B,
G GL, | SL, | PGL, | Spiny, ; | SO2n41
G GL, | PGL, | SL, PSps,, Spay,

type of G type A,_1 type C,
type of G type C type D,
G SPa, PSp,,, | Spiny,, | SO2, | PSOq,
G SO2y,41 | Sping, 1 | PSOs2, | SOz, | Sping,
type of G type B, type D,

Now we reinterpret the notion of the geometric conjugacy in terms of the Langlands dual
group. Recall that G¥-conjugacy classes of k-rational maximal tori of G are classified by
the conjugacy classes of Wy := W (Tp). Let T be a k-rational maximal torus of G whose
conjugacy class is represented by w € Wy. In fact, the Weyl group of the Langlands dual
group Wo = WG(TO) is isomorphic to Wy. Thus, by regarding w as an element of Wo,
we can find a k-rational maximal torus 7' of Gy whose conjugacy class is represented by
w e Wo.

We note that X, (Tp) =& XV =2 X *(TO). This isomorphism is equivariant with respect to
the action of the Frobenius (in fact, since we are assuming that G is split, the Frobenius
actions on X, (Ty) and X*(Tp) are trivial). Since any maximal tori are conjugate, by fixing
g € G such that T = 9T, we obtain an isomorphism X, (Tp) = X.(T) (given by the
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pull-back via g-conjugation). Similarly, we also have an isomorphism X *(To) >~ X*(T).
Consequently, we obtain

X (T)2 X, (Ty) = XV = X*(Ty) = X*(T).
By chasing the above construction of T carefully, we can check the following:
we may find 7' such that the resulting isomorphism X, (T) = X*(T) is
equivariant with respect to the Frobenius actions.

Now recall that we have an isomorphism
TF = X,(T)/(F —1)X,(T).
(Week 10). In fact, we also have
(T7)" = X*(T)/(F = 1)X*(T),
where (TF)Y := Hom(T*,C*) (see [Car85, Proposition 3.2.3]). Therefore, by also using the

previous Frobenius-equivariant identification X, (T) = X*(T'), we finally obtain an identifi-
cation

(T =~ X*(T)/(F — )X*(T) 2 X,(T)/(F — )X, (T) = TF.
Hence, any character of T can be regarded as an element of TF c GF.

Let us summarize our discussion. We put 7¢ to be the set of k-rational maximal tori of
G. We put Zg to be the set of pairs (T,6) such that T € Tg and 6 € (TF)Y. Similarly,
we put Ja to be the set of pairs (T, s) such that Te To and s € TF. We constructed an
element (7', s) € Jg from a pair (T,0) € Z.

Note that both sets Zg and J are equipped with the actions of GF and GF by conjuga-
tion, respectively. We denote the sets of their GF'-conjugacy classes by the symbol Zg/~¢gr
and jG/NGF-

On the other hand, we also have an equivalence relation on Zg given by (71, 61) ~ (T, 62)
if and only if R% (01) and R% (f2) contains a common irreducible constituent.

Theorem 12.2. The previous construction induces the following diagram

Io/~ar —2 Ta/~ar (T,0) — (T, s)
To)~ —2 5 QL Jmn (T,0) —— s
Proof. We omit the proof; see, for example, [GM20, Corollary 2.5.14]. |

12.2. Lusztig’s Jordan decomposition.

Definition 12.3. Let s € GE. We let £(GF,s) be the set of isomorphism classes of
irreducible representations p of G such that (p, R%()) for some (T,6) € I whose GF-
conjugacy class (associated as in the previous section) corresponds to s. We call the set
E(GT, s) the Lustig series of irreducible representations associated to s € Gf;

Remark 12.4. Recall that we say an irreducible representation p of G¥' is unipotent if
there exists a k-rational maximal torus 7 of G satisfying (p, RZ(1)). Then the associ-
ated semisimple element of G¥' is 1. Hence, £(G¥',1) is nothing but the set of irreducible
unipotent representations of G¥'.
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Let us write Irr(GT') for the set of isomorphism classes of irreducible representations of
GF.
Theorem 12.5. We have a decomposition

(G = || €G",s),
s€GE /~

where the sum is over GF—conjugacy classes of semisimple elements of GF.
Proof. We first utilize the exhaustion theorem. The exhaustion theorem tells us that, for
any p € Irr(G), we can find a pair (T,0) € Zg such that the associated Deligne-Lusztig
representation R%(6) contains p, i.e., (p, R%(0)) # 0. Hence, by putting s € GE to be an
element corresponding to (T',60), we have p € (G, s). In other words, we get Irr(GF') =
Useer E(GT,s). Moreover, by definition, £(G¥', s) depends only on the G¥'-conjugacy class
of 5. Hence Irr(GF) = Usear /n E(GF,s).

We next use the disjointness theorem. Suppose that £(G*', s1) and £(G¥', s2) has nonempty
intersection (s1,s2 € GL); let p be any element of (G, 51) NE(GY, s3). Then there exists
(T;,0;) € I whose geometric conjugacy class corresponds to the G¥'-conjugacy class of s;

for each ¢ = 1,2. By the disjointness theorem, the geometric conjugacy classes of (Ts, 61) and
(Ty,65) must coincide. In other words, G¥'-conjugacy classes of s; and sy are the same. [

By the above theorem, to classify the irreducible representations of G¥', it is enough to
determine £(G¥, s) for each s € GL.

Theorem 12.6 (Lusztig). Suppose that the center of G is connencted. Then, for each
s € GE, there exists a bijection
E(GT,5) =5 E(GE1): p s py

such that, for any (T,0) € Zg, C Ig which corresponds to s, we have

(=1)7¢(p, RE(O)ar = (=1)7% (po, RF*(0))r -

In particular, by combining this theorem with the previous one, we get
nr(GF) = || &@GE).
SsEGE [~

This decomposition is called Lusztig’s Jordan decomposition. By Lusztig’s Jordan decom-
position, in order to classify irreducible representations of G, we are reduced to classify all

irreducible unipotent representations of G and its smaller reductive subgroups.
Here let us compare Lusztig’s Jordan decomposition with the normal Jordan decomposi-

tion:
G" = | ] (GF)umip,
sEGE
which induces a decomposition of the rational conjugacy classes:
GF/NGF = |_| (Gf)unip/NGf'
SEGfS/NGF

(Here, we are still assuming that the center of G is connected. In fact, this implies that the
centralizer group Zg(s) of any element s € GZL is connected.)
Recall that, for any finite group G, the number of the isomorphism classes of irreducible
representations of G is equal to the number of the G¥'-conjugacy classes of G. Then, does
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this suggests that there is an explicit relationship (in particular, a bijection) between them?
In general, the answer is NO (although sometimes it is possible; for example, when G = &,,,
both the sets of irreducible representations and conjugacy classes are parametrized by Young
diagrams.) Nevertheless, we can often find parallel phenomena in these two different worlds;
the phenomena on representations and conjugacy classes are often referred to as spectral and
geometric counterparts of the group theory of G, respectively. In this sense, Lusztig’s Jordan
decomposition can be thought of as a spectral analogue of the usual Jordan decomposition.

12.3. Representations of Weyl groups. In Lusztig’s classification of irreducible unipo-
tent representations of G, irreducible representations of the Weyl group Wy play a crucial
rule. Here we introduce some ingredients needed to state Lusztig’s results.

Recall that the dimension of Endc;p(Indgi 1) is given by |[Wp|. In fact, we furthermore
have that Endgr (Indg; 1) and C[W;] are isomorphic as C-algebras. This implies that the
irreducible representations of G¥' contained in Indg}; 1 bijectively correspond to irreducible

representations of Wy. Let p, denote the irreducible constituent of Indgi 1 corresponding
to x € Irr(Wy).

By the theory of Twahori—Hecke algebra, we can explicitly describe the dimension of p,
as a polynomial in ¢ (the cardinality of k = F,;). We let d,(t) € Q[t] be the polynomial
obtained by replacing ¢ in the explicit dimension formula of p, with “¢”, which is a formal
variable. We call this polynomial generic degree or formal dimension of x € Irr(W). We
define a non-negative integer a, € Zx>q to be the greatest integer such that ¢*x divides d, (t).

On the other hand, we introduce the coinvariant ring R(Wy) of Wy in the following
way. Let S be the symmetric algebra associated to the real vector space X*(Tp)g. Since
X*(Tp) has an action of Wy, this is a graded R-algebra equipped with an action of Wy. Let
J1 be the ideal of S generated by all W-invariant homogeneous vectors of positive degree.
Then we define R(Wp) := S/J4+. It is known that R(W)) is a finite-dimensional graded
algebra R(Wy) = @,~, R such that each R; has an action of Wy. We define a non-negative
integer b, € Zsq for x € Irr(Wp) to be the smallest integer such that Ry, contains x as a
representation of Wj.

Proposition/Definition 12.7. In general, it is known that we have a, < b,. We say that
x € Irr(Wy) is special when a, = b,.

12.4. Unipotent representations. Let us still keep assuming that G is split. Again recall
that the GF-conjugacy classes of k-rational maximal tori of G are parametrized by the
conjugacy classes of the Weyl group Wy. Now our aim is to classify all irreducible unipotent
representations of G. In other words, we want to determine the irreducible decompositions
of R%U (1) for w € Wy, where T, denotes any k-rational maximal torus of G corresponding
to w.

For any x € Irr(W;), we define a virtual representation R, of G¥' by

1
R, = — 0, (w) - RS (1).
X |Wo|w§0 X( ) Tw( )

Then determining the irreducible decompositions of R%U(]l) for w € Wy is equivalent to

determining the irreducible decompositions of R, for x € Irr(Wj). Indeed, suppose that we

know “all” about R, for any x € Irr(Wp). Then we can extract the information of R%UO (1)
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for a given wy € Wy in the following way:

> RO m = Y e Y Oyw)- A, (1)-8w)

xE€Irr(Wy) xEIrr(Woy) weWy
1 -
=2 i 2 Oxw)-Odwo)- RE, (1) = RE, (1)
weWp 0 xElrr(Wo)

Here, in the last equality, we used the fact that

[Wo-wo|
0 otherwise,

Y. Ox(w) Oy (wo) =

{ [Wol i 4y is conjugate to wo,
x€Irr(Wy)

where Wy - wy denotes the conjugacy class of wg (the orthogonality relation of irreducible
characters of a finite group; for example, see [Ser7d, Chapter 2, Proposition 7).
For any finite group I', we put

M(T) :={(z,0) |z €T /~p,0 € Irr(T'y)},

where I'/~r is the set of conjugacy classes and I',, := Zp(z). We define a pairing {—, —}: M(T")x
M(T') — C by

{(z,0),(y,7)} = Z T ™' 0,17 O, (gyg™ ") - O, (g 1zg).

ger
zgyg~ "=gyg 'z

For any function f: M(I') — C, we define a function f: M(I') — C by
fwn) =Y A@o), ()} f(z,0))
(z,0)eM(T)

We call the function f the non-abelian Fourier transform of f.
Now we explain Lusztig’s result. For each family F C Irr(Wy), Lusztig constructed a
finite group I'# equipped with an embedding F C M(T'x). We define

X(Wo) = || M(T5),
F

where the sum is over all families of Irr(Wy). For each x € F, we let z, denote its image in
M(Tr) C X(Wy). Recall that each M(I'x) is equipped with a pairing {—, —}. We extend
them to X(Wy) in an obvious way, i.e., for any distinct families F # F’, the extended
pairing {—, —} is zero on M(T'x) x M(T'x).

Theorem 12.8. There exists a bijection

X(Wo) — E(GF,1): 2 p,

satisfying
RX = Z {Z/azx}'pz/'
z'e X (Wy)
Remark 12.9. (1) The above theorem says that, in particular, the number of irre-

ducible unipotent representations of G is independent of ¢. It is governed by the
Weyl group Wy, which is only determined by G.
(2) In fact, when G is of type E7 or Eg, we have to modify the definition of the pairing
{—,—} a bit for some particular families F called exceptional families.
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When G is simple, only possibilities of a finite group I'x for a family F are (Z/2Z)™
(fOI" some m € Z>0), B3, G4, G5.
By noting the above description of R,, we define a virtual representation R, for any
z € X(Wp) by

R, = Z {22} par.

z'eX (Wop)

This virtual representation (or its character) is called an almost character of GF.
By looking at the book [LCusR4] (or also [CarR4, Sections 13.8 and 13.9]), we can find
tables of all irreducible unipotent representations of G¥'.

88



13. WEEK 13: EXAMPLE SESSION

13.1. Algebraic characterization of regular Deligne—Lusztig representations. In
this course, we have studied Deligne-Lusztig’s construction of a virtual representation
R% (0), which is critically based on very deep geometric discussions. The motivating problem
we want to discuss here is the following:

Q1. Is there a purely-algebraic characterization of R%(0)?

Let us recall the Deligne-Lusztig character formula:

Theorem 13.1 (DeligneLusztig character formula). Let g € G¥ with Jordan decomposi-
tion g = su. Then we have

1 B o
RE(0)(9) = TGOFl Z 0(z~ " sx) - Quf (w).
(G g
zelG
z lszeT?
Since any virtual representation is uniquely determined by its character, we can think
of this formula as the characterization of the Deligne-Lusztig virtual representation RS (6).

However, the right-hand side contains the Green functions QIGT Remember that it is the

restriction of the character of RTG;(Il) to the set of unipotent elements; so its definition
unavoidably depends on geometry.

But then, how about looking at the character values only on regular semisimple elements?
Recall the following (an easy consequence of the Deligne—Lusztig character formula):

Corollary 13.2. Suppose that s € GE (the set of reqular semisimple elements of G').

(1) If s is not conjugate to any element of T, then we have R$(0)(s) = 0.
(2) If s is conjugate to an element of T¥ (suppose that s € TT' ), then we have

REMO)(s)= > “0(s),

weW,r (T)
where Wer (T) := Ngr (T)/TF.

The right-hand side of this formula only consists of purely algebraic quantities! So we
next come up with the following question:

Q2. Is the above character formula on Gf, enough to characterize RS (6)?

In general, to determine a given representation from its character, we have to look at
all its character values. However, sometimes (depending on a group and a representation),
it is possible to determine a given representation by only looking at its character values
on some special elements. For example, recall that &3 has two 1-dimensional irreducible
representations and only 2-dimensional representation. This means that, to distinguish the
2-dimensional irreducible representation from the others, it is only enough to look at their
character values at 1! This example is maybe too stupid, but in any case we can hope that
we could give an affirmative answer to Q2 in some cases.

Indeed, we can find the following “reasonable” answer®:

27This result is due to Charlotte Chan and I (joint work), which is based on a preceding work of Guy
Henniart.
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Theorem 13.3. Let 0: T¥ — C* be a regular character, i.e., {w € Wgr(T) | Y0 = 0} =
{1}. Suppose that the following inequality holds:

|TF < TE GrAE

F

rs’

Then R$(0) is the unique irreducible representation (up to sign) such that, for any s € G

(%)

RS(6) {O if s is not conjugate to elements of T*,

(V) = : »
Yowew e () "0(s) ifs €T

Here, the subscript “rs” denotes the subset of regqular semisimple elements.

Before we proceed, let us give some comments. First, the inequality in the assumption
basically says that we have “many” regular semisimple elements. Thus the intuitive mean-
ing of this theorem is that “if we have sufficiently many regular semisimple elements, the
Deligne—Lusztig character formula on regular semisimple elements is enough to determine
a regular Deligne—Lustig representation”. Because this inequality is first considered in the
work of Henniart for G = GL,, let us call it the Henniart inequality.

Second, recall that || can be described by looking at the characteristic polynomial of
a Weyl element which defines the k-rational maximal torus 7. In fact, it is also possible to
determine |T£| as long as G and the Weyl element are explicitly specified. Thus, in principle,
we can explicate the Henniart inequality. In particular, we can show that the Henniart
inequality always holds whenever ¢ is sufficiently large; we will present some examples later.

Now let us prove the above theorem. In the following, we put G := G ~\ G5 and
Turs := T N Tys. According to the disjoint union decomposition GF = Gf; L Gfrs, we divide
the inner product (—, —) on the space of class function on G*" as follows:

1 .
(f1, f2)e := W Z f1(g) - f2(9),
geG¥

where o € {rs,nrs}. Hence we have (f1, fo) = (f1, f2)rs + (f1, f2)nrs-

Proof. Suppose that p is another irreducible virtual representation of G satisfying the
same character formula as RS (0) on GL. We put R := R$(#) Then our task is to show that

(p, R) # 0.
We have

(0, p) = (ps P)rs + (Ps P)urs
and
(R,R) = (R,R):s + (R, R)nrs-
Since both p and R are irreducible (the latter is due to that 6 is regular), we have (p, p) =
(R,R) = 1. On the other hand, by the assumption on p, we also have (p, p)rs = (R, R)ys.
Hence we get (p, p)nrs = (R, R)nrs. Let us put

X = <p7 p>rs = <R7 R>rSv Y= <p7 p>nrs = <R7 R>HTS
(thus X and Y are non-negative numbers satisfying X +Y = 1).
We have
{0, R) = (p, R)rs + (p; R)urs-
Again by the assumption on p, we have (p, R)s = X. On the other hand, by the Cauchy—
Schwarz inequality, we have

1
|<P, R>an| < <Pa P>grs : <R7 R>I%rs =Y.



Therefore, if we have X > Y, then (p, R) cannot be equal to 0. Since X +Y = 1, the
condition X > Y is equivalent to that X > %
Let us evaluate X:

X = (R, Ry = ﬁ S R$(0)(9) - RE(0)(g).

9EGE

By the regular semisimple Deligne-Lusztig character formula, R%(0)(g) = 0 for any g € GE
which is not conjugate to an element of T¥. Note that we have

(GF /Ngr (T)) x TE RN {g € GE | g is conjugate to an element of T}
(z,t) > atz L.
Thus, again by using the regular semisimple Deligne—Lusztig character formula, we have
1 G - DGO f—1)
X = 7 > > R§(O)(wta™") - RE(0) (wta—1)
z€GY /NLr (T) teTk

:ﬁ S Y B0 RO

z€GF /NLr (T) teTk

1 7
B |Ngr(T)| Z Z oo,

teTE waw €W (T)

By noting that TX = TF — TF

nrs?

1 w T w w9 ()
X:W 3 (Z o(t) - 0(t) — Y “6(t)- 9@))-

w,2w' €EWgr (T) \teTF teTk

nrs

we get

Here, since @ is regular, the orthogonality relation of characters implies that

ITF| if w=w,
0 otherwise.

> o) - vt =

teT¥
Thus we get

1 F 1 w w1
:m'|WGF(T)|'|T |*m' Z Z o(t) -"0(t)
w,w' €W (T) teTE

1 R
:1_m~ > Do) - ve(t).

wyw €EWgr (T) teTE

nrs

X

Hence, the triangle inequality implies that

T

X 21— o (Wer (D) - [Ty = 1= 55 Wer (7))
|Ngr (T)] T
Note that the Henniart inequality is equivalent to that
|TE 1
1B Wer(T)] < <.
‘jﬂ}?| | (;F‘( )‘ 2
Hence, if the Henniart inequality holds, we obtain X > % O
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13.2. Henniart inequality for Coxeter tori of exceptional groups. As mentioned
above, as long as the group G and its maximal torus T are specified, it is possible to explicate
the Henniart inequality. For example, for any split adjoint simple group of exceptional type,
the Henniart inequality for a k-rational maximal torus S of “Coxeter type”® is as in the

following table:

TABLE 2. Henniart inequalities for Coxeter tori of exceptional groups

G |ST| |SE condition on ¢
FEs (= +1)(+q+1) ¢ +q+1 q>2
3(q+1) g=-1 mod3 q>2
Bl -+ aty
q+1 q#% —1 mod 3 q: any
Es | +d - —¢' — ¢ +q+1 1 q: any
Fy - +1 1 q>2
3 = —1 mod 3 > 6
Ga ¢ —q+1 1 1
1 ¢# -1 mod 3 q>3

Therefore, only the cases which do not satisfy the Henniart inequality are
e (G is of type Eg, ¢ = 2;
o G is of type Fy, ¢ = 2;
o (G is of type G2, ¢ = 2,3,5.

13.3. The case of G3(FF3). In the following, let us investigate what is happening in the
case where G = G5 over F3. In fact, in this case, our characterization theorem for regular
Deligne-Lusztig representations does not hold!

First, again recall that GF'-conjugacy classes of k-rational maximal tori of G are parametrized
by the conjugacy classes in the absolute Weyl group Wy of G. The group G5 has 6 conjugacy
classes; they are named “@”, “A;”, “Ay”, “A; x A7, “Ay”, and “Gy” (see [Car72, Table 7]).
For any such conjugacy class I', let us write 11 for a k-rational maximal torus corresponding
to I'. Then the orders of Tf and Wgr (Tt) are given as follows (see also [Car72, Table 3
and Lemma 26]):

TABLE 3. Maximal tori of Go(FF,)

r 7] T (g = 3) [ [Wer (T7)] split rank
1] (g —1)2 4 12 2 (split)
Ay | (g=D(g+1) 8 4 1
A | (a=D(g+1) 8 4 1
Ay x Ay (g+1)? 16 12 0 (elliptic)
Ay +q+1 13 6 0 (elliptic)
Ga —q+1 7 6 0 (elliptic, Coxeter)

These are actually contained in GAP3. To see it, first put:
gap> W:=CoxeterGroup("G",2);
28The Weyl group has a particular conjugacy class consisting of elements called “Coxeter elements”. The

maximal torus S corresponds to the Coxeter conjugacy class.
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Then, by putting
gap> CharTable(W) .classnames;

GAPS3 gives the following output:
[ ||A0|l, ll"’AllI, IlAlll’ ||G2Il’ ||A2|l’ I|A1+"‘A1|| ]

Moreover, the following gives the list of rational maximal tori corresponding to the above
conjugacy classes:

gap> Twistings(W, [1);
[ (g-1)"2, (gq-1)(gq+1), (g-1)(g+1), (q"2-g+1), (q"2+g+1), (g+1)"2 ]

Note that “Gy” is the conjugacy class of Coxeter elements. Hence T, is our maximal
torus S. We can check that S has a non-regular semisimple element other than unit if and
only if ¢ = —1 (mod 3); in this case, the number of non-regular semisimple elements is 3.
Also note that the rational Weyl group Wgr(.9) is cyclic of order 6.

From now on, we focus on the case where k = [F3.

The group G»(F3) has 23 conjugacy classes, hence has 23 irreducible representations.
Table B is the list of 23 conjugacy classes; if a conjugacy class has name “nx”, then it means
that the order of any representative of the class is given by n. The last column of Table @
expresses which tori contain semisimple elements within the conjugacy classes.

TaBLE 4. Conjugacy classes of G5 (F3)

conjugacy class | order | order of centralizer | type tori
la 1 4245696 unit all
2a 2 576 SS. @,AhAl,Al X Al
3a 3 5832 unip. -
3b 3 5832 unip. -
3c 3 729 unip. -
3d 3 162 unip. -
e 3 162 unip. -
4a 4 96 Ss. A, A x Aq
4b 4 96 SS. A17A1 X A1
6a 6 72 - -
6b 6 72 - -
6¢c 6 18 - -
6d 6 18 - -
Ta 7 7 reg. ss. Gs
8a 8 8 reg. ss. Ay
8b 8 8 reg. ss. Ay
9a 9 27 unip. -
9b 9 27 unip. -
9c 9 27 unip. -
12a 12 12 - -
12b 12 12 - -
13a 13 13 reg. ss. Ay
13b 13 13 reg. ss. Ay
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The character table of Go(F3) is as in Table @. The 23 irreducible representations are
named “Xn” in the decreasing order according to their dimensions. This table is cited from
GAP3 ([SF97)); if you are familiar with GAP3, Table @ can be output just by typing:

>gap DisplayCharTable( CharTable( "G2(3)" ) );
(see https://webusers.imj-prg.fr/~jean.michel/gap3/htm/chap049.htm#SECT037 for
the details). In the following, we write X,, for the irreducible representation Xn.

We remark that among the 23 irreducible representations, the unipotent representations
are

X1, X2, X3, X4, X5, X7, X5, Xo, X10, Xo1
(X2, X3, X4, and X5 are cuspidal unipotent representations). This can be also seen by
using GAP3:

gap> Display(UnipotentCharacters(CoxeterGroup("G",2)));

In the GAP3 output, the above unipotent representations are expressed as phi{1,03}, G2[1],
G2[E3], G2[E3~2], G2[-1], phi{1,3}’, phi{1,3}’’, phi{2,1}, phi{2,2}, phi{1,6}. (See
https://webusers.imj-prg.fr/~jean.michel/gap3/htm/chap098.htm and also [CusR4,
372 page].)

TABLE 5. Unipotent representations of Ga(F,)

GAP3 label | dimension | label (¢ =3) | dim (¢ = 3) | label (Lusztig)
phl{l ,0} ]. X1 ]. —
phi{1 ,6} q6 X21 729 -
phi{1,3}’ | qb3(q)96(q)/3 X7 91 (1,7)
phi{1,3}"° | q¢3(q)¢6(q)/3 Xs 91 (g3,1)
phi{2,1} [ q¢3(q)ps(q)/6 Xy 104 (1,1)
phi{2,2} [ q93(q)ds(q)/2 X10 168 (g2,1)
G2[-1] 991 (q)¢3(q)/2 X5 78 (92,€)
G2[1] 993 (q)¢6(q)/6 X, 14 (1,e)
G2[E3] [ q¢%(q)93(q)/3 X3 64 (g3.0)
G2[E3°2] | ¢¢3(q)$3(q)/3 X, 64 (93,6%)
p1(q) =q—1,¢2(0) =q+1, ¢3(q) = > +q+1, ¢s(q) =¢* —q+1

We also remark that each unipotent representation is realized in RY, (1) as in Table B.
To see this via GAP3, type the following:

gap> DeligneLusztigCharacter(CoxeterGroup("G",2),n);

Here, n means the nth conjugacy class of the Weyl group of G2, where the conjugacy classes
are arranged in the following order (gap> PrintRec(CoxeterGroup("G",2));):

@, A1, A1, Ga, Ay, Ay x Ay

Now we discuss a counterexample to our characterization theorem for regular Deligne—
Lusztig representations. We have S¥ 2 Z/7Z and S = {1}. Moreover, we can check that
Wer(S) acts on the set of regular semisimple elements of S simply-transitively. Thus we
see that there exists only one regular character 6 of S¥ up to conjugation.

By the dimension formula of Deligne-Lusztig representations, we have

di RG 0) = ‘GF|
m Bs(6) = Fista - 197
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TABLE 6. Unipotent Deligne-Lusztig representations Go(F,)

r RS (1)

%) X1+ X7+ Xg+2Xg 4+ 2X109 + Xo1

Ay X1 — X7+ Xg— Xoy

Ay X1+ X7 — Xg — Xo1
A1><A1 X172X272X57X77X8+X21

Ao X1+ Xo— X3 — Xy — X0+ Xog

Go X1+ X3+ Xy + X5 — Xg + Xog

Note that r¢ = 2 and rg = 0, hence the sign appearing in the dimension formula is trivial.
In other words, RS (6) is a genuine representation. Since we have

o |GF=¢% (> 1) (g% —1) (see [CarRH, Section 2.9]),

e dim Stg = ¢° (see [Car8s, Proposition 6.4.4]),

o [$Fl=¢"—q+1,
we have

dim RS (0) = (g—1)* - (¢+1)* - (¢* + g+ 1) = 832.
Thus we conclude that RS (6) is the irreducible representation Xo3.
By the above description of the group S and the action of Wgr(S) on S, we see that

6
Y. =) G=-1
weWr (S) i=1
for any regular semisimple element s € S¥, where (7 is a primitive 7th root of unity.
Therefore, our characterization theorem in this case is asking whether an irreducible virtual
representation of G¥' such that

e O,(s) = 0 if the conjugacy class of s is one of “8a”, “8b”, “13a”, and “13b” (see

Table @) and

e O,(s) = £1 if the conjugacy class of s is “7a” (see Table @)

is necessarily equal to =R§ (0) or not.
By looking at the character table (Table @), we can easily find that X5 and X satisfy

these assumptions!
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13.4. Unipotent representations. One may notice that the above counterexample is
given by unipotent representations. In fact, this is not an accident.

Let G be a connected reductive group over k = F,, T' a k-rational maximal torus of G,
and @ a regular character of TF. We suppose that p is an irreducible representation of G’
having the same regular semisimple character values as R%(6).

Lemma 13.4. Suppose that there exists a character 8': T — C* such that
(i) 0 and 0" are not Wgr (T')-conjugate, and
(ii) Olre. = O/l .

Then we have either {p, R%(0)) # 0 or (p, RE (")) # 0.

Proof. By the regularity of 6, we have

(1) 1= (RE(6), RE(0)) = (RF(0), RE(0))rs + (RE(6), RE(6))us-
On the other hand, by the assumption (i) and the inner product formula, we have
(2) 0= (RE(6), RE(0")) = (RE(0), RE(6'))rs + (RE (), RE(0)) nrs-

Recall that, by the Deligne-Lusztig character formula
1 _ GO
RE(0)(9) = GV Z O(x " sz) - Q7 (u).
S

zeGF
z tszeT?

we see that the character of R%(f) on GE

s depends only on @|pr . Thus assumption

(ii) implies that R%(6) equals R$(0') on GE .. In particular, we have (R%(6), RE(0)) s =

(R$(0), RE(0))nrs- Thus, by the equalities (II) and (B), we get (R% (), RE(0)) s # (RE(0), RS(0'))1s.
We next look at the following two equalities:

(3) (p, RE(0)) = (p, RZ(9)):s + (p, BT (0))rs,

(4) (p. RE(0")) = (p, RE(0))rs + (p. RE (") s

Again by the same observation as above, we have (p, RZ(0))us = (p, RE(6"))nrs. More-
over, by the assumption on p, we have (p, R (0)),s = (R (), R$(0))ss and (p, RE(0')) s =
(R$(0), RG(0))rs. Since we obtained (R%(6), RE(0))rs # (R$(0), R$(0'))ss in the previous
paragraph, we have (p, R$(0))s # (p, R$(0'))rs. Therefore, by combining these equalities
with (8) and (@), we get (p, RE(0)) # (p, RE(¢)). In particular, at least one of (p, R%(6))
and {p, R%(6")) is not zero. O

Note that Lemma [33 has the following immediate consequence (choose 6’ to be the
trivial character 1 of TF):

Lemma 13.5. If 0|7+ = 1, then we have either (p, RE(0)) # 0 or (p, RE(1)) # 0.
Hence we get the following theorem (note that this result requires NO assumption on q):

Theorem 13.6. Suppose that 0 is a regular character of T whose restriction to TE, is
trivial. Suppose that p is an irreducible representation of G equipped with a sign € such
that, for any reqular semisimple element g € G¥',

O,(g) =¢- @Rg(e) (9)-

If p is not unipotent, then we necessarily have p = {—:R%(@).
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