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1. Week 1: Course overview

1.1. Introduction. Suppose that a group G is given and that we want to understand the
group G. But then what exactly does it mean to “understand” G? There is a rich framework
which enables us to “define” a reasonable answer to this problem; it is representation theory.
Recall that a representation of a groupG is a vector space V , say C-coefficient here, equipped
with an action of G.

Let us say that “we understand the group G” when we understand all the
representations of G.

The aim of this course is to give an introduction to “Deligne–Lusztig theory” (established
in [DL76]), which provides a realization of all representations of finite groups of Lie type.

1.2. Quick review of representation theory of finite groups. The basic reference of
this subsection is Serre’s book [Ser77].

In the following, we let G be a finite group.

Definition 1.1 (representation). We say that (ρ, V ) is a representation of G if V is a
finite-dimensional C-vector space equipped with an action ρ of G, i.e., ρ is a homomorphism
G→ GLC(V ) := AutC(V ). We often only write ρ or V for a representation (ρ, V ).

Definition 1.2 (homomorphism). Let (ρ1, V1) and (ρ2, V2) be representations of G. We
say that a C-linear map f : V1 → V2 is a homomorphism from (ρ1, V1) to (ρ2, V2) if it is
equivariant with respect to the actions ρ1 and ρ2 ofG, i.e., we have f(ρ1(g)(v)) = ρ2(g)(f(v))
for any g ∈ G and v ∈ V1.

V1
f

//

ρ1(g)

��

⟳

V2

ρ2(g)

��

V1
f

// V2

We write HomG(ρ1, ρ2) for the set of homomorphisms from ρ1 to ρ2 (this has a natural
C-vector space structure). We say that (ρ1, V1) and (ρ2, V2) are isomorphic if there exists
an isomorphism f : V1 → V2 (i.e., homomorphism which is isomorphic as a C-linear map).

Definition 1.3 (subrepresentation). Let (ρ, V ) be a representation of G. We say that a
subspace W of V is a subrepresentation of V if it is stable under the action ρ of G.

Definition 1.4 (irreducible representation). Let V be a representation of G. We say that
V is irreducible if V 6= {0} and there is no subrepresentation of V except for V itself and
{0}.

Note that basic operations on vector spaces can be considered also for representations.
For example, when (ρ1, V1) and (ρ2, V2) are representations of G, we define their direct sum
(ρ1 ⊕ ρ2, V1 ⊕ V2), which is a representation of G, by

(ρ1 ⊕ ρ2)(g)(v1 + v2) := ρ1(g)(v1) + ρ2(g)(v2)

for any g ∈ G and v1 ∈ V1, v2 ∈ V2. Similarly, we define the tensor product ρ1 ⊗ ρ2, which
is a representation of G, by

(ρ1 ⊗ ρ2)(g)(v1 ⊗ v2) := ρ1(g)(v1)⊗ ρ2(g)(v2).
We also often use the “box-tensor product” ρ1 ⊠ ρ2, which is a representation of G × G
defined by

(ρ1 ⊠ ρ2)(g1, g2)(v1 ⊗ v2) := ρ1(g1)(v1)⊗ ρ2(g2)(v2).
3



(Note that this definition works for, more generally, representations ρ1 of G1 and ρ2 of G2;
in this case, ρ1 ⊠ ρ2 is a representation of G1 ×G2.)

The following theorem is very fundamental and important in representation theory of
finite groups.

Theorem 1.5 (semisimplicity of representations). Let V be a representation of G. Then
there is a unique (up to permutation) way to write

V ∼=
r⊕
i=1

W⊕ni
i ,

where Wi’s are pairwise inequivalent irreducible representations of G and ni’s are positive
integers determined only by V .

By this theorem, the problem of understanding representations of G can be divided into
the following two steps:

(1) Classify all irreducible representations of G.
(2) Find a systematic way of determining each ni from a given V .

Let us list some fundamental facts on the first part (1):

Theorem 1.6. (1) The number of conjugacy classes of G equals the number of isomor-
phism classes of irreducible representations of G.

(2) We have

|G| =
∑
ρ

dim(ρ)2,

where ρ runs over isomorphism classes of irreducible representations of G.

The key to the part (2) is the following:

Theorem 1.7 (Schur’s lemma). Let (ρ1, V1) and (ρ2, V2) be irreducible representations of
G. Then we have

HomG(ρ1, ρ2) ∼=
®
C if ρ1 ∼= ρ2,

0 if ρ1 6∼= ρ2.

By Schur’s lemma, each multiplicity ni of an irreducible representation Vi in the ir-
reducible decomposition of a representation V of G is given by dimC HomG(V, Vi) (or
dimC HomG(Vi, V )). Then, how can we determine this number for each Vi? Theory of
characters provides a satisfactory answer to this question.

Definition 1.8 (character). Let (ρ, V ) be a representation of G. The character of (ρ, V ),
for which we write Θρ (or ΘV ), is the function G→ C defined by Θρ(g) := Tr ρ(g). Namely,
Θρ(g) is the trace of the representation matrix of ρ(g) (with respect to any C-basis of V ).

Note that Θρ is constant on each conjugacy class of G. Such a function is called a class
function on G. Let C(G) denote the set of C-valued class functions on G. Then C(G) has
a natural C-vector space structure equipped with an inner product 〈−,−〉 given by

〈f1, f2〉 :=
1

|G|
∑
g∈G

f1(g) · f2(g).
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Theorem 1.9. The set of characters of irreducible representations of G forms an orthonor-
mal basis of C(G) with respect the inner product 〈−,−〉. In particular, for irreducible rep-
resentations (ρ1, V1) and (ρ2, V2) of G, we have

〈Θρ1 ,Θρ2〉 =
®
1 if ρ1 ∼= ρ2,

0 if ρ1 6∼= ρ2.

Note that, by this theorem, it is enough to compute 〈ΘV ,ΘWi
〉 to get the multiplicity ni

of Wi in V .
From these discussion, we could say that our ultimate goal in representation theory of

G is to get a list of the character values of all irreducible representations on all conjugacy
classes of G. Such a list is called the character table of G.

1.3. Warmup example: S3. When G is a finite abelian group, all irreducible represen-
tations of G are 1-dimensional, i.e., characters. Thus there exists |G| irreducible represen-
tations of G; all of them can be described explicitly by, e.g., the structure theorem of finite
abelian groups.

So let us look at the non-abelian group of the smallest order, i.e., the permutation group
of three letters:

S3 = {1, (12), (23), (31), (123), (132)}.
Since this group has three conjugacy classes

{1}, {(12), (23), (31)}, {(123), (132)},
there should be three irreducible representations. Firstly, we have the trivial representation
of S3, which is 1-dimensional. Secondly, the signature character sgn: S3 → {±1} gives
another 1-dimensional representation. 1

So, what is the remaining representation? We let r be its dimension. Then we should
have

12 + 12 + r2 = |S3| = 6,

i.e., r must be 2. Let us find the remaining 2-dimensional irreducible representation. Almost
by definition, S3 acts on the set of three letters X := {1, 2, 3}. Thus, if we let V :=
C[X] be the space of C-valued functions on X, then S3 also acts on V (via pull-back of
functions). This representation is 3-dimensional and contains the trivial representation as
its subrepresentation. Indeed, the subspace of constant functions on X is stable under the
actionS3; let us writeW for it. We claim that V/W , which is 2-dimensional, is an irreducible
representation of S3. To check this, it is enough to show that 〈ΘV/W ,ΘV/W 〉 = 1.

Let us first compute the character ΘV of V . Since ΘV is a class function, it is enough
to compute the traces of the actions of 1, (12), and (123). Let 1i denote the characteristic
function of {i} ⊂ X for i = 1, 2, 3. Then {1i | i = 1, 2, 3} is a C-basis of V and the
representation matrices of the actions of 1, (12), and (123) with respect to this basis is given
by Ñ

1 0 0
0 1 0
0 0 1

é
,

Ñ
0 1 0
1 0 0
0 0 1

é
,

Ñ
0 1 0
0 0 1
1 0 0

é
.

Hence we have

ΘV (1) = 3, ΘV ((12)) = 1, ΘV ((123)) = 0.

1Recall that, in general, the signature character of S3 associates +1 (resp. −1) to a permutation expressed

by the product of even (resp. odd) number of transpositions.
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As we have ΘW (1) = 1,ΘW ((12)) = 1,ΘW ((123)) = 1, we get

ΘV/W (1) = 2, ΘV/W ((12)) = 0, ΘV/W ((123)) = −1.

Therefore, we have

〈ΘV/W ,ΘV/W 〉 =
1

6

∑
g∈S3

ΘV/W (g) ·ΘV/W (g)

=
1

6

(
22 + 02 + 02 + 02 + (−1)2 + (−1)2

)
= 1.

1.4. What is Deligne–Lusztig theory? When a group G is finite, we win if we can find
all irreducible representations “by hand” in any way. However, we immediately notice that
it’s not easy in general. (We will look at the example of GL2(Fq) in the next week. We
construct its all irreducible representations by hand, by we can see that it’s already not
obvious at all.)

In fact, we can find an idea in the above example of S3. This example suggests that,
more generally, we can try to construct representations of a given group G according to the
following steps:

(1) First, introduce a “space” X equipped with an action of G.
(2) Second, find a “functorial linearization” X 7→ VX , i.e., an operation which associates

a vector space to each space X which is functorial in X. Then, the action of G on
X induces an action of G on VX .

Deligne–Lusztig theory exactly realizes this idea for so-called finite groups of Lie type.
What is a finite group of Lie type? To explain this, let us first recall the definition of a
general linear group:

GLn(C) := {g ∈Mn(C) | g is invertible}.

So GLn(C) is the set of all invertible n-by-n matrices whose entries are complex numbers;
this has a group structure with respect to the usual multiplication of matrices. The point
here is that the definition of a general linear group completely makes sense even if we replace
the field C with any field (or even any ring!). Thus, in some sense, we may think of GLn as
a “machine” which associates a group to any ring;

R 7→ GLn(R) := {g ∈Mn(R) | g is invertible}.

In particular, by taking R to be a finite field Fq, we obtain a finite group GLn(Fq).
In general, this kind of machine is called an algebraic group. Among algebraic groups,

there is a particular class called reductive groups. The general linear group is one of the
most typical examples of a reductive group. A finite group of Lie type is a finite group
obtained by letting R be a finite field Fq for a reductive group G which can be “defined over
Fq”. (In the case of GLn, its definition makes sense over Z, hence also over Fq.)

Let us introduce more examples. Recall that the symplectic (resp. orthogonal) group is
the group consisting of symplectic (resp. orthogonal) matrices:

Sp2n(C) := {g ∈ GL2n(C) | tgJ2ng = J2n},

On(C) := {g ∈ GLn(C) | tgg = In}.
Here, J2n (resp. In) denotes the anti-diagonal matrix whose (i, 2n+1− i)-entry is given by
(−1)i−1 (resp. the identity matrix). The defining equations of these groups only uses 1 and
−1, hence it makes sense to replace C with Fq; then we get Sp2n(Fq) and On(Fq).
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Let us also introduce a bit more tricky example. The unitary group is the group consisting
of unitary matrices:

Un := {g ∈ GLn(C) | tgg = In}.
Here, g denotes the entry-wise complex conjugate of g. Note that the complex conjugation
is nothing but the nontrivial element of the Galois group of the quadratic extension C/R.
This viewpoint suggests that we can define a unitary group in the same way as long as
a quadratic extension of fields is given. In particular, by taking a finite field Fq and its
quadratic extension Fq2 , we can define

Un(Fq) := {g ∈ GLn(Fq2) | tF (g)g = In}.
Here, F denotes the nontrivial element of Gal(Fq2/Fq); this is so-called the Frobenius, which
is given by taking (entry-wise) q-th power.

Now let us also mention the “space X” and the “functorial linearization X 7→ VX”. The
space X in the context of Deligne–Lusztig theory is called the Deligne–Lusztig variety. The
definition of the Deligne–Lusztig variety depends on a finite group of Lie type G(Fq) (with
its additional structure). It originates from a very concrete curve with Fq-coefficient called
the Drinfeld curve, whose defining equation is given by xyq−xqy = 1. However, the general
Deligne–Lusztig variety is defined based on a very sophisticated language of the theory of
reductive groups. We have to make full use of the structure theory of reductive groups to
analyze its geometric structure.

On the other hand, the role of “functorial linearization X 7→ VX” is played by the
theory of étale cohomology. More precisely, by choosing a prime number ` different to the
characteristic p of Fq, we obtain the (compactly supported) `-adic cohomology Hi

c(X,Qℓ)
of X. This cohomology Hi

c(X,Qℓ) is a finite-dimensional Qℓ-vector space, where Qℓ is an
algebraic closure of the `-adic number field Qℓ. The point here is that Qℓ is abstractly
isomorphic to C, hence we can regard Hi

c(X,Qℓ) as a finite-dimensional C-vector space.
In particular, we obtain a representation of G(Fq). In order to analyze the structure of

Hi
c(X,Qℓ) as a representation of G(Fq), we also need to appeal to various fundamental

properties of the étale cohomology.

1.5. Why Deligne–Lusztig theory? Then, why is Deligne–Lusztig theory so important?
The first reason is that Deligne–Lusztig theory is only a framework (at present) which
enables us to construct all irreducible representations of finite groups of Lie type in a uniform
way. A lot of important examples of finite groups are contained in the class “finite groups
of Lie type”. However, irreducible representations had been classified only in the case of
GLn(Fq) (due to Green in 1955) before the work of Deligne–Lusztig. Moreover, even in that
case, Green’s method is based on heavy combinatorial arguments, hence it is quite nontrivial
whether it can be generalized to other finite groups of Lie type. Let us cite a comment of
Shoji from his book [庄 04] (written in Japanese):

A preprint by Deligne–Lusztig was released when I was a student. I was
shocked about it; it was like that an iron-made steamship suddenly appeared
in a peaceful small village which was only based on the handicraft industry
before. For people peacefully living with GLn(Fq) at that time, Deligne–
Lusztig theory was so surprising, almost like the devil’s work.

The second reason is that Deligne–Lusztig theory is expected to have an application to
the local Langlands correspondence. The local Langlands correspondence is also called the
non-abelian class field theory; roughly speaking, it predicts a natural connection between
representations of p-adic reductive groups (such as GLn(Qp), Sp2n(Qp), etc...) and Galois
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representations. The expectation is that a certain case of the local Langlands correspondence
can be made from Deligne–Lusztig theory (e.g., [DR09]). 2

2But nothing about this will be explained in this course! Maybe next semester???
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2. Week 2: Representations of GL2(Fq)

Aim of this week. The aim of this week is to construct/classify all irreducible represen-
tations of GL2(Fq), especially, write the character table. Through this example, we should
be able to encounter various basic notions on reductive groups and representation theory of
finite groups of Lie type. The explanation given here follows [BH06, Section 6].

2.1. Group structure of GL2(Fq). Let Fq be a finite field of order q and characteristic
p > 0 (hence q is a power of p). Let GL2(Fq) denote the general linear group of size 2 with
Fq-coefficients, i.e.,

GL2(Fq) :=
ßÅ

a b
c d

ã
∈M2(Fq)

∣∣∣∣ ad− bc ∈ F×
q

™
.

In the following, we simply write G for GL2(Fq). It is a basic fact that the order of GL2(Fq)
is given by (q2 − 1)(q2 − q).

Exercise 2.1. More generally, it is known that the order of GLn(Fq) is given by
∏n−1
i=0 (q

n−
qi). Prove this.

We can classify the conjugacy classes of GL2(Fq) by looking at the characteristic poly-
nomials as follows. For an element g ∈ GL2(Fq), let φg(x) ∈ Fq[x] denote its characteristic
polynomial. Then we have the following three possibilities:

(1) φg(x) is of the form (x− a)2 for some a ∈ F×
q .

(2) φg(x) is of the form (x− a)(x− b) for some distinct a, b ∈ F×
q .

(3) φg(x) is an irreducible monic of degree 2.

We first consider the case (1). If φg(x) = (x − a)2, then the minimal polynomial of g is
either x− a or (x− a)2. In the former case, g is equal to

za :=

Å
a 0
0 a

ã
.

This element is central in G. Thus the conjugacy class of g is simply given by {za}.
In the latter case, by theory of Jordan normal form, g is conjugate to

ua :=

Å
a 1
0 a

ã
.

By a simple computation, we can check that the centralizer of ug in G is given by ZU (see
Section 2.3 for the notation), which is of order q(q − 1). Hence the conjugacy class of ug is
of order |G|/q(q − 1) = q2 − 1.

We next consider the case (2). In this case, g is necessarily conjugate to

ta,b :=

Å
a 0
0 b

ã
.

The centralizer of ta,b is given by T (see Section 2.3 for the notation), which is of order
(q − 1)2. Hence the conjugacy class of ta,b is of order |G|/(q − 1)2 = q2 + q. We caution
that ta,b and ta′,b′ are conjugate if and only if (a′, b′) = (a, b), (b, a). In particular, there are(
q−1
2

)
= (q−1)(q−2)

2 conjugacy classes of this type.
We finally consider the case (3). Suppose that φg is an irreducible monic of degree 2.

The subring Fq[g] of M2(Fq) is a degree 2 extension of Fq (given by the minimal polynomial
φg), hence isomorphic to Fq2 . The centralizer of g in G is given by Fq[g]×, which is of order
q2 − 1. (Indeed, the centralizer of g in M2(Fq) (let us write E) must be a commutative
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subring containing Fq[g]. Since it can be regarded as a Fq[g]-vector space, by counting the
dimensions, we see that E must be Fq[g] or M2(Fq). However, the latter case is impossible
as M2(Fq) is not commutative. Thus E = Fq[g], hence the centralizer of g in G is given by
E× = Fq[g]×.) Hence the conjugacy class of g is of order |G|/(q2 − 1) = q2 − q. Note that,
by choosing an Fq-basis of Fq[g] to be {1, g}, then the g-multiplication action on Fq[g] is
represented by

sa,b :=

Å
0 −b
1 −a

ã
,

where we write φg(x) = x2 + ax + b. This matrix represents the conjugacy class of g. An

easy computation shows that there are q2−q
2 irreducible degree 2 monics in total. Hence the

number of conjugacy classes of this type is also given by q2−q
2 .

Now we see that there are

(q − 1) + (q − 1) +
(q − 1)(q − 2)

2
+
q2 − q

2
= q2 − 1

conjugacy classes of G in total. Hence, the number of irreducible representations of G must
be q2 − 1.

Table 1. Conjugacy classes of GL2(Fq)

representative order of the conjugacy class parameter # of parameters
za 1 a ∈ F×

q q − 1

ua q2 − 1 a ∈ F×
q q − 1

ta,b q2 + q a, b ∈ F×
q , a 6= b (q−1)(q−2)

2

sa,b q2 − q irr. deg. 2 monic q2−q
2

2.2. Philosophy of induction. We next give some explanation on a general strategy to
construct irreducible representations. For this, here let G temporarily denote any finite
group.

Definition 2.2. For a representation (σ,W ) of a subgroup H of G, its induction to G is
defined by

IndGH σ := {f : G→W | f(hg) = σ(h)(f(g)) for any h ∈ H and g ∈ G},

where G acts via right translation, i.e.,

(x · f)(g) := f(gx)

for any x ∈ G and g ∈ G.

Recall that the character of the induced representation IndGH σ can be expressed in terms
of the character of σ and the group-theoretic relation between G and H as follows:

Theorem 2.3 (Frobenius formula). For any g ∈ G, we have

ΘIndG
H σ(g) =

∑
x∈H\G
xgx−1∈H

Θσ(xgx
−1).
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So, in principle, we should be able to know all about the induced representation IndGH σ
as long as the subgroup H and its representation σ are “well-understood”. Based on this
idea, one can try to construct irreducible representations of G using “well-understood”
irreducible representations of subgroups of G. Note that the dimension of IndGH σ is given

by [G : H] · dimσ. Especially, if H is smaller, then the dimension of IndGH σ is larger. Thus

it is possible to expect that we can find more irreducible representations in IndGH σ for small
H. Indeed, we have the following fundamental theorem:

Theorem 2.4. Let G be a finite group. Then the induction of the trivial representation of
the trivial subgroup to G decomposes as follows:

IndG{1} 1
∼=
⊕
ρ

ρ⊕ dim ρ,

where the direct sum is over the isomorphism classes of all irreducible representations of G.

It is beautiful that every irreducible representation is realized in the induction of the
trivial representation. However, we can also think that here too many irreducible repre-
sentations are mixed together, hence it’s difficult to distinguish them. So, for example, it
would be great if we could find a subgroup H of G which is simultaneously

• small enough that the induction toG can produce various irreducible representations
and

• large enough that the inductions are irreducible (or “almost” irreducible).

What we will see in the next section is an example of such a nice subgroup for GL2(Fq),
which is called a “Borel subgroup”. (In fact, we can also find a family of such nice subgroups
for any finite group of Lie type, called “parabolic subgroups”.)

2.3. Principal representations of GL2(Fq). We introduce the subgroupsB, T, U of GL2(Fq)
as follows:

B :=

ßÅ
a b
0 d

ã
∈M2(Fq)

∣∣∣∣ a, d ∈ F×
q , b ∈ Fq

™
,

T :=

ßÅ
a 0
0 d

ã
∈M2(Fq)

∣∣∣∣ a, d ∈ F×
q

™
,

U :=

ßÅ
1 b
0 1

ã
∈M2(Fq)

∣∣∣∣ b ∈ Fq
™
.

Note that U is a normal subgroup in B and that we have the semi-direct decomposition
B = T ⋉ U . In particular, we have a natural surjection B ↠ T by quotienting by U / B.
We let Z denote the center of G, which consists of scalar matrices:

Z :=

ßÅ
a 0
0 a

ã
∈M2(Fq)

∣∣∣∣ a ∈ F×
q

™
.

Remark 2.5. In the context of theory of reductive groups, the subgroups B, T , and U are
called a Borel subgroup, a maximal torus, and the unipotent radical (of B), respectively.

Definition 2.6 (Principal series representation). Suppose that χ : T → C× is a character.
Then, by pulling back χ via B ↠ T , we may regard it as a character of B (this procedure

is called the inflation). We call the induction IndGB χ of χ from B to G a principal series
representation (for χ).
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Note that we have T ∼= F×
q × F×

q , hence any character χ of T can be expressed as

χ = χ1 ⊠ χ2 with some characters χ1 and χ2 of F×
q , i.e., for any (t1, t2) ∈ T , we have

χ(t1, t2) = χ1(t1) · χ2(t2). We shortly write χ1 × χ2 for IndGB χ = IndGB(χ1 ⊠ χ2). Since the
dimension of χ1 × χ2 is equal to the index of B in G, we have

dim(χ1 × χ2) =
|G|
|B|

=
(q2 − 1)(q2 − q)

(q − 1)2q
= q + 1.

Let us first investigate the principal series representations for χ = χ1 ⊠ χ2 such that
χ1 6= χ2.

Proposition 2.7. If χ1 6= χ2, then χ1×χ2 is an irreducible representation of G of dimension
q + 1. Moreover, for two characters χ1 ⊠ χ2 and χ′

1 ⊠ χ′
2 of T ,

χ1 × χ2
∼= χ′

1 × χ′
2 ⇐⇒ χ′

1 ⊠ χ′
2 = χ1 ⊠ χ2 or χ2 ⊠ χ1.

We next consider the case where χ1 = χ2.

Proposition 2.8. (1) The principal series representation 1×1 = IndGB 1 associated to
the trivial character of T is the sum of two irreducible representations of G:
• one is the trivial representation of G;
• the other is a q-dimensional irreducible representation of G, for which we write
StG (we call the “Steinberg representation” of G).

(2) For any character χ of F×
q , we have χ× χ ∼= (1× 1)⊗ (χ ◦ det). In particular, we

have

χ× χ ∼= (χ ◦ det)⊕ StG ⊗ (χ ◦ det).

We prove Propositions 2.7 and 2.8 simultaneously.

Proof. Fisrt, by Frobenius reciprocity (the adjunction formula between the induction and
restriction), we have

HomG(χ1 × χ2, χ
′
1 × χ′

2)
∼= HomB

(
ResGB(χ1 × χ2), χ

′
1 ⊠ χ′

2

)
.

By applying the Mackey decomposition formula, we have

ResGB(χ1 × χ2) ∼=
⊕

s∈B\G/B

IndBB∩s−1BsRes
s−1Bs
B∩s−1Bs(χ1 ⊠ χ2)

s,

where (χ1⊠χ2)
s denotes the character of s−1Bs defined by (χ1⊠χ2)

s(s−1bs) = (χ1⊠χ2)(b).
Now we use the Bruhat decomposition:

G = B tBwB, w :=

Å
0 1
1 0

ã
.

Since w maps B to its transpose B and swaps the first and second factors of T ∼= F×
q × F×

q ,
we get ⊕

s∈B\G/B

IndBB∩s−1BsRes
s−1Bs
B∩s−1Bs(χ1 ⊠ χ2)

s ∼= (χ1 ⊠ χ2)︸ ︷︷ ︸
s=1

⊕ IndBT ResBT (χ2 ⊠ χ1)︸ ︷︷ ︸
s=w

.

(Note that, on the right-hand side, χ1⊠χ2 and χ2⊠χ1 are regarded as characters of B and
B by inflation, respectively.) This implies that

HomB

(
ResGB(χ1 × χ2), χ

′
1 ⊠ χ′

2

)
∼= HomB(χ1 ⊠ χ2, χ

′
1 ⊠ χ′

2)⊕HomB

(
IndBT ResBT (χ2 ⊠ χ1), χ

′
1 ⊠ χ′

2

)
.
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The first summand on the right-hand side is equal to HomT (χ1⊠χ2, χ
′
1⊠χ′

2). By Frobenius
reciprocity, the second summand is equal to HomT

(
χ2 ⊠ χ1, χ

′
1 ⊠ χ′

2

)
. So we conclude that

(?) HomG(χ1 × χ2, χ
′
1 × χ′

2)
∼= HomT

(
χ1 ⊠ χ2, χ

′
1 ⊠ χ′

2

)
⊕HomT

(
χ2 ⊠ χ1, χ

′
1 ⊠ χ′

2

)
.

In particular, this implies that

EndG(χ1 × χ2) ∼=
®
C χ1 6= χ2,

C⊕ C χ1 = χ2.

By Schur’s lemma, this says that χ1×χ2 is irreducible when χ1 6= χ2 and decomposes into a
sum of two irreducible representations when χ1 = χ2. So we obtained Proposition 2.7. (The
latter assertion of Proposition 2.7 can be checked by the formula (?)). When χ1 = χ2 = χ,
we can easily check that χ × χ contains χ ◦ det. It’s also not difficult to check that χ × χ
is isomorphic to (1× 1)⊗ (χ ◦ det). (For example, again use Frobenius reciprocity.) Then
Proposition 2.8 follows. □

So, how many irreducible representations have we obtained so far? Since there are (q−1)
characters of F×

q , the principal series construction producesÇ
q − 1

2

å
︸ ︷︷ ︸
χ1 6=χ2

+2 · (q − 1)︸ ︷︷ ︸
χ1=χ2

=
q2 + q − 2

2

irreducible representations of GL2(Fq) in total. Thus there should be exactly

(q2 − 1)− q2 + q − 2

2
=
q2 − q

2
more irreducible representations! These are called “cuspidal” representations.

2.4. Cuspidal representations of GL2(Fq).

Definition 2.9 (Cuspidal representations). Let ρ be an irreducible representation of G.
We say that ρ is cuspidal if ρ is not contained in any principal series representation.

Remark 2.10. We caution that this definition is somehow misleading for understanding
the definition of a cuspidal representation in general. In general, there is a notion of a
“parabolic subgroup” of a finite group of Lie type. When G is a finite group of Lie type,
we say that its irreducible representation is cuspidal if it is not contained in the induction
of any representation of the “reductive part” of any nontrivial parabolic subgroup of G (so-
called “parabolic induction”). A Borel subgroup is a minimal parabolic subgroup. Because
any nontrivial parabolic subgroup is Borel when G = GL2(Fq), we only have to care about
principal series representations in the above definition.

Lemma 2.11. Suppose that ρ is an irreducible representation of G. The following are
equivalent:

(1) ρ is cuspidal.
(2) The U -coinvariant ρU of ρ is zero.
(3) The U -invariant ρU of ρ is zero.

(4) 〈ResGU ρ,1U 〉 = 0.

Proof. We first note that

IndGU 1U = IndGB(Ind
B
U 1U ) = IndGB

( ⊕
χ : T→C×

χ
)
. =

⊕
χ : T→C×

(IndGB χ).

13



Thus, by definition, ρ is cuspidal if and only if HomG(ρ, Ind
G
U 1U ) = 0. By Frobenius

reciprocity, this is equivalent to that HomU (Res
G
U ρ,1U ) = 0. As ρ is semisimple as repre-

sentation of U , this is also equivalent to HomU (1U ,Res
G
U ρ) = 0. The equivalences between

(1)–(4) all follows from these observations. □

Now we construct all cuspidal irreducible representations of G “by hand”. By regarding
F2
q as a 2-dimensional Fq-vector space, we embed Fq2 into M2(Fq). To be more precise, by

choosing an Fq-basis of Fq2 (hence get Fq2 ∼= F⊕2
q , which is regarded as the space of rank 2

column vectors), the multiplication of α ∈ Fq2 on Fq2 ∼= F⊕2
q itself can be written by

α ·
Å
a
b

ã
=

Å
α11 α12

α21 α22

ãÅ
a
b

ã
.

Then the image of α ∈ Fq2 in M2(Fq) is given by ( α11 α12
α21 α22

). Note that this embedding
depends on the choice of an Fq-basis of Fq2 , hence not canonical. We fix such an embedding

and define a subgroup S ⊂ G to be the image of F×
q2 (note that S contains Z; it is nothing

but F×
q contained in F×

q2). We also fix a nontrivial character ψ : U → C×.

Definition 2.12. For any character θ : S → C× satisfying θq−1 6= 1, we define a virtual
representation πθ of G by

πθ := IndGZU (θ|Z ⊠ ψ)− IndGS θ.

Here, the right-hand side is considered in the Grothendieck group of representations of G
(or, πθ can be simply regarded as a class function on G).

Proposition 2.13. The virtual representation πθ is a (q − 1)-dimensional irreducible cus-
pidal representation.

To prove this proposition, let us first investigate the characters of πθ.

Lemma 2.14. The character values of πθ are given as follows:

(1) Θπθ
(za) = (q − 1)θ(a) for a ∈ F×

q ,

(2) Θπθ
(ua) = −θ(a) for a ∈ F×

q ,

(3) Θπθ
(ta,b) = 0 for distinct a, b ∈ F×

q ,
(4) Θπθ

(s) = −θ(s)− θ(s)q for s ∈ S ∖ Z.

Proof. The idea is to apply the Frobenius formula. Here let us only check (4).
First recall that S ⊂ G is defined by the multiplication action of Fq2 on Fq2 itself. This

implies that if s ∈ S does not lie in Z ⊂ S, then the characteristic polynomial of s is an
irreducible monic of degree 2. Conversely, for any irreducible monic of degree 2, there exists
an s ∈ S having the monic as its characteristic polynomial. (The point of this argument is
that any irreducible monic of degree 2 generates the degree 2 extension Fq2 of Fq in Fq.)

Now let s ∈ S be an element with irreducible characteristic polynomial x2+ax+b, hence
conjugate to sa,b. We first compute the character of IndGZU (θ|Z ⊠ ψ) at s. By Frobenius
formula, we have

ΘIndG
ZU (θ|Z⊠ψ)(s) =

∑
x∈ZU\G
xsx−1∈ZU

(θ|Z ⊠ ψ)(xsx−1).

However, since any element of ZU cannot have x2 + ax+ b as its characteristic polynomial,
s cannot be conjugate to an element of ZU . In other words, the index set of the above sum
must be empty, hence ΘIndG

ZU (θ|Z⊠ψ)(s) = 0.

14



We next compute the character of IndGS θ at s. Again by Frobenius formula, we have

ΘIndG
S θ

(s) =
∑

x∈S\G
xsx−1∈S

θ(xsx−1).

Let us determine the index set. Note that S = Fq[s]×. In particular, if xsx−1 ∈ S, then we
have xSx−1 ⊂ S, which furthermore implies that xSx−1 = S, i.e., x ∈ NG(S). Suppose that
we have an element x ∈ NG(S)∖ S. Then the conjugation via x should induce a nontrivial
Fq-automorphism of Fq[s] (∼= Fq2) (otherwise, x must be in ZG(S), which equals S). From
this, we see that the index set can be regarded as a subset of Gal(Fq2/Fq). In fact, there
indeed exists an element x ∈ NG(S)∖S. To see this, let us note that s and sq have the same
characteristic polynomials. Especially, there exists an element x ∈ G satisfying xsx−1 = sq.
Since both s and sq generate Fq[s], this implies that xSx−1 = S, hence x ∈ NG(S). Of
course, this element x cannot be in S. In summary, we get∑

x∈S\G
xsx−1∈S

Θθ(xsx
−1) = θ(s) + θ(sq).

Finally, recalling that πθ is defined to be IndGZU (θ|Z ⊠ψ)− IndGS θ, we get the result. □

Exercise 2.15. Check (1), (2), and (3).

Now let us prove Proposition 2.13.

Proof of Proposition 2.13. To show that πθ, it suffices to check that 〈πθ, πθ〉 = 1. Note
that, even if we can show this, there is a possibility that πθ is the “minus” of an irreducible
representation. However, this possibility is excluded since the character value of πθ at the
unit element z1 is given by (q − 1). (Also, we see that the dimension is (q − 1) from this.)

Recall that

〈πθ, πθ〉 =
1

|G|
∑
g∈G

Θπθ
(g) ·Θπθ

(g).

(1) The sum (not divided by |G|) over the conjugacy classes of za is∑
a∈F×

q

1 · (q − 1)θ(a) · (q − 1)θ(a) =
∑
a∈F×

q

1 · (q − 1)2 = (q − 1)3.

(2) The sum (not divided by |G|) over the conjugacy classes of ua is∑
a∈F×

q

(q2 − 1) · (−θ(a)) · (−θ(a)) =
∑
a∈F×

q

(q2 − 1) = (q2 − 1)(q − 1).

(3) The sum (not divided by |G|) over the conjugacy classes of ta,b is zero since each
character value is zero.

(4) By noting that the orbits of (S ∖Z) by the action of Gal(Fq2/Fq) bijectively corre-
spond to the conjugacy classes of elements of the form sa,b. Hence, the sum (note
divided by |G|) over the conjugacy classes of sa,b is

1

2

∑
s∈S∖Z

(q2 − q) · (−θ(s)− θ(s)q) · (−θ(s)− θ(s)q)

=
q2 − q

2

∑
s∈F×

q2
∖F×

q

(−θ(s)− θ(s)q) · (−θ(s)− θ(s)q).
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By an elementary computation, we can check that this equals (q2 − q)(q − 1)2.

Therefore, we get

〈πθ, πθ〉 =
1

|G|
·
(
(q − 1)3 + (q2 − 1)(q − 1) + 0 + (q2 − q)(q − 1)2

)
= 1.

Finally, let us check the cuspidality of πθ. It suffices to show that

〈ResGU πθ,1U 〉 =
1

|U |
∑
u∈U

Θπθ
= 0.

Any element ( 1 a0 1 ) with a ∈ F×
q is conjugate to u1 = ( 1 1

0 1 ). Hence,∑
u∈U

Θπθ
= Θπθ

(z1) + (q − 1)Θπθ
(u1) = (q − 1)θ(1)− (q − 1)θ(1) = 0.

□

Exercise 2.16. Complete the computation skipped in the above proof.

Proposition 2.17. For any θi : S → C× satisfying θq−1
i 6= 1 (i = 1, 2), we have πθ1

∼= πθ2
if and only if θ1 = θ2 or θ1 = θq2.

Proof. By the character formulas of Θπθ
, we see that πθ1

∼= πθ2 only if

θ1(s) + θ1(s)
q = θ2(s) + θ2(s)

q

for any s ∈ S. Recall that Artin’s lemma says that distinct characters of any finite group
are linear independent. Hence, by noting that θq 6= θ, the above condition is equivalent
to that θ1 = θ2 or θ1 = θq2. Conversely, if this is satisfied, then we have πθ1

∼= πθ2 by the
character formula of Θπθ

. □

Here, note that S is of order q2 − 1, hence any character θ of S satisfies θq
2

= θ. Thus
the condition θ1 = θq2 is also equivalent to θ2 = θq1. Proposition 2.17 enables us to count the
number of irreducible cuspidal representations obtained in this way. The group S is cyclic of
order q2 − 1, thus there exactly (q− 1) characters of S satisfying θq−1 = 1. In other words,
there exactly q2 − q characters of S satisfying θq−1 6= 1. Therefore the above construction

provides q2−q
2 irreducible cuspidal representations, hence all!

2.5. What is Deligne–Lusztig theory? (a bit more precisely). The construction of
πθ presented above is somehow mysterious and seems difficult to generalize. So, we want a
more conceptual construction of πθ, which could work in a more general setting. We can
find a hint in Drinfeld’s observation.

Before we talk about “the curve” of Drinfeld, let us introduce the groups G′ := SL2(Fq)
and S′ := S ∩G′. Note that S′ is identified with the norm 1 subgroup of F×

q2 , i.e.,

S′ ∼= Ker(Nr: F×
q2 → F×

q ).

In particular, S′ is cyclic of order (q + 1). We can also introduce the notions of principal
series or cuspidal representations for G′ in a similar way. Basically, the representation theory
of G′ can be “derived” from that of G. Especially, the cuspidal representations of G′ can
be constructed by restricting those of G to G′. Thus let’s talk about how to understand
cuspidal representations of G′ in the following.

Drinfeld investigated the following curve (see [?, Chapter 2]).
16



Definition 2.18 (Drinfeld curve). Let X be the curve defined by

X := {(x, y) ∈ A2
Fq
| xyq − xqy = 1}.

The curve X has the following properties:

• G′ acts on X by
(
a b
c d

)
· (x, y) = (ax+ by, cx+ dy);

• S′ acts on X by s · (x, y) = (sx, sy);
• the actions of G′ and S′ commute.

Because the étale cohomology has the functoriality in spaces, we can obtain a representation
of G′ × S′ on the étale cohomology of X. By cutting it along any character θ of S′, we get
a representation of G′. In fact, this resulting representation is nothing but “πθ”. In other
words, Drinfeld’s curve gives a geometric realization of the cuspidal representation πθ which
was constructed in a mysterious way previously!

Deligne–Lusztig theory exactly generalizes this idea. Let G be a finite group of Lie type.
The input/output of Deligne–Lusztig theory are as follows:

Input: a pair (S, θ) of
• a “maximal torus” S of G and
• a character θ : S(Fq)→ C×.

Output: a virtual representationRGS (θ) ofG(Fq) (“Deligne–Lusztig virtual representaiton”).

For a given input (S, θ), Deligne–Lusztig first defined an algebraic variety XG
S over Fq

equipped with an action of G(Fq)×S(Fq). This is called the Deligne–Lusztig variety (associ-
ated to (G,S)); this is a far generalization of the Drinfeld curve. Deligne–Lusztig considered
its `-adic étale cohomology Hi

c(X
G
S ,Qℓ). Then, as explained above, we obtain a representa-

tion of G(Fq)× S(Fq) on Hi
c(X

G
S ,Qℓ). By taking the alternating sum of the θ-isotypic part

of each degree, we get the “output”:

RGS (θ) :=
∑
i≥0

(−1)iHi
c(X

G
S ,Qℓ)[θ]

Remark 2.19. (1) At this point, you do not have to be able to understand the meaning
of the terminologies such as “finite group of Lie type” or “maximal torus”. It is
also one of the purposes of this course to get familiar with these notions (through
various examples).3

(2) As its symbol suggests, Hi
c(X

G
S ,Qℓ) is a Qℓ-vector space; not a C-vector space.

However, by choosing an isomorphism Qℓ ∼= C, we may convert Hi
c(X

G
S ,Qℓ) to a

C-vector space. In fact, the resulting representation RGS (θ) with C-coefficients is
independent of the choice of such an isomorphism (“`-independence”, which is an
important part of Deligne–Lusztig theory).

(3) The subgroup S of GL2(Fq) introduced in the previous section (or S′ of SL2(Fq)) is
an example of a “maximal torus”. With the above notation, we have πθ ∼= RGS (θ)
for G = GL2(Fq)4. Recall that T ∼= F×

q ×F×
q is another example of a maximal torus

of GL2(Fq). One surprising point is that Deligne–Lusztig theory also naturally
generalizes the principal series construction. Namely, for any character χ of T ⊂
GL2, we have IndGB χ ∼= RGT (χ).

3On the other hand, I have to confess that I will only give a few words about the theory of étale

cohomology.
4Precisely speaking, we need “up to sign” here
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One of the highlights of the theory is that there exists an explicit formula of the Deligne–
Lusztig virtual representaiton RGS (θ) called “Deligne–Lusztig character formula”. We can
analyze the representation RGS (θ) through that formula; for example, we can prove that any
irreducible representation ρ of G(Fq) can be realized in RGS (θ) for some pair (S, θ).
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3. Week 3: Algebraic groups

Aim of this week. The aim of this week is to introduce the notion of an algebraic group
and its fundamental properties. The main references of this week are [Spr09] and [Bor91].

3.1. Comments on scheme theory. Let k be an algebraically closed field. Let An
k
be

the n-dimensional affine space over k (here, let us simply understand that An
k
is the set

of n-tuples of elements of k). Roughly speaking, an affine algebraic variety is a subset of
An
k
consisting of simultaneous solutions to a tuple of polynomials in k[x1, . . . , xn]. We can

equip an affine variety with a topology called Zariski topology. A algebraic variety is a space
obtained by patching affine algebraic varieties.

From the modern viewpoint, the classical theory of algebraic varieties can be far more
generalized by the theory of schemes. For any commutative ring R, the affine scheme SpecR
is defined to be the set of prime ideals of R. We can equip SpecR with the Zariski topology
in a similar manner to the classical case. In addition, we can also introduce a further
structure on SpecR, that is, a sheaf of rings on SpecR; this makes SpecR so-called a locally
ringed space. A scheme is a locally ringed space obtained by patching affine schemes.

When a scheme X equipped with a morphism to Spec k (this amounts to that the rings R
defining X are k-algebras) satisfies certain conditions (“separated, reduced, of finite type”),
we can associate an algebraic variety to X. This algebraic variety is given to be the set of all
“k-valued points” of X. We’ll give a bit more explanation on the notion of “valued points”
later. Conversely, any algebraic variety can be realized in this way from a scheme. Roughly
speaking, an algebraic group is an algebraic variety equipped with a group structure. Thus
we have two choices of languages to study algebraic groups; the classical theory of algebraic
varieties and the modern theory of schemes.5

When an algebraic variety X has defining polynomials whose coefficients are in a subfield
k of k, we say that X is defined over k. In the language of scheme theory, this amounts to
that there exists a scheme X0 equipped with a morphism to Spec k such that its base change
to k (i.e., the fibered product of X0 → Spec k and Spec k → Spec k) is isomorphic to X. One
advantage of using scheme theory is that it makes it theoretically easier to treat algebraic
varieties over a field k which is not necessarily algebraically closed. This is particularly
important for us because eventually we want to discuss algebraic groups defined over a
finite field. On the other hand, we can understand algebraic groups in a more intuitive way
by appealing to the classical theory of algebraic varieties.

In any case, it is unavoidable to rely on these languages of algebraic geometry, but we
do not go into the details of algebraic geometry in this course.6 Rather, our aim is to get
familiar with algebraic groups through several concrete examples.

3.2. Definition and examples of algebraic groups. Let k be a field. In the following,
let us furthermore assume that k is perfect. (In this course, eventually, k will be taken to
be a finite field Fq.) We write Γk for the absolute Galois group Gal(k/k) of k.

By “an algebraic variety over k”, we mean a scheme X equipped with a morphism to
Spec k such that its base change Xk to Spec k is an algebraic variety.

Definition 3.1 (algebraic group). Let G be an algebraic variety over k. We say that G is
an algebraic group over k if G is equipped with a group structure, i.e., morphisms of schemes
over k

5Indeed, [Spr09] is written via the theory of algebraic varieties while [Bor91] is written via scheme theory.
6For example, see [Spr09, Chapter 1] or [Bor91, Chapter AG] for a summary on algebraic geometry.
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• m : G×k G→ G (“multiplication morphism”),
• i : G→ G (“inversion morphism”), and
• e : Spec k → G (“unit element”)

satisfying the axioms of groups. More precisely, the following diagrams are commutative:

G×k G×k G
m×id

//

id×m
��

⟳

G×k G

m

��

G×k G
m // G

G
id×e

//

e×id

��

id
LLL

LL
⟳

⟳
%%L

LLL
L

G×k G

m

��

G×k G
m // G

G×k G

id×i
��

⟳

G
∆oo ∆ //

ϵ

��

⟳

G×k G

i×id

��

G×k G
m // G G×k G

moo

Here, ε denotes the composition of the structure morphism G→ Spec k and e : Spec k → G.

Remark 3.2. Suppose that G is an affine algebraic variety with coordinate ring k[G] (i.e.,
G = Spec k[G]). Recall that the category of affine schemes is (anti-) equivalent to the
category of commutative rings. Thus giving G an algebraic group structure is equivalent to
defining ring homomorphisms corresponding to m, i, e and satisfying analogous axioms. For
example, the ring homomorphism corresponding to m must be a k-algebra homomorphism
R→ R⊗k R. In general, a commutative ring equipped with such an additional structure is
called a Hopf algebra.

Various notions in the usual group theory can be formulated also for algebraic groups.
For example, for an algebraic group G over k, we can define its center Z(G), its derived
subgroup (commutator subgroup) Gder = [G,G], and so on, as algebraic groups over k. The
notion of a homomorphism between algebraic groups is also defined in a natural way. For
an algebraic group G over k, its Zariski-connected component containing (the image of) the
unit element e is closed under the multiplication, i.e., G◦ is an algebraic subgroup of G over
k. We refer the identity component of G to it.

Example 3.3. (1) We put Ga := Spec k[x] and define m, i, and e at the level of rings
as follows:
• m : k[x]→ k[x]⊗k k[x]; x 7→ x⊗ 1 + 1⊗ x,
• i : k[x]→ k[x]; x 7→ −x,
• e : k[x]→ k; x 7→ 0.

Then Ga is an algebraic group over k with respect to these operations. We call Ga

the additive group over k.
(2) We put Gm := Spec k[x, x−1] and define m, i, and e at the level of rings as follows:

• m : k[x]→ k[x, x−1]⊗k k[x, x−1]; x 7→ x⊗ x,
• i : k[x]→ k[x]; x 7→ x−1,
• e : k[x]→ k; x 7→ 1.

Then Gm is an algebraic group over k with respect to these operations. We call Gm

the multiplicative group over k.
(3) We put GLn := Spec k[xij , D

−1 | 1 ≤ i, j ≤ n], where D := det(xij)1≤i,j≤n. We
define m, i, and e at the level of rings as follows:
• m(xij) :=

∑n
k=1 xik ⊗ xkj ,

• i(xij) := the (i, j)-entry of the inverse of the matrix (xij)1≤i,j≤n,
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• e(xij) := δij (Kronecker’s delta).
Then GLn is an algebraic group over k with respect to these operations. We call
GLn the general linear group (of rank n) over k. (Note that GL1

∼= Gm.)

In fact, it is not always practical to know the structure ring of an algebraic group and
the ring homomorphisms defining the algebraic group structure. Instead, by relying on the
philosophy of “the functor of points”, we may understand algebraic groups over k intuitively
as follows. Recall that any affine scheme X = Spec k[X] over k defines the following functor
(functor of points) from the category of k-algebras to the category of sets:

(k-algebras)→ (sets) : R 7→ X(R) := Homk(SpecR,X) (∼= Homk(k[X], R)).

(The set X(R) is called the set of R-valued points of X.) By Yoneda’s lemma, regarding X
as a functor in this way does not lose any information of X essentially. Moreover, if X is an
affine algebraic group over k, then the morphisms m, i, and e induce a group structure on
the set X(R) of R-valued points of X. Hence the above functor takes values in the category
of groups. In other words, we may regard an affine algebraic group over k as a “machine”
which associates a group to each k-algebra. One practical way of treating (affine) algebraic
groups over k is to care only about the groups associated to (all) k-algebras. Recall that,
in our convention, an algebraic variety X over k is a scheme whose base change to k can
be regarded as an algebraic variety in the classical sense; as a set, this algebraic variety is
nothing but X(k).

Let us present several basic examples:

Example 3.4. (1) For a k-algebra R, we have Ga(R) ∼= R, where the group structure
on R is given by the additive structure of R. Indeed, we have

Ga(R) = Homk(SpecR,Ga) ∼= Homk(k[x], R) ∼= R,

where the last map is given by f 7→ f(x). This is why Ga is called the “additive
group”.

(2) For a k-algebra R, we have Gm(R) ∼= R×, where R× denotes the unit group of R
with respect to the multiplicative structure of R. Indeed, we have

Gm(R) = Homk(SpecR,Gm) ∼= Homk(k[x, x
−1], R) ∼= R×,

where the last map is given by f 7→ f(x). This is whyGm is called the “multiplicative
group”.

(3) For a k-algebra R, we have

GLn(R) ∼= {g = (gij)i,j ∈Mn(R) | det(g) ∈ R×}.

Indeed, by definition, we have

GLn(R) = Homk(SpecR,GLn) ∼= Homk(k[xij , D
−1 | 1 ≤ i, j ≤ n], R).

The right-hand side is isomorphic to (at least as sets) {g = (gij)i,j ∈ Mn(R) |
det(g) ∈ R×} by the map f 7→ (f(xij))i,j . It is a routine work to check that this
bijection is indeed a group isomorphism.

(4) The symplectic group Sp2n is an affine algebraic group such that the group of its
R-valued points is given as follows:

Sp2n(R)
∼= {g = (gij)i,j ∈ GL2n(R) | tgJ2ng = J2n},
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where J2n denotes the antidiagonal matrix whose antidiagonal entries are given by
1 and −1 alternatively:

J2n :=

á
1

−1
1

. .
.

ë
.

(5) Here let’s assume that the characteristic of k is not 2. Let J be an element of
GLn(k) which is symmetric, i.e., its transpose tJ equals J . Then the orthogonal
group (associated to J) O(J) is an affine algebraic group such that the group of its
R-valued points is given as follows:

O(J)(R) ∼= {g = (gij)i,j ∈ GLn(R) | tgJg = J}.
This group is disconnected and has 2 connected components. The identity compo-
nent of O(J) is denoted by SO(J) and called the special orthogonal group (associated
to J).7 When J is taken to be the anti-diagonal matrix whose anti-diagonal entries
are all given by 1, we simply write On and SOn.

Here, we don’t explain how to define the structure rings of SO(J) or Sp2n and also how
to introduce the group structure at the level of their structure rings. Only the important
viewpoint here is what kind of groups are associated as the groups of R-valued points!
(When we are only interested in the algebro-geometric nature of a given algebraic group,
we even look at only its k-valued points.) So, in this course, let us just believe that the
“functors” SO(J) or Sp2n are indeed representable, i.e., realized as the functors of points of
some affine algebraic groups. This remark is always applied to any affine algebraic group
which we will encounter in the future.

3.3. Jordan decomposition. We first begin with the following proposition, which is a
consequence of the theory of Jordan normal form in linear algebra.

Proposition 3.5. Let g be an element of GLn(k). Then there exists a unique decomposition
g = gs + gn such that

• gsgn = gngs,
• gs ∈ GLn(k) is semisimple, i.e., diagonalizable in GLn(k), and
• gn ∈ GLn(k) is nilpotent, i.e., all the eigenvalues are 0 (equivalently, some power
of gn is zero).

Proof. Let us briefly the sketch of the proof. We first work over the algebraic closure k (this
is the same as the separable closure of k since we assume that k is perfect).

We regard g ∈ GLn(k) as an endomorphism of V := k
⊗n

. We let {α1, . . . , αr} be the set
of eigenvalues of g. Recall that the generalized eigenspace of g with respect to its eigenvalue
αi is defined by

Vi := Ker(g − αi · In)ni ,

where ni is any sufficiently large integer (then Vi is equal to the subspace {v ∈ V |
(g − αi · In)m(v) = 0 for some m > 0}). Then the theorem of Cayley–Hamilton implies that
we have V =

⊕r
i=1 Vi.

7Note that J2n is symmetric if the characteristic of k is 2 since −1 equals 1! When the characteristic
is 2, we have to define orthogonal groups in terms of quadratic forms; so the point is that the notion of a

quadratic form is not equivalent to the notion of a symmetric bilinear form when the characteristic is 2.
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We put gi := g|Vi ∈ Endk(Vi). If we put gi,s := αi · IdimVi and gi,n := gi − gi,s, then we
have

• gi,s is semisimple,
• gi,n is nilpotent, and
• gi,sgi,n = gi,ngi,s.

Thus, by putting gs :=
⊕r

i=1 gi,s and gn :=
⊕r

i=1 gi,n, we get a decomposition g = gs + gn
satisfying the desired conditions. To check the uniqueness of such a decomposition, suppose
that we also have another such decomposition g = g′s + g′n. Then, since g′s commutes with
g, g′s preserves each Vi. By noting that gi− (g′s)|Vi

= (g′n)|Vi
, which is nilpotent, we see that

g and g′s have the same eigenvalues on Vi. As g′s is semisimple, this implies that g′s must be
equal to αi · IdimVi

. Hence we also get gn = g′n.
Next suppose that g ∈ GLn(k). Then, by what we proved so far, we can find a decomposi-

tion g = gs+gn satisfying the desired conditions in GLn(k). For any σ ∈ Gal(k/k), we have
σ(g) = σ(gs) + σ(gn). However, as we have σ(g) = g and this decomposition also satisfies
the desired conditions, the uniqueness property implies that σ(gs) = gs and σ(gn) = gn. In
other words, gs and gn belong to GLn(k). □

The decomposition g = gs + gn here is called the additive Jordan decomposition of g.

Corollary 3.6. Let g be an element of GLn(k). Then there exists a unique decomposition
g = gsgu such that

• gsgu = gugs,
• gs is semisimple, and
• gu is unipotent, i.e., all the eigenvalues are 1 (equivalently, gu − 1 is nilpotent).

Proof. Let g = gs + gn be the additive Jordan decomposition of g. Then we have g =
gs(1+g

−1
s gn). Since g

−1
s gn is nilpotent (use that gs and gn commute), 1+g−1

s gn is unipotent.
Let us put gu := 1 + g−1

s gn. As gs commutes with gu, g = gsgu is a desired decomposition.
To check the uniqueness, let us assume that g = g′sg

′
u is another such decomposition.

Then, by putting g′n := g′s(g
′
u − 1), we get the additive Jordan decomposition g = g′s + g′n.

By the uniqueness of the additive Jordan decomposition, we have g′s = gs and g
′
u = gu. □

The decomposition g = gsgu is called the Jordan decomposition of g.
In fact, the notion of the Jordan decomposition can be extended to much more general

class of algebraic groups. The idea is to reduce the problem to the case of GLn.

Definition 3.7. When an algebraic group G is isomorphic to a closed subgroup of GLn for
some n, we say that G is a linear algebraic group.

Definition 3.8 (Jordan decomposition). Let G be a linear algebraic group over k. Let
ρ : G ↪→ GLn be a closed embedding of algebraic group.

(1) We say that an element s of G(k) is semisimple if ρ(s) ∈ GLn(k) is semisimple.
(2) We say that an element u of G(k) is unipotent if ρ(u) ∈ GLn(k) is unipotent.
(3) For g ∈ G(k), we say that g has a Jordan decomposition if there exist a semisimple

gs ∈ G(k) and a unipotent gu ∈ G(k) satisfying g = gsgu = gugs.

Proposition 3.9. Being semisimple/unipotent is independent of the choice of ρ. Moreover,
every element of G(k) has a Jordan decomposition uniquely.

Then, when can an algebraic group be linear? In fact, we have the following:

Proposition 3.10. Let G be an algebraic group. Then G is affine if and only if G is linear.
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We don’t give proofs of Propositions 3.9 and 3.10. See, for example, [Spr09, Section 2.4].
(In both propositions, the point of the proofs is to consider the action of G on its coordinate
ring k[G], which gives rise to a faithful representation of G.)

Remark 3.11. The Jordan decomposition can be explained in a quite simple way when
the base field k is a finite field. Let us suppose that k = Fq, whose characteristic is p > 0.
Note that then, for any linear algebraic group G, the group G(k) of its k-valued points is
a finite group. In particular, any element g ∈ G(k) is of finite order. In fact, we can show
that g ∈ G(k) is semisimple (resp. unipotent) if and only if the order of g is prime to p
(resp. p-power). Furthermore, appealing to these characterizations, we can show the unique
existence of the Jordan decomposition by an elementary arithmetic argument.

Exercise 3.12. Give a proof to the statement given in the above remark. To be more
precise, prove that, for any element g ∈ G(k),

(1) g ∈ G(k) is semisimple if and only if the order of g is prime to p,
(2) g ∈ G(k) is unipotent if and only if the order of g is p-power,
(3) there exists a unique decomposition g = gsgu such that gsgu = gugs, gs is of prime-

to-p order, and gu is of p-power order.

3.4. Tori. We investigate linear algebraic groups consisting only of semisimple elements:

Definition 3.13 (tori/diagonalizable groups). (1) We say that an algebraic group T
over k is a (k-rational) torus if it is isomorphic to Grm for some r (called the rank
of T ) over k.

(2) We say that an algebraic group D over k is diagonalizable if it is isomorphic to a
closed subgroup of a k-rational torus.

Proposition 3.14. A connected linear algebraic group G over k is a torus if and only if
G(k) consists only of semisimple elements.

Proof. See, for example, [Spr09, Corollary 6.3.6]. □

For an algebraic group G over k, we put

X∗(G) := Homk(Gk,Gm),

i.e., the set of homomorphisms (as algebraic groups) from Gk to Gm over k. Such a homo-
morphism is called a (absolute) character of G. As X∗(G) has a natural group structure,
X∗(G) is called the (absolute) character group of G. We also define the (absolute) cochar-
acter group of G by

X∗(G) := Homk(Gm, Gk)

(any homomorphism from Gm to Gk is called a (absolute) cocharacter).
Suppose that T is a k-rational torus of rank r. Then X∗(T ) is a free abelian group of

rank r equipped with an action of Γk defined by

σ(χ) := σT ◦ χ ◦ σ−1
T

for any σ ∈ Γk and χ ∈ X∗(T ). Here, the symbol “σT ” on the right-hand side denotes
the isomorphism of Tk obtained by the pull-back of σ : Spec k → Spec k along the structure
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morphism (say f : Tk → Spec k):

Tk

��

σT // Tk

f

��

Spec k
σ // Spec k

In fact, we have the following:

Proposition 3.15. The association T 7→ X∗(T ) defines an equivalence of categories between

• the category of tori over k and
• the category of free abelian groups of finite rank equipped with a Γk-action.

Although any k-rational torus T is isomorphic to Grm over k by definition, it might
happen (quite often!) that T is not isomorphic to Grm over k. In the above equivalence, Grm
corresponds to the free abelian group Z⊕r with trivial Galois action. We call the k-rational
torus Grm the split torus (of rank r). In some sense, the nontriviality of the action of Γk on
X∗(T ) exactly measures how T is far from being split.

Note that, for any k-rational torus T of rank r, its cocharacter group is also a free abelian
group of rank r equipped with a Galois action. If we define a pairing 〈−,−〉 between X∗(T )
and X∗(T ) by

Homk(Gk,Gm)×Homk(Gm, Gk)→ Homk(Gm,Gm) ∼= Z : (χ, χ∨) 7→ χ ◦ χ∨,

then 〈−,−〉 is perfect and equivariant with respect to the Galois actions. Here, the identi-
fication Homk(Gm,Gm) ∼= Z is given by [x 7→ xn]↔ n.

Example 3.16. Let k′/k be a finite extension. In general, for any linear algebraic group G′

over k′, there exists a linear algebraic group over k denoted by Resk′/kG
′ and called the Weil

restriction (along k′/k) of G′. As a functor of points, this linear algebraic group associates
G′(R ⊗k k′) to any k-algebra R. By applying this construction to the multiplicative group
Gm over k′, we obtain a linear algebraic group Resk′/k Gm such that (Resk′/k Gm)(R) =

Gm(R ⊗k k′) = (R ⊗k k′)×. (Note that, in particular, we have (Resk′/k Gm)(k) = k′×.) In

fact, Resk′/k Gm is a k-rational torus whose character group is given by IndΓk

Γk′ Z as a free

abelian group equipped with a Γk-action. We call a torus which is isomorphic to a product
of tori of this form an induced torus.

Definition 3.17. Let G be a linear algebraic group over k. We say that a k-rational subtori
T of G is a (k-rational) maximal torus of G if it is maximal among all k-rational subtori of
G.

Example 3.18. Let G := GLn. Let T be the subgroup of G consisting of diagonal matrices.
Then it is obvious that T is defined over k and isomorphic to Grm; especially, T is a k-
rational subtorus of G. Let us check that T is a maximal torus. To do this, we suppose
that T is contained in another k-rational subtorus T ′ of G. By taking the centralizers
of T and T ′ in G, we get an inclusion ZG(T ) ⊃ ZG(T

′). (Recall that ZG(T ) = {g ∈
G | gtg−1 = t for any t ∈ T}.) By an elementary computation, we can directly check that
ZG(T ) is equal to T itself. On the other hand, since T ′ is commutative, ZG(T

′) must include
T ′. Thus we get T ⊃ T ′, which implies that T = T ′.

Exercise 3.19. Prove the fact ZGLn
(T ) = T , which is used in the above example.
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Proposition 3.20. Let G be a linear algebraic group over k. Then there exists a k-rational
maximal torus of G. Moreover, all k-rational maximal tori of G are conjugate over k.
More precisely, if T1 and T2 are k-rational maximal tori of G, then there exists an element
g ∈ G(k) satisfying T2 = gT1g

−1.

Proof. See, for example, [Spr09, 13.3.6. and 6.4.1.]. □
Note that this proposition does not say that all k-rational maximal tori are conjugate

over k.

Example 3.21. Suppose that k′/k is a finite extension of degree n. If we choose a k-basis
of k′, then we can embed k′ into Mn(k) by sending x ∈ k′ to the matrix representation of
the x-multiplication endomorphism of k′ ∼= k⊕n. This embedding induces an injective group
homomorphism (k′⊗k R)× ↪→ GLn(R) for any k-algebra R functorially. In other words, we
get an embedding of a torus Resk′/k Gm into GLn. The image of this embedding gives a
k-rational maximal torus of GLn which is not conjugate to the diagonal maximal torus over
k. Indeed, it has the same rank as the split diagonal maximal torus, it must be maximal.
But the Galois action on its character group is not trivial as explained in Example 3.16.
Thus it cannot be conjugate to the split diagonal maximal torus over k.

In general, classifying all G(k)-conjugacy classes of k-rational maximal tori of a linear
algebraic group over k could be a very deep problem. However, when k = Fq and G is
“reductive”, we can classify them in a simple and beautiful way. Because this classification
is an important step for understanding Deligne–Lusztig theory, we will investigate it in
detail later (2 or 3 weeks later?).
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4. Week 4: Reductive groups

4.1. Definition of a reductive group.

Proposition/Definition 4.1 ([Spr09, 6.4.14]). Let G be a connected linear algebraic group
over k.

(1) There uniquely exists a maximal closed connected normal solvable8 subgroup of G
defined over k, which is called the radical of G. We write R(G) for the radical of G.

(2) There uniquely exists a maximal closed connected normal unipotent9 subgroup of
G defined over k, which is called the unipotent radical of G. We write Ru(G) for
the unipotent radical of G.

Definition 4.2 (semisimple/reductive groups). Let G be a connected linear algebraic group
over k.

(1) We say that G is semisimple if R(G) is trivial.
(2) We say that G is reductive if Ru(G) is trivial.

Remark 4.3. In general, any unipotent group is solvable (see [Spr09, 2.4.13]). In particular,
Ru(G) is contained in R(G). This means that if G is semisimple, then G is reductive.

Remark 4.4. In general, Ru(Gk) could be different from the base change of Ru(G) from

k to k. This means that the condition that a connected linear algebraic G group over k is
reductive in the above sense is not equivalent to the condition that Gk is reductive. However,
such a phenomenon does not happen as long as k is perfect, i.e., we have Ru(G)k = Ru(Gk)
for any perfect k. In the situation where k is not perfect, a connected linear algebraic group
over k with trivial Ru(G) is called a pseudo-reductive group. See [CGP15, Section 1.1] for
details.

The following proposition basically follows from the definition of being solvable/unipotent.

Proposition 4.5. The unipotent radical Ru(G) is the set of unipotent elements of R(G).

Proposition 4.6. Let G be a connected reductive group over k.

(1) The center Z(G) of G is finite if and only if G is semisimple.
(2) The derived subgroup Gder := [G,G] is a connected semisimple group over k. More-

over, we have G = Z(G) ·Gder.

Proof. See [Spr09, 7.3.1 and 8.1.6]. □

Now, let us introduce several practical propositions to determine the unipotent radical
of a given connected reductive group. As mentioned above, the unipotent radical behaves
consistently with the base change of the field k as long as it is perfect. Thus, in the rest
of this section, let us assume that k is algebraically closed and omit the word “over k”.
(But sometimes we will temporarily assume that k is not algebraically closed, e.g., when we
discuss the rationality.)

Definition 4.7 (Borel subgroup). Let G be a linear algebraic group. A subgroup B of G
is called a Borel subgroup of G if it is a maximal connected solvable closed subgroup of G.

8Solvability is defined in the same way as in the usual group theory, i.e., an algebraic group G is said to

be solvable when Gn = {1} for sufficiently large n, where Gn := [Gn−1, Gn−1] and G1 := G.
9i.e., all elements are unipotent
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Theorem 4.8 (Lie–Kolchin’s theorem, [Spr09, 6.3.1]). Let B be a connected solvable closed
subgroup of GLn. Let Bn be the group of upper triangular matrices of GLn. Then B is
conjugate to a subgroup of Bn.

Note that, in particular, Bn is a Borel subgroup of GLn by Lie–Kolchin’s theorem.

Proposition 4.9. Let G be a connected linear algebraic group. All Borel subgroups of G
are conjugate.

Proof. See [Spr09, 6.2.7]. □

Corollary 4.10. Let G be a connected linear algebraic group. Then its radical R(G) equals
the identity component of the intersection of all Borel subgroups of G.

Proof. By definition, R(G) is contained in a Borel subgroup. Since R(G) is normal in G and
all Borel subgroups of G are conjugate, R(G) is contained in the intersection of all Borel
subgroups of G. As R(G) is connected, it must be contained in the identity component of
the intersection. Since the identity component of the intersection of all Borel subgroups of
G is closed, connected, normal, and solvable, it must be equal to R(G) by the maximality
of R(G). □

4.2. Examples of reductive groups.

Example 4.11 (tori). Any torus T is reductive. Indeed, since T is commutative, hence
solvable, R(T ) is T itself. Since all elements of T are semi-simple, Ru(T ) is trivial.

Non-Example 4.12 (additive group). The additive group Ga is not reductive. Indeed,
since Ga is commutative, hence solvable, R(Ga) is Ga itself. However, since Ga is a unipotent
group10, Ru(Ga) also equals Ga.

Example 4.13 (general linear group). The general linear group GLn is reductive. To
check this, note that Bn is a Borel subgroup of GLn, hence its any conjugate is also a Borel
subgroup of GLn. In particular, the opposite Bn (i.e., the subgroup of lower triangular
matrices) is also Borel. Hence their intersection, which is the diagonal subgroup T of
GLn, must contain R(GLn). This implies that all elements of R(GLn) is semisimple, hence
Ru(GLn) is trivial.

Exercise 4.14. Prove that R(GLn) = Z(GLn).

Example 4.15 (symplectic group). The symplectic group Sp2n is reductive. Indeed, if we
put B to be B2n ∩ Sp2n (i.e., the subgroup of Sp2n consisting of matrices of the upper-
triangular form), then we can show that B is a Borel subgroup of Sp2n. (See the following
exercise.) Similarly, its opposite B := B2n ∩ Sp2n is also a Borel subgroup of Sp2n, Thus
the same argument as in the case of GLn implies that Ru(Sp2n) is trivial.

Example 4.16 (orthogonal group). Let us assume that the characteristic of k is not 2. Let
J ′
n ∈ GLn(k) be the anti-diagonal matrix whose anti-diagonal entries are given by 1. Then,

by the same argument as in the previous case, we can show that the special orthogonal
group SO2n = SO(J ′

n) is reductive. (Note that, for any symmetric matrix J , the special
orthogonal group SO(J) is reductive. But an explicit description of its Borel subgroups
depends on the choice of J and more complicated.)

10For example, this can be seen by choosing an embedding of Ga into a general linear group to be

Ga ↪→ GL2 : x 7→ ( 1 x
0 1 ).
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Example 4.17 (unitary group). Here, let us assume that k is not algebraically closed and
take a quadratic extension k′ of k. Let σ be the nontrivial element of Gal(k′/k). Let
J ∈ GLn(k

′) be a hermitian matrix, i.e., tσ(J) = J . We define the unitary group U(J) by

U(J)(R) := {g ∈ GLn(R⊗k k′) | tσ(g)Jg = J}.

(In particular, we have U(J)(k) := {g ∈ GLn(k
′) | tσ(g)Jg = J}.) Then, by the same

argument as in the previous cases, we can show that the special orthogonal group U(J) is
reductive.

Exercise 4.18. We put B := B2n ∩ Sp2n. Then prove that B is a Borel subgroup of Sp2n.
Hint: let’s discuss as follows:

(1) By definition of a Borel subgroup, there exists a Borel subgroup B′ of Sp2n contain-
ing B. (So our goal is to show that B′ is in fact equal to B.) Show that there exists
a Borel subgroup B′

2n of GL2n containing B′ which is given by B′
2n = xB2nx

−1 for
some x ∈ GL2n. (Use: Lie-Kolchin’s theorem and the fact that all Borel subgroups
are conjugate.)

(2) Check that the following matrix is an element of B.

g :=



1 1 0 . . . 0
. . .

. . .
. . .

...
. . .

. . . 0

0
. . . 1

1


(Diagonal entries are 1, the entries above the diagonal are 1, and all other entries
are 0.)

(3) By (2), in particular, we have g ∈ B′
2n = xB2nx

−1. From this, deduce that x must
belong to B2n, hence B

′
2n equals B2n.

(4) Show that B′ = B.

4.3. Classification of connected reductive groups via root data. Over an alge-
braically closed field, isomorphism classes of connected reductive groups can be classified in
terms of linear algebraic data called root data.

Theorem 4.19 ([Spr09, 9.6.2, 10.1.1]). There exists a bijection between

• the set of isomorphism classes of connected reductive groups and
• the set of isomorphism classes of reduced root data.

Let us introduce the definition of a root datum.

Definition 4.20 (root datum). A root datum is a quadruple (X,R,X∨, R∨), where

• X and X∨ are free abelian groups of finite rank equipped with a perfect pairing
〈−,−〉 : X ×X∨ → Z and

• R and R∨ are finite subsets of X and X∨ (called the sets of roots and coroots)
equipped with a bijection R↔ R∨ : α 7→ α∨

satisfying

(1) for any α ∈ R, we have 〈α, α∨〉 = 2,
(2) for any α ∈ R, we have sα(R) = R and s∨α(R

∨) = R∨.
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Here, sα and s∨α denote the automorphisms of X and X∨ given by

sα(x) = x− 〈x, α∨〉α and s∨α(x
∨) = x∨ − 〈α, x∨〉α∨.

We say that a root datum (X,R,X∨, R∨) is reduced if for any α ∈ R, we have R ∩ Qα =
{±α}.

In the following, we explain how to construct the map in Theorem 4.19. Thus our aim is
to construct a root datum from a given connected reductive group G. Here, we follow the
construction given in [Car85, Section 1.9].

We first take a maximal torus T of G. We put X := X∗(T ) and X∨ := X∗(T ). Note
that then X and X∨ have a natural perfect pairing 〈−,−〉 : X ×X∨ → Z.

Suppose that U is a minimal nontrivial closed unipotent subgroup of G normalized by

T . Then, in fact, U is isomorphic to Ga. By fixing an isomorphism ι : Ga

∼=−→ U , we get an
element α ∈ X satisfying

t · ι(x) · t−1 = ι(α(t) · x)
for any x ∈ Ga. This element α is independent of the choice of ι. Furthermore, if U ′ is
another (different to U) minimal nontrivial closed unipotent subgroup of G normalized by
T , then the associated element of X is also different. Thus it makes sense to write Uα for
U . We call α a root of T in G and Uα its root subgroup. We put R to be the set of roots of
T in G.

It can be proved that −α is also a root when α is a root. Moreover, the subgroup
〈Uα, U−α〉 generated by Uα and U−α is isomorphic to SL2 or PGL2 := SL2 /{±1}. Further-
more, in any case, there exists a homomorphism φ : SL2 → 〈Uα, U−α〉 satisfying

φ (( 1 ∗
0 1 )) = Uα and φ (( 1 0

∗ 1 )) = U−α.

This homomorphism φ maps any diagonal element of SL2 into T . Thus, we can define a
cocharacter α∨ ∈ X∨ by

α∨(y) := φ
ÄÄ

y 0

0 y−1

ää
.

We call α∨ the coroot associated to α. We put R∨ to be the set of all coroots obtained in
this way.

Proposition 4.21. For any connected reductive group G, the quadruple (X,R,X∨, R∨)
forms a reduced root datum.

Example 4.22. Let G := GLn. We take T to be the diagonal maximal torus. Then we
can choose a basis of X∗(T ) to be {ei}ni=1, where ei : diag(t1, . . . , tn) 7→ ti. In other words,
we have

X = X∗(T ) ∼=
n⊕
i=1

Zei.

Similarly, we can choose a basis ofX∗(T ) to be {e∨i }ni=1, where e
∨
i : t 7→ diag(1, . . . , 1, t, 1, . . . , 1),

where t is put on the i-th entry. In other words, we have

X∨ = X∗(T ) ∼=
n⊕
i=1

Ze∨i .

Any minimal nontrivial closed unipotent subgroup U normalized by T is of the form

Uij := {uij(x) | x ∈ k},
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where uij(x) denotes the matrix such that the diagonal entries are 1, (i, j)-entry is x, and
all other entries are 0. We define an isomorphism between Uij and Ga by

ι : Ga → Uij : x 7→ uij(x).

We can easily check that the action of T on Uij is given by

t · uij(x) · t−1 = uij(x · ti/tj),
where t = diag(t1, . . . , tn). In other words, the root determined by the subgroup Uij is
ei − ej . We can also check that its corresponding coroot is e∨i − e∨j . Therefore we have

R = {ei − ej | 1 ≤ i 6= j ≤ n}, R∨ = {e∨i − e∨j | 1 ≤ i 6= j ≤ n}.
4.4. Classification of reductive groups: more concrete version.

Definition 4.23 (isogeny). We say that a homomorphism f : G → G′ of algebraic groups
is an isogeny if it is surjective and has finite kernel. We say that two algebraic groups G
and G′ are isogenous if there exists an isogeny between G and G′.

Recall that, any connected reductive group G can be written as G = Z(G) ·Gder, where
Gder is semisimple. Especially, we have a surjective homomorphism f : Z(G) × Gder →
G : (z, g) 7→ zg. Since Z(G) ∩Gder is contained in Z(Gder), which is finite, f is an isogeny.
In other words, any connected reductive group is realized as the quotient of Z(G)×Gder by
its finite subgroup. Thus, let us discuss how to classify semisimple groups in the following.
(Being semisimple can be expressed in terms of root data: a connected reductive group G
is semisimple if and only if R spans XQ := X ⊗Z Q as a Q-vector space.)

We say that a semisimple group G is adjoint if its center Z(G) is trivial. In fact, for any
semisimple group G, its quotient G/Z(G) is the unique adjoint group isogenous to G; this
is denoted by Gad. The adjoint quotient Gad is a semisimple group whose center is minimal
(trivial) among all semisimple groups isogenous to G.

On the other hand, for any semisimple group G, there uniquely exists a semisimple group
“Gsc” such that any isogeny to G can be lifted to an isogeny from Gsc to G; this group
is called the simply-connected cover of G. The simply-connected cover Gsc is a semisimple
group whose center is maximal among all semisimple groups isogenous to G.

Gsc

����     B
BB

BB
BB

B

G′ // // G // //

!! !!B
BB

BB
BB

B G′′

����

Gad

Proposition 4.24. Let G be a semisimple group.

(1) We say that G is simply-connected if R∨ spans X∨ over Z.
(2) We say that G is adjoint if R spans X over Z.

Example 4.25. Let G := GLn and Z be its center. We put SLn := {g ∈ G | det(g) = 1}
and PGLn := GLn /Z.

11 Then we obviously have a natural map SLn → PGLn, which is
surjective. Moreover, this map has finite kernel; it is given by {z ∈ Z | det(z) = 1}, which

11Here, the quotient is taken as an algebraic group. In general, for any linear algebraic group G and its
closed subgroup H over k, we can define and prove the existence of the quotient of G by H (see [Spr09,

5.5]). One difficult point to care about is that (G/H)(R) might not be equal to G(R)/H(R). (But at least
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is isomorphic to the group of n-th roots of unity. Hence SLn → PGLn is an isogeny. On
the other hand, the quotient map GLn ↠ PGLn is not an isogeny since its kernel is given
by Z, which is not finite. In fact, SLn is simply-connected and PGLn is adjoint.

Definition 4.26 (almost simple group). We say that a semisimple group G is almost simple
if it does not contain any nontrivial closed normal subgroup of positive dimension.

Proposition 4.27. Let G be a simply-connected (resp. adjoint) group. Then G is written
as a product of almost simple simply-connected (resp. adjoint) subgroups.

Definition 4.28. We say that a root datum Ψ = (X,R,X∨, R∨) is reducible if there exist
nonzero root data Ψ1 = (X1, R1, X

∨
1 , R

∨
1 ) and Ψ2 = (X2, R2, X

∨
2 , R

∨
2 ) such that Ψ = Ψ1⊕Ψ2

(in the obvious sense) and Ψ1 and Ψ2 are orthogonal. We say that Ψ is irreducible if it is
not reducible.

Proposition 4.29. Let G be an almost simple simply-connected (or adjoint) group with
root data Ψ. Then G is almost simple if and only if Ψ is irreducible.

By the discussion so far, the classification problem of semisimple groups is now reduced
(“modulo isogeny”) to classifying all almost simple simply-connected semisimple groups.
Moreover, it is equivalent to classifying all irreducible reduced root data such that R∨ spans
X∨.

The miraculous fact is that there are very limited number of such groups! Such groups
can be parametrized by combinatorial objects called Dynkin diagrams. Among them, the
types An, Bn, Cn, and Dn are called classical types, and the types E6, E7, E8, F4, and G2

are called exceptional types.

Example 4.30 (type An). Let G := GLn+1. Then we have Gder = SLn+1. It’s simply-
connected, and its adjoint quotient is PGLn+1. There are of type An.

Example 4.31 (type An). Here let k be a non-algebraically-closed field. Let k′ be a
quadratic extension of k and J ∈ GLn+1(k

′) be a hermitian matrix. We put G := U(J).
Then we have Gder = SU(J) (consisting of determinant 1 matrices). It’s simply-connected,
and its adjoint quotient is PU(J).12 There are of type An. Here, note that, the above
classification theorem of connected reductive groups is for groups over an algebraically closed
field. So the point here is that U(J) and GLn+1 are not isomorphic over k, but isomorphic
over k.

Exercise 4.32. Let k be a non-algebraically-closed field. Let k′ be a quadratic extension
of k and J ∈ GLn(k

′) be a hermitian matrix. Prove that U(J) and GLn are isomorphic over
k. More concretely, prove that the group

U(J)(k) = {g ∈ GLn(k ⊗k k′) | tσ(g)Jg = J}

is isomorphic to GLn(k). Here, if you want, please choose a hermitian matrix J in any way
you prefer.

Example 4.33 (type Bn). Let G := SO2n+1. Then we have Gder = G. It’s adjoint, and its
simply-connected cover is so-called the “spin group” Spin2n+1 (two-fold cover of SO2n+1).
There are of type Bn.

we have the equality for R = k. Thus, in this example, we may think of PGLn(k) as the quotient of GLn(k)

by its center.)
12I’m not sure if this is a standard notation.
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Example 4.34 (type Cn). Let G := Sp2n. Then we have Gder = G. It’s simply-connected,
and its adjoint quotient is PSp2n (Sp2n is its two-fold cover). There are of type Cn.

Example 4.35 (type Dn). Let G := SO2n. Then we have Gder = G. Its simply-connected
cover is Spin2n (two-fold cover of G), and its adjoint quotient is PSO2n (SO2n is its two-fold
cover). There are of type Dn.

4.5. Rationality. Let us finally discuss the rationality. From now on, let us again assume
that k is a perfect field.

Definition 4.36. Let G and G′ be connected reductive groups over k. We say that G is a
k-form of G′ (or G′ is a k-form of G) is they are isomorphic over k.

Example 4.37. The previous exercise says that U(J) is a k-form of GLn.

Definition 4.38. We say that a connected reductive group G over k is split if it has a split
maximal torus over k, i.e., a maximal torus which is isomorphic to a product of Gm’s over
k.

Proposition 4.39. For any connected reductive group G over k, there uniquely exists (up
to isomorphism) a split connected reductive group G′ over k such that G is a k-form of G′.

Definition 4.40. We call a finite group a finite group of Lie type is it is realized as G(Fq)
for some connected reductive group G over Fq. We say that a finite group of Lie type G(Fq)
is

• of Chevalley type if G is split, and
• of Steinberg type if G is not split.
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5. Week 5: Deligne–Lusztig varieties

5.1. Frobenius endomorphism. In the following, we let k = Fq. Note that then the

absolute Galois group Gal(Fq/Fq) is a pro-cyclic group isomorphic to Ẑ. This group has the

Frobenius automorphism F : Fq → Fq;x 7→ xq as its (topological) generator.
Now let us suppose that X is an affine algebraic variety over k. Recall that, in our

sense, this means that X is a scheme equipped with a morphism to Spec k such that its
base change Xk to Spec k corresponds to an algebraic variety in the classical sense. Let

k[X] be the coordinate ring of X, i.e., X = Spec k[X] (hence Xk = Spec k[X], where

k[X] = k[X]⊗k k). We define a ring endomorphism F ∗ of k[X] by

F ∗ : k[X]⊗k k → k[X]⊗k k; f ⊗ a 7→ fq ⊗ a.
(Note that this is a well-defined ring homomorphism since k is of characteristic p!) By abuse
of notation, we write F : Xk → Xk for the endomorphism of Xk induced by F ∗. Naively, F
can be thought of as the entry-wise q-th power map.

In the following (and actually, so far in this course), we often simply write “g ∈ X” to
mean that g ∈ X(k) = Xk(k). Then it makes sense to talk about the image F (g) of g under
the Frobenius morphism. Following the definition, we can easily check that the set of fixed
points XF = Xk(k)

F is nothing but X(k).
We finally note that a closed subvariety Yk of Xk is k-rational if and only if Yk is stable

under F ; this fact is a special case of so-called the Galois descent (see [Spr09, 11.2]).

5.2. Definition of a Deligne–Lusztig variety. Let G be a connected reductive group
over k = Fq. Let F : Gk → Gk be the Frobenius endomorphism of G. (Note that F is
compatible with the Hopf algebra structure of the coordinate ring of Gk, hence F is a group
endomorphism of Gk.)

Definition 5.1 (Deligne–Lusztig variety). Let T be a k-rational maximal torus of G. We
take a Borel subgroup B of G containing T . Let U be the unipotent radical of B. We define
an algebraic variety XGT⊂B (over k) by

XGT⊂B := {g ∈ G | g−1F (g) ∈ F (U)}.
We call XGT⊂B the Deligne–Lusztig variety associated to T (and B).

Remark 5.2. Recall that a Borel subgroup of G is a maximal connected solvable closed
subgroup of G. Since any subtorus of G is connected solvable and closed, we can always
find a Borel subgroup B of G containing a given maximal torus T of G. But be careful that
B might not be taken to be k-rational even when T is k-rational (hence U also may not be
k-rational).

Let us fix a T in the following and shortly write X for XGT⊂B .

First suppose that g ∈ GF and x ∈ X . Then we have

(gx)−1F (gx) = x−1g−1F (g)F (x) = x−1g−1gF (x) = x−1F (x) ∈ F (U).

In other words, the element gx ∈ G again belongs to X . Thus we get an action of GF on X
by left multiplication.

Next suppose that t ∈ TF and x ∈ X . Then we have

(xt)−1F (xt) = t−1x−1F (x)F (t) = t−1x−1F (x)t ∈ t−1F (U)t = F (U),

where we used that T normalizes F (U) in the last equality. In other words, the element
xt ∈ G again belongs to X . Thus we get an action of TF on X by right multiplication.
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Note that the actions of GF and TF on X obviously commute. Hence we get an action
of the direct product group GF × TF on X .

This observation is very important; by the functoriality, the étale cohomology of X also
has an action of GF × TF . In other words, we can construct a representation of GF × TF .
The aim of this course (Deligne–Lusztig theory) is to investigate the representations of GF

realized in this way through the geometry of X .

5.3. Classification of maximal tori. Deligne–Lusztig varieties are determined by the
choice of a k-rational maximal torus of G. Then, how many k-rational maximal tori does G
have (up to k-conjugacy)? Let us investigate it (following [Car85, 3.3]).

We first note the following fact:

Proposition 5.3. Any connected reductive group G over k possesses a k-rational Borel
subgroup. 13

Let us fix a k-rational Borel subgroup B0 of G. Let T0 be a k-rational maximal torus of
G contained in B0. We call this maximal torus T0 the “base torus” (this is our temporary
terminology). We write NG(T0)/T0 for the normalizer group of T0 in G and WG(T0) :=
NG(T0)/T0 for the Weyl group of T0 in G. We often write W0 for WG(T0) := NG(T0)/T0 in
short. Note that, since T0 is k-rational, so is NG(T0). Hence we have a natural action of F
on W0. We say that two elements w1, w2 ∈ W0 are F -conjugate if there exists an element
v ∈W0 satisfying w2 = vw1F (v)

−1. Note that this is an equivalence relation on W0.
Now let T be a k-rational maximal torus of G. Recall that all maximal tori of G are

conjugate (over k). Thus let us choose an element g ∈ G satisfying T = gT0, where
g(−) := g(−)g−1. Since both T and T0 are k-rational subgroups of G, T and T0 are stable
under F . Hence we get

F (g)T0 = F (gT0) = F (T ) = T = gT0.

In particular, we have g
−1F (g)T0 = T0. In other words, the element g−1F (g) belongs to the

normalizer NG(T0) of T0 in G. We let w be the image of g−1F (g) ∈ NG(T0) in the Weyl
group WG(T0).

Lemma 5.4. The F -conjugacy class of w ∈ W0 is well-defined, i.e., independent of the
choice of g ∈ G satisfying gT0 = T . Moreover, two GF -conjugate k-rational maximal tori
of G give rise to the same F -conjugacy class of W0.

Proof. Suppose that g1, g2 ∈ G are elements satisfying g1T0 = T and g2T0 = T . Let w1 and
w2 be the images of g−1

1 F (g1) and g
−1
2 F (g2) in W0, respectively.

As we have g1T0 = T = g2T0, we have g−1
1 g2 ∈ NG(T0). Hence, if we put v to be the

image of g−1
1 g2 in W0, we get w2 = v−1w1F (v).

It is easy to check the latter assertion. □

By this lemma, we see that the above procedure T 7→ w induces a well-defined map

{k-rational maximal tori of G}/GF -conj.→W0/F -conj.

Proposition 5.5. This map is bijective.

To show this proposition, we introduce following famous fact, which is known as Lang’s
theorem.

13In general, a connected reductive group G over k (any field) is said to be “quasi-split” if it has a

k-rational Borel subgroup. The proposition says that any connected reductive group over Fq is quasi-split.
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Theorem 5.6 ([Spr09, 4.4.17]). Let G be a connected algebraic group over k = Fq. Then
the map Gk → Gk : g 7→ g−1F (g) is surjective.

Proof of Proposition 5.5. Let us first show the surjectivity. Let w ∈W0 and n ∈ NG(T0) be
any its representative. By Lang’s theorem for G, we can find an element g ∈ G satisfying
g−1F (g) = n. If we put T := gT0, then the condition g−1F (g) = n ∈ NG(T0) implies that
T is F -stable. Hence T is k-rational.

Let us next show the injectivity. Suppose that T1 and T2 are k-rational maximal tori
of G which give rise to the same F -conjugacy class of W0. If we write T1 = g1T0 and
T2 = g2T0, then we have g−1

1 F (g1) = n−1g−1
2 F (g2)F (n)t0 for some elements n ∈ NG(T0)

and t0 ∈ T0. By noting that F (g2)F (n)t0 = tF (g2)F (n) for an element t of T2 and applying
Lang’s theorem for T2 to t, we can find an element s ∈ T2 satisfying s−1F (s) = t. Hence we
get

g−1
1 F (g1) = n−1g−1

2 s−1F (s)F (g2)F (n),

which implies that F (sg2ng
−1
1 ) = sg2ng

−1
1 , i.e., sg2ng

−1
1 ∈ GF . If we put g to be this

element, then we have
gT1 = gg1T0 = sg2nT0 = sT2 = T2.

Hence T1 and T2 are GF -conjugate. □
In the following, for any element w ∈ W0, let Tw denote a k-rational maximal torus

of G corresponding to the F -conjugacy class of w. Let us describe the rational structure
of Tw in terms of the base torus T0. Let g ∈ G be an element satisfying Tw = gT0. By
replacing g with an element of gNG(T0) if necessary, we may assume that the image of
g−1F (g) ∈ NG(T0) in W0 is exactly w. Then, the action of F on Tw is transferred to the
composition of Int(w) and F on T0 through the isomorphism Int(g)−1 : Tw → T0:

Tw

F

��

T0
Int(g)
oo gtg−1

_

��

t
�oo

Tw
Int(g)−1

// T0 F (g)F (t)F (g)−1 � // g−1F (g)F (t)F (g)−1g = Int(w) ◦ F (t)

Example 5.7. Let G = GLn. In this case, the base torus T0 can be taken to be the diagonal

maximal torus. Thus we have T0 ∼= (F×
q )

n (if we loosely identify T0 with T0(Fq)) and the
action F on T0 is given by

(t1, t2, . . . , tn) 7→ (tq1, t
q
2, . . . , t

q
n).

The Weyl group W0 can be naturally identified with the subgroup of permutation matrices
of GLn, hence isomorphic to Sn.

(1) We first consider the case where w ∈ Sn is trivial. In this case, Tw is nothing but
T0 itself. Hence TFw = TF0

∼= (F×
q )

n.
(2) We next consider the case where w ∈ Sn is the cyclic permutation (1 2 . . . n) of

length n (this element is so-called a “Coxeter element”). The action Int(w) ◦ F on
T0 is explicitly written by

(t1, t2, . . . , tn) 7→ (tqn, t
q
1 . . . , t

q
n−1).

Thus (t1, t2, . . . , tn) ∈ T0 is fixed by Int(w) ◦ F if and only if (t1, t2, . . . , tn) =
(tqn, t

q
1 . . . , t

q
n−1), which is equivalent to

(t1, t2, . . . , tn) = (t1, t
q
1, . . . , t

qn−1

1 ) and tq
n

1 = t1.
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In other words, TFw is identified with F×
qn , hence is of order qn − 1.

(3) We finally consider the general case. The Frobenius F acts on W0 trivially, thus
the F -conjugacy of W0 is nothing but the usual conjugacy. Recall that the conju-
gacy classes of Sn correspond to the partitions of n bijectively. Suppose that the
conjugacy class of w ∈ Sn corresponds to a partition (n1, n2, . . . , nr) of n, where
n1 ≥ · · · ≥ nr > 0 and n1 + · · · + nr = n. 14 Then, by a similar argument to (2),
we can check that TFw is identified with F×

qn1 × · · · × F×
qnr . Hence the order of TFw is

given by (qn1 − 1) · · · (qnr − 1).

As demonstrated in the above example, it is not very difficult to describe k-rational
maximal tori of G as long as the descriptions of the base torus T0 and its Weyl group
explicitly.

Let us finally mention a general proposition on the order of Tw. We first note that the
actions of F and W0 on X∗(T0) are induced as follows:

F (χ)(t) := χ(F (t)) for any χ ∈ X∗(T0), t ∈ T0,
w(χ)(t) := χ(w−1tw) for any χ ∈ X∗(T0), t ∈ T0.

Similarly, the actions of F and W0 on X∗(T0) are induced as follows:

F (χ∨)(t) := F (χ∨(t)) for any χ∨ ∈ X∗(T0), t ∈ Gm,

w(χ∨)(t) := wχ∨(t)w−1 for any χ∨ ∈ X∗(T0), t ∈ Gm.

Then it is a routine task to check that the maps on X∗(T ) and X∗(T ) induced by F in a
similar way are identified with F ◦ w−1 and w−1 ◦ F on X∗(T0) and X∗(T0), respectively
(see [Car85, Proposition 3.3.4]). This leads to the following (see [Car85, Proposition 3.3.5]):

Proposition 5.8. The order of TFw is given by |det(w−1◦F−id | X∗(T0)R)|. More explicitly,
if we write F = qF0 (then F0 is an automorphism of X∗(T0)R of finite order) and let χ(−)
be the characteristic polynomial of F−1

0 ◦ w on X∗(T0)R, then we have TFw = χ(q).

Remark 5.9. Note that F0 is the identity when G is split.

Exercise 5.10. Compute the order of TF for all k-rational maximal tori T of Sp2n.

5.4. Some variants. Now we introduce of several variants of the Deligne–Lustig variety.
Later (after next weeks), it will turn out that all of these variants are technically convenient.
(The description given here follows [DL76, 1.18–1.20] and [Car85, 7.7].)

Let T be a k-rational maximal torus of G. As before, we take a Borel subgroup B of G
containing T . Let U be the unipotent radical of B. Recall that

XGT⊂B := {g ∈ G | g−1F (g) ∈ F (U)}.
Note that XGT⊂B is also stable under the right multiplication by U ∩ F (U). We define

algebraic varieties X̃G
T⊂B and XG

T⊂B (over k) by

X̃G
T⊂B := {g ∈ G | g−1F (g) ∈ F (U)}/(U ∩ F (U))

XG
T⊂B := {g ∈ G | g−1F (g) ∈ F (U)}/TF (U ∩ F (U)).

Then XGT⊂B is a GF -equivariant U ∩F (U)-torsor over X̃G
T⊂B and X̃G

T⊂B is a GF -equivariant

TF -torsor over XG
T⊂B .

XGT⊂B
(U ∩ F (U))-torsor−−−−−−−−−−−→ X̃G

T⊂B
TF -torsor−−−−−−→ XG

T⊂B .

14For example, the trivial permutation corresponds to (1, . . . , 1) and the cyclic permutation (1 2 . . . n)

of length n corresponds to (n).
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Now assume that T corresponds to w ∈ W . What we want to do in the following is to
understand the above varieties in a more concrete language based on flag varieties. For this,
again let us fix a k-rational Borel subgroup B0 of G and a base torus T0 ⊂ B0. We define
the variety B to be the quotient G/B0 of G by B0. (By a fundamental fact in the theory of
algebraic groups, this is a projective variety.) Note that the k-rational points of B0 can be
identified with the set of all Borel subgroups of G via map g 7→ gB0. This can be checked
by using the following facts:

(1) all Borel subgroups of G are conjugate, and
(2) for any Borel subgroup B of G, we have NG(B) = B.

We call B = G/B0 the flag variety of G.

Proposition 5.11. We have bijections

W0 = NG(T0)/T0
1:1←→ B0\G/B0

1:1←→ G\(B × B).

Here, the first map is n 7→ BnB and the second map is g 7→ G(B0,
gB0). (The action of G

on B × B is given by a diagonal conjugation, i.e., g(B1, B2) = (gB1,
gB2)).

Proof. The bijectivity of the first map is known as the “Bruhat decomposition”. See, for
example, [Spr09, 8.3]. The bijectivity of the second map can be checked again by the
above-mentioned fundamental properties (1) and (2) of Borel subgroups. □

Let O(w) denote the cell of B×B corresponding to w ∈W0 under the above identification;
explicitly, this is given by O(w) = G(B0,

wB0). When a pair of two Borel subgroup (B1, B2)
belongs to O(w), we say that B1 and B2 are in relative position w.

We define a set X(w) to be the subset of B consisting of all Borel subgroups B of G such
that B and F (B) are in relative position w:

X(w) := {gB0 ∈ G/B0 | (gB0, F (
gB0)) ∈ O(w)}

= {gB0 ∈ G/B0 | g−1F (g) ∈ B0wB0}.

Since X(w) is locally closed in B, X(w) has a variety structure. We put B̃ := G/U0; hence

B̃ is a T0-torsor over B. By choosing a representative ẇ ∈ NG(T0) of w ∈ W0, we define a

similar subset X̃(ẇ) of B̃ as follows:

X̃(ẇ) := {gU0 ∈ G/U0 | F (gU0) = gU0ẇ}
= {gU0 ∈ G/U0 | g−1F (g) ∈ U0ẇU0}.

Then the covering B̃ ↠ B restricts to a covering X̃(ẇ) ↠ X(w), which is GF -equivariant.

Let us compute the fiber of this map. Suppose that gU0 ∈ X̃(ẇ), hence gB0 ∈ X(w). The

fiber of B̃ ↠ B at gB0 is simply given by {gtU0 | t ∈ T0}. It is not difficult to check that

gtU0 belongs to X̃(ẇ) if and only if wF (t)w−1 ∈ U0t. By noting that both wF (t)w−1 and

t belong to T0, this is furthermore equivalent to that wF (t)w−1 = t, i.e., t ∈ T
Int(w)◦F
0 .

(Indeed, wF (t)w−1t−1 must be an element of T0 ∩ U0 = {1}.) Therefore, we conclude that

X̃(ẇ) ↠ X(w)

is a GF -equivariant T
Int(w)◦F
0 -torsor. We note that T

Int(w)◦F
0 is identified with TFw by the

map T
Int(w)◦F
0 → TFw : t 7→ gtg−1.

All the relations between the varieties we introduced so far are summarized as follows:
38



Proposition 5.12. Suppose that T = Tw for a w ∈W . Let x ∈ G be an element such that
ẇ := x−1F (x) belongs to NG(T0) and lifts w (hence T = xT0). We take B to be xB0, hence
U = xU0. Then the map g 7→ gx induces a bijection from the GF -equivariant TF -torsor

X̃G
T⊂B → XG

T⊂B to the GF -equivariant T
Int(w)◦F
0 -torsor X̃(ẇ) → X(w) (TF and T

Int(w)◦F
0

are identified under the map t 7→ g−1tg).

XGT⊂B

/(U∩F (U))
����

X̃G
T⊂B

∼
g 7→gx

//

/TF

����

X̃(ẇ)

/T
Int(w)◦F
0

����

� � // B̃

����

XG
T⊂B

∼
g 7→gx

// X(w) �
�

// B

5.5. Example: GLn case. Let us investigate the variety X̃(ẇ) in the case where G = GLn
and w = (1 2 . . . n) ∈ Sn. Let T0 be the diagonal maximal torus of G and B0 the upper-
triangular Borel subgroup of G.

Definition 5.13. Let V be a finite-dimensional k-vector space. A flag of V is a sequence
of subspaces F = (0 = V0 ⊊ V1 ⊊ · · · ⊊ Vr = V ). We say that a flag F is complete if
dimVi = i.

Let V := F⊕n
q and {ei}ni=1 be the standard basis of V (i.e., e1 = (1, 0, . . . , 0) and so

on). Let Fstd be the complete flag of V given by Vi =
⊕i

j=1 Fqej . We call Fstd the

standard flag of V . Note that the set of points of B = G/B0 parametrizes the complete
flags of V . Indeed, G acts on the set of complete flags via natural multiplication, i.e.,
g · (V0 ⊊ · · · ⊊ Vn) := (g(V0) ⊊ · · · ⊊ g(Vn)). It is easy to see that this action is transitive
and that the stabilizer of Fstd is nothing but B0.

Definition 5.14. Let V be a finite-dimensional k-vector space. A marked flag of V is a
flag (0 = V0 ⊊ V1 ⊊ · · · ⊊ Vr = V ) equipped with nonzero element vi ∈ Vi/Vi−1 for each
1 ≤ i ≤ r.

Note that the standard flag Fstd can be upgraded to a marked complete flag with mark
{ei ∈ Vi/Vi−1}ni=1. Then, similarly to above, we see that the set of points of B̃ = G/U0

parametrizes the marked complete flags of V .
Recall that O(w) parametrizes pairs of Borel subgroups of G whose relative position is

w. Let (B,B′) be a pair of Borel subgroups of G. Let F (′) = (0 = V
(′)
0 ⊊ V

(′)
1 ⊊ · · · ⊊

V
(′)
n = V (′)) be the complete flag of V corresponding to B(′).

Exercise 5.15. Check that (F ,F ′) is in relative position w if and only if (F ,F ′) satisfies
the following conditions: ®

Vi + V ′
i = Vi+1 (1 ≤ i ≤ n− 1),

V1 + V ′
n−1 = V.

Next recall that X(w) parametrizes Borel subgroups B of G such that (B,F (B)) belongs
to O(w). By the above exercise, this is equivalent to that a complete flag F = (0 = V0 ⊊
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V1 ⊊ · · · ⊊ Vn = V ) corresponding to B satisfies the following:®
Vi + F (Vi) = Vi+1 (1 ≤ i ≤ n− 1),

V1 + F (Vn−1) = V.

We now consider X̃(ẇ). Similarly to above, we can check that X̃(ẇ) parametrizes marked
complete flags (F , {v1}ni=1) satisfying®

vi+1 ≡ F (vi) (mod Vi) (1 ≤ i ≤ n− 1),

v1 ≡ Fn(v1) (mod F (v1), . . . , F (vn−1)).

Exercise 5.16. Check that this condition is equivalent to that

v1 ∧ F (v1) ∧ · · · ∧ Fn−1(v1) = Fn(v1) ∧ F (v1) ∧ · · · ∧ Fn−1(v1)

(and both sides are nonzero), which can be also written as

F (v1 ∧ F (v1) ∧ · · · ∧ Fn−1(v1)) = (−1)n−1 · v1 ∧ F (v1) ∧ · · · ∧ Fn−1(v1).

Let us explicate this equality by writing v1 ∈ V via the standard basis as v1 =
∑n
i=1 xiei.

Since F acts on V via q-th power on the coefficients, we have that F i(v1) =
∑n
i=1 x

qi

i ei.
Therefore, the above equality is equivalent to that(

det(xq
j−1

i )1≤i,j≤n
)q

= (−1)n−1 · det(xq
j−1

i )1≤i,j≤n.

Since both sides are necessarily nonzero, this is equivalent to

(−1)n−1 ·
(
det(xq

j−1

i )1≤i,j≤n
)q−1

= 1.

This is quite close to (and more complicated than) the Drinfeld curve! In fact, X̃(ẇ)
exactly generalizes the Drinfeld curve.

Exercise 5.17. Verify that X̃(ẇ) exactly coincides with the Drinfeld curve {(x, y ∈ A2
Fp

) |
xyq − xqy = 1} when G = SL2 and w is the Coxeter element, i.e., the unique nontrivial
element of the Weyl group. (CAUTION: In the case of special linear groups, we cannot
simply take the representatives of the Weyl group elements to be permutation matrices
because of the determinant condition. In particular, ẇ cannot taken to be ( 0 1

1 0 ). Instead,
for example, we can use

(
0 1
−1 0

)
. But then we get a nontrivial sign contribution to the

defining equation of X̃(ẇ)).
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6. Week 6: Deligne–Lusztig representations

6.1. Quick overview of étale cohomology. In the following, we quickly introduce the
basic properties of the étale cohomology for algebraic varieties. (Here, we do not even give
the definition of the étale cohomology. Carter’s book [Car85, Appendix] has a beautiful
summary of the étale cohomology theory, so please look at it if you want to know more
about some details.)

Let us briefly recall the notion of `-adic numbers. Let ` be a prime number. We consider
the inverse system of finite rings

· · · → Z/`n+1Z→ Z/`nZ→ · · · → Z/`2Z→ Z/`Z,
where the transition map Z/`n+1Z→ Z/`nZ is given by the natural surjection. The inverse
limit of this system forms a ring, which is called the ring of `-adic integers and denoted by
Zℓ:

Zℓ := lim←−
n

Z/`nZ := {(xn)n ∈
∏
n≥1

Z/`nZ | xn+1 = xn}.

Since Zℓ is an integral domain, it makes sense to consider its fractional field; it is called the
field of `-adic numbers and denoted by Qℓ. 15

Lemma 6.1. Let Qℓ be an algebraic closure of Qℓ. Then Qℓ is isomorphic to the complex
number field C as an abstract field. 16

Exercise 6.2. Prove this lemma. Hint: note that both Qℓ and C are algebraically closed
fields of characteristic 0 and the same cardinality.

Now let k be a finite field Fq of characteristic p > 0. In the following, let ` be a prime

number distinct to p. For any algebraic variety X over k = Fp and for each i ∈ Z≥0, we can

associate a Qℓ-vector spaceHi
c(X,Qℓ) called the compactly supported (i-th) étale cohomology

of X with Qℓ-coefficient. In this course, we simply refer to it by the `-adic cohomology of
X. 17

It is known that Hi
c(X,Qℓ) satisfies various “basic” properties. For a moment, let us

introduce only the following:

Theorem 6.3. (1) For any X, Hi
c(X,Qℓ) is finite-dimensional.

(2) For any X, Hi
c(X,Qℓ) 6= 0 only for 0 ≤ i ≤ 2 dim(X).

(3) For any proper18 morphism of algebraic varieties f : X → Y over k, a Qℓ-vector
space homomorphism f∗ : Hi

c(Y,Qℓ) → Hi
c(X,Qℓ) is canonically (functorially) as-

sociated (for each i).

For references on these facts, see [Car85, Section 7.1].
Now suppose that X is an algebraic variety over k. Then we have the Frobenius endo-

morphism F : Xk → Xk. Thus, by the functoriality, we also have an endomorphism F ∗ of

Hi
c(X,Qℓ).

15Another equivalent way of defining Qℓ is to complete the rational number field Q with respect to the

`-adic distance. But the above definition seems better in this context because the `-adic cohomology is
defined by taking the limit of torsion coefficient (Z/`nZ-coefficient) cohomologies.

16Note that, however, Qℓ and C cannot be topologically isomorphic.
17There is also the “(i-th) étale cohomology of X with Qℓ-coefficient”, so this terminology is a bit too

abbreviated. But we do not mind because we only use the compactly supported one in this course.
18Here, we don’t give the definition of the properness of a morphism of algebraic varieties. We only note

that any isomorphism is proper and also a Frobenius endomorphism is also proper.
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Theorem 6.4 (Grothendieck–Lefschetz fixed point theorem). We have

|XF | =
∑
i≥0

(−1)iTr(F ∗ | Hi
c(X,Qℓ)).

One of the important application of the fixed point theorem is the following `-independence
result: Suppose that X is furthermore equipped with an action of a finite group G. Then,
by the functoriality of `-adic cohomology, we obtain a representation of G on a finite-
dimensional Qℓ-vector space g 7→ (g−1)∗. (Here it is better to take the inverse of g since
(−)∗ is contravariant.) By abuse of notation, let us simply write “g” for the action (g−1)∗

on Hi
c(X,Qℓ).

Theorem 6.5. Suppose that an element g ∈ G satisfies g ◦F = F ◦ g as an endomorphism
of Xk. Then the number ∑

i≥0

(−1)i Tr(g | Hi
c(X,Qℓ))

is an integer independent of ` (called the “Lefschetz number” of g).

Proof. Here we need the fact that, for any n ≥ 1, the endomorphism g ◦Fn of Xk associated
to another Fqn-rational structure of Xk. Let us write Xn for the algebraic variety over Fqn
determined by this rational structure. Then Xg◦Fn

is the set of Fqn-rational points of Xn,
hence finite.

We first investigate the following formal series:

R(t) := −
∞∑
n=1

|Xg◦Fn

| · tn ∈ Z[[t]] ⊂ Qℓ((t)).

Since g and F ∗ are commuting endomorphism of V :=
⊕

i≥0H
i
c(X,Qℓ) (note that this is

finite-dimensional), we can simultaneously triangulate g and F ∗. Let v1, . . . , vk be a set
of simultaneous eigenvectors (d := dimV ) with eigenvalues α1, . . . , αd ∈ Qℓ for g∗ and
β1, . . . , βd ∈ Qℓ for F ∗. Here, we may assume that each vj is contained in Hi

c(X,Qℓ) for
some i. For each j = 1, . . . , k, we define a sign εj by

εj :=

®
1 if vj is contained in an even degree cohomology,

−1 if vj is contained in an odd degree cohomology.

Then, by applying the fixed point formula to Xn over Fqn , we get

|Xg◦Fn

| =
d∑
j=1

εjαjβ
n
j .

Therefore, we get

R(t) = −
∞∑
n=1

|Xg◦Fn

| · tn = −
∞∑
n=1

d∑
j=1

εjαjβ
n
j · tn

= −
d∑
j=1

εjαj

∞∑
n=1

βnj · tn

= −
d∑
j=1

εjαj
βjt

1− βjt
∈ Qℓ(t).
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In particular, R(t) is a rational function which does not have a pole at t =∞. Let us write
R(t) = p(t)/q(t) with polynomials p(t), q(t) ∈ Qℓ[t]; then, by noting that R(t) is initially
given by a formal series with Z-coefficients, we can easily check that the coefficients of p(t)
and q(t) can be taken to be in Q. In other words, we have R(t) ∈ Q(t).

On the other hand, we note that R(∞) is given by
∑d
j=1 εjαj , which is nothing but∑

i≥0(−1)iTr(g | Hi
c(X,Qℓ)). Since R(t) is independent of ` (by its definition) and belongs

toQ(t), we have that
∑
i≥0(−1)iTr(g | Hi

c(X,Qℓ)) is a rational number which is independent

of `. Moreover, since g is of finite order, αj ∈ Qℓ also must be of finite order. In particular,∑
i≥0(−1)iTr(g | Hi

c(X,Qℓ)) =
∑d
j=1 εjαj is an algebraic integer. As Q ∩ Z = Z, we get∑

i≥0(−1)iTr(g | Hi
c(X,Qℓ)) ∈ Z. □

We let L(g,X) denote the Lefschetz number of g.

6.2. Deligne–Lusztig representation. In the following, we let k be a finite field Fq of

characteristic p > 0. We fix a prime number ` 6= p and also fix an isomorphism ι : Qℓ
∼=−→ C.

Let G be a connected reductive group over k.
Recall that, for any k-rational maximal torus T of G and a Borel subgroup B containing

T 19, the Deligne–Lusztig variety XGT⊂B is defined; this is an algebraic variety over k equipped

with an action of GF × TF . Therefore, its `-adic cohomology Hi
c(XGT⊂B ,Qℓ) is a finite-

dimensional representation (on a Qℓ-vector space) of GF × TF .
Now suppose that θ : TF → C× is a character. Then, through the fixed isomorphism ι,

we may regard θ as a Q×
ℓ -valued character of TF . Let us write θι := ι−1 ◦ θ : TF → Q×

ℓ .
Then it makes sense to consider the θι-isotypic part Hi

c(XGT⊂B ,Qℓ)[θι] of Hi
c(XGT⊂B ,Qℓ),

which is a finite-dimensional representation of GF on a Qℓ-vector space.

Definition 6.6. We call the alternating sum of Hi
c(XGT⊂B ,Qℓ)[θι] the Deligne–Lusztig (vir-

tual) representation of GF associated to (T, θι) and write RGT (θι) for it:

RGT⊂B(θι) :=
∑
i≥0

(−1)iHi
c(XGT⊂B ,Qℓ)[θι].

By abuse of notation, we also write RGT⊂B(θι) for the character of the Deligne–Lusztig
(virtual) representation (called Deligne–Lusztig (virtual) character).

Remark 6.7. Let us say a bit more about the notion of the θι-isotypic partH
i
c(XGT⊂B ,Qℓ)[θι].

By definition, it is the maximal subspace of Hi
c(XGT⊂B ,Qℓ) whose action of TF is given by

θι, i.e., t ·v = θι(t)v for any t ∈ TF and v ∈ Hi
c(XGT⊂B ,Qℓ) (such a subspace always uniquely

exists since any representation of TF on a finite-dimensional vector space is semisimple).
More explicitly, Hi

c(XGT⊂B ,Qℓ)[θι] is realized as the image of the following endomorphism of

Hi
c(XGT⊂B ,Qℓ):

1

|TF |
∑
t∈TF

θι(t)
−1 · t.

Now let us discuss the `-independence of the Deligne–Lusztig representation. At this
point, the coefficients of the Deligne–Lusztig representation is taken to be Qℓ and its con-
struction depends on ι : Qℓ ∼= C. Hence, the Deligne–Lusztig character is also a class function
on GF valued in Qℓ.

19Here, B is a subgroup of Gk which may not defined over k. So, precisely speaking, it might be better

to write “ a Borel subgroup B containing Tk”.
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We note that the Deligne–Lusztig variety XGT⊂B might not be defined over k. However,

there exists a finite extension k′ of k such that XGT⊂B is defined over k. Indeed, suppose that
T splits over k′ = Fqn . Then we can choose a Borel subgroup B containing T so that it is
defined over k′. This is equivalent to that U satisfies Fn(U) = U . Hence, if g ∈ G satisfies
g−1F (g) ∈ F (U), then we have Fn(g)−1F (Fn(g)) = Fn(g−1F (g)) ∈ Fn(F (U)) = F (U). In
other words, XGT⊂B is a subset of G which is stable under Fn. Thus, by the Galois descent,

XGT⊂B is defined over k′. Note that the Frobenius endomorphism of XGT⊂B associated to this
k′-rational structure is given by Fn.

Now let us apply Theorem 6.5 to the action of GF ×TF on XGT⊂B . Any (g, t) ∈ GF ×TF
satisfies (g, t) ◦ Fn = Fn ◦ (g, t). Indeed, for any x ∈ XGT⊂B , we have

(g, t) ◦ Fn(x) = gFn(x)t = Fn(gxt) = Fn ◦ (g, t)(x)
(note that g and t are fixed by F ). In other words, the (g, t)-action on XGT⊂B satisfies the
assumption of Theorem 6.5. Hence the Lefschetz number of (g, t) is an integer independent
of `:

L((g, t),XGT⊂B) :=
∑
i≥0

(−1)iTr((g, t) | Hi
c(XGT⊂B ,Qℓ)) ∈ Z.

Proposition 6.8. For any g ∈ GF , we have

RGT⊂B(θι)(g) =
1

|TF |
∑
t∈TF

θι(t)
−1 · L((g, t),XGT⊂B).

Proof. By Remark 6.7, we have

RGT⊂B(θι)(g) =
∑
i≥0

(−1)iTr(g | Hi
c(XGT⊂B ,Qℓ)[θι])

=
∑
i≥0

(−1)i 1

|TF |
∑
t∈TF

θι(t)
−1 Tr((g, t) | Hi

c(XGT⊂B ,Qℓ))

=
1

|TF |
∑
t∈TF

θι(t)
−1
∑
i≥0

(−1)iTr((g, t) | Hi
c(XGT⊂B ,Qℓ))

=
1

|TF |
∑
t∈TF

θι(t)
−1 · L((g, t),XGT⊂B).

□

Note that, though the isomorphism ι : Qℓ ∼= C, we can regard RGT⊂B(θι) as a C-valued
class function on GF . By the above proposition, then its values is given by

1

|TF |
∑
t∈TF

θ(t)−1 · L((g, t),XGT⊂B),

which is independent of ` (and also of ι). Let us write RGT⊂B(θ) for the virtual representa-

tion/character of GF with C-coefficients obtained in this way.

Example 6.9. Let us present an example in the GL2-case without any justification. Recall
that (Week 2) irreducible representations of GL2(Fq) are constructed by two different kinds
of inductions:

(1) To any character χ of F×
q × F×

q , we can associate a principal series representation

Ind
GL2(Fq)

B(Fq)
χ.
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(2) To any character θ of F×
q2 satisfying θq−1 6= 1, we can associate a cuspidal represen-

tation πθ.

Also recall that (Week 5) GF -conjugacy classes of k-rational maximal tori of a connected
reductive group G over k can be classified by the F -conjugacy classes of Weyl group of G.
When G = GL2, its Weyl group W is equal to S2 = {1, s} with trivial F -action. So there
exist exactly two GF -conjugacy classes of k-rational maximal tori of GL2:

(1) The one T1 corresponding to the trivial element 1 ∈ W is split; T1(Fq) ∼= (F×
q )

2.

For any character χ of T1(Fq), we have RGT1⊂B(χ)
∼= Ind

GL2(Fq)

B(Fq)
χ.

(2) The other one Ts corresponding to the non-trivial element s ∈ W is non-split;
Ts(Fq) ∼= F×

q2 . If we take a character θ of Ts(Fq) satisfying θq−1 6= 1, then we have

RGTs⊂B(θ)
∼= −πθ.2021

6.3. Split case: principal series. Let us first investigate the Deligne–Lusztig representa-
tion in the case where G is split and T is a split maximal torus (“base torus”) T0. Then we
can find a Borel subgroup B of G containing T which is defined over k. Let θ : TF → C×

be any character. Since B is equal to the semi-direct product of its unipotent radical U
and T (T normalizes U), we have a natural surjective homomorphism B ↠ B/U = T . By
inflating through this homomorphism, we can regard θ as a character of BF . We define the

principal series representation of GF (associated to θ) to be IndG
F

BF θ.

Proposition 6.10. We have RGT⊂B(θ)
∼= IndG

F

BF θ.

Proof. We let BF denote the set of k-rational Borel subgroups of G. We note that any
two k-rational Borel subgroups of G are GF -conjugate; in particular, BF is a finite set. We
define a morphism π from XGT⊂B to BF by

π : XGT⊂B = {g ∈ G | g−1F (g) ∈ U} → BF ; g 7→ gBg−1

(note that F (U) in the definition of XGT⊂B is equal to U since U is k-rational). This morphism
is well-defined; indeed, if g ∈ G satisfies g−1F (g) ∈ U (say g−1F (g) = u), then we have

F (gBg−1) = F (g)BF (g)−1 = guBu−1g−1 = gBg−1.

Hence gBg−1 is a k-rational Borel subgroup of G. Moreover, π is surjective. To check this,
let us take a k-rational Borel subgroup B′ of G. Then there exists an element g ∈ GF

satisfying B′ = gBg−1. since g−1F (g) = 1 ∈ U , g belongs to XGT⊂B and satisfies π(g) = B′.

Therefore, we obtain a disjoint union decomposition XGT⊂B into finite number of closed
subvarieties:

XGT⊂B =
⊔

B′∈BF

π−1(B′).

Recall that, XGT⊂B has an action of GF × TF given by (x, t) : g 7→ xgt. We introduce

an action of GF × TF on BF by (x, t) : B′ 7→ xB′x−1. Then π is GF × TF -equivariant,
i.e., π((x, t) · g) = (x, t) · π(g). Note that the action of GF × TF permutes the closed
subvarieties π−1(B′) (for B′ ∈ BF ). The resulting action GF × TF of on the finite set
{π−1(B′) | B′ ∈ BF } is transitive and the stabilizer of π−1(B) is given by BF ×TF . In this
setting, we have that the class function

GF × TF → Z : (g, t) 7→ L((g, t),XGT⊂B)

20Note that the Deligne-Lusztig representation itself can be defined even if θ does not satisfy the condition
θq−1 6= 1.

21Here, a Borel subgroup B containing Ts cannot be taken to be the standard upoper-triangular one.
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is given by the induction of

BF × TF → Z : (b, t) 7→ L((b, t), π−1(B))

(This is a general fact which holds for the Lefschetz number of a variety equipped with a
finite group action; see [Car85, Property 7.1.7]).

Hence, by Proposition 6.8, the Deligne–Lusztig character RGT⊂B(θ) is given by the induc-

tion of the following class function from BF to GF :

b 7→ 1

|TF |
∑
t∈TF

θ(t)−1 · L((b, t), π−1(B)).

Let us compute L((b, t), π−1(B)). By recalling that NG(B) = B, we see that π−1(B) is
given by

XGT⊂B ∩NG(B) = XGT⊂B ∩B = TFU.

Note that each fiber of the quotient map TFU ↠ TFU/U is isomorphic to U , which is
furthermore isomorphic to an affine space AdimU (this is a general property of an unipotent
group). In fact, it is known that such a map (“affine fibration”) does not change the
Lefschetz number, i.e., L((b, t), π−1(B)) = L((b, t), TFU/U) (see [Car85, Property 7.1.5]).
Here, BF × TF acts on TFU/U in an obvious way, that is, (b, t) · sU = bstU .

Now note that TFU/U = TFUF /UF is a finite set. Thus L((b, t), TFUF /UF ) is equal
to the cardinality of the set (TFUF /UF )(b,t) of points of TFUF /UF fixed by (b, t) (see
the exercise below). For any sUF ∈ TFUF /UF , we have (b, t) · sUF = sUF if and only
if bstUF = sUF , which is equivalent to b ∈ t−1UF . This implies that the fixed points
set (TFUF /UF )(b,t) is empty if b /∈ t−1UF and equal to TFUF /UF if b ∈ t−1UF . Since
|TFUF /UF | = |TF |, we get

L((b, t), π−1(B)) =

®
|TF | if b ∈ t−1UF ,

0 if b /∈ t−1UF .

Therefore, RGT⊂B(θ) is given by the induction of

b = su 7→ 1

|TF |
∑
t∈TF

θ(t)−1 · L((su, t), π−1(B)) = θ(s).

This means that RGT⊂B(θ) is the induction of the inflation of θ, i.e., IndG
F

BF θ. □
Exercise 6.11. Prove the following claim:

Let X be a finite set (this can be regarded as a 0-dimensional algebraic
variety

⊔
x∈X Spec k). Suppose that g is an automorphism of X. Then we

have L(g,X) = |Xg|.
Hint:

(1) Show that the Frobenius endomorphism F induced from the obvious k-rational
structure

⊔
x∈X Spec k is the identity of X.

(2) Define a formal power series R(t) in the same way as the proof of Theorem 6.5 and
do the same argument.
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7. Week 7: Deligne–Lusztig character formula

Let G be a connected reductive group over k = Fq and F its associated Frobenius
endomorphism. We fix a k-rational maximal torus T of G and a Borel subgroup B of G
containing T . We also fix a character θ : TF → C×. Then we have the Deligne–Lusztig
virtual representation RGT⊂B(θ) of GF . By abuse of notation, we also write RGT⊂B(θ) for

the Deligne–Lusztig virtual character, which is a class function GF → C defined to be the
trace of the Deligne–Lusztig virtual representation. Today’s aim is to establish a character
formula for RGT⊂B(θ).

7.1. Deligne–Lusztig character formula. We write GFss and G
F
unip for the set of semisim-

ple (equivalently, prime-to-p order) and unipotent elements of GF (equivalently, p-power
order), respectively. In the following, for any g ∈ G and h ∈ G, we write gh = ghg−1.
Similarly, for any g ∈ G and a subgroup H ⊂ G, we write gH = gHg−1.

Definition 7.1. We define a function QGT : GFunip → C by QGT := RGT⊂B(1)|GF
unip

. We call

QGT the Green function (of G associated to T ).

We note that, for notational convenience, we simply write “QGT ” although a priori QGT
depends on the choice of a Borel subgroup B containing T . (But, in fact, later it will turn
out that QGT does not depend on B!)

To state the Deligne–Lusztig character formula, let us recall that any element g ∈ GF
has the Jordan decomposition g = su, where s ∈ GF is a semisimple element and u ∈ GF
is a unipotent element such that su = us.

Theorem 7.2 (Deligne–Lusztig character formula). Let g ∈ GF with Jordan decomposition
g = su. We shortly write Gs for the centralizer of s in G, i.e., Gs = ZG(s) = {x ∈ G | xs =
sx}. Then we have

RGT⊂B(θ)(g) =
1

|(G◦
s)
F |

∑
x∈GF

x−1sx∈TF

θ(x−1sx) ·QG
◦
s

xT (u).

Let us explain why the right-hand side of this formula makes sense. We first note the
following result (see [Car85, 1.14]).

Lemma 7.3. (1) For any s ∈ GFss, the identity component G◦
s of its centralizer Gs is a

connected reductive group defined over k.
(2) Any unipotent element of Gs lies in G

◦
s. In particular, when g ∈ GF has the Jordan

decomposition g = su, its unipotent part u belongs to (G◦
s)
F .

Let us look at the index set of the sum in the Deligne–Lusztig character formula. When
x−1sx ∈ T , we necessarily have the opposite inclusion ZG(x

−1sx) ⊃ ZG(T ). Here, it is
easy to check that ZG(x

−1sx) = x−1ZG(s)x. On the other hand, it is known that the
centralizer of a maximal torus in a connected reductive group is the maximal torus itself,
i.e., ZG(T ) = T (see [Spr09, 7.6.4]). Hence, we have x−1ZG(s)x ⊃ T , or equivalently,
xT = xTx−1 ⊂ ZG(s) = Gs. Since T is connected, this furthermore implies that xT ⊂ G◦

s.
Furthermore, it is known that (B∩G◦

s)
◦ is a Borel subgroup of G◦

s and U∩G◦
s is its unipotent

radical.22

In summary, when x−1sx ∈ T , we obtain a k-rational maximal torus xT of a connected

reductive groupG◦
s. Thus it makes sense to consider the Green functionQ

G◦
s

xT ofG◦
s associated

22Here, note that U ∩G◦
s is already connected!
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to xT and (B ∩G◦
s)

◦. Since u belongs to (G◦
s)
F
unip, it also makes sense to look at the value

of Q
G◦

s
xT at u.

Thus the Deligne–Lusztig character formula reflects an inductive nature of the theory of
reductive groups. The contribution of the semisimple part s is given just by θ, which is very
simple. On the other hand, the contribution of the unipotent part u is given by the Green
function, which is independent of θ and taken in G◦

s. Hence, ultimately, the Deligne–Lusztig
characters of G are governed by the Green functions for G and all its “smaller” reductive
subgroups.

7.2. Outline of the proof of DL character formula. The key of the proof of the
Deligne–Lusztig character formula is the following general result, which is called Deligne–
Lusztig’s fixed point formula:

Theorem 7.4 (Deligne–Lusztig fixed point formula). Let X be an algebraic variety over
k and g is an automorphism of X of finite order. Let s and u be automorphisms of X
such that s is of prime-to-p order, u is of p-power order, and g = su = us. Then we have
L(g,X) = L(u,Xs), where Xs := {x ∈ X | s(x) = x}.

Unfortunately, I cannot explain the proof of this theorem in this course. Please look at
[DL76, Theorem 3.2] if you have an interest.

Now suppose that g ∈ GF has the Jordan decomposition g = su = us. As disxussed in
the last week, we have

RGT⊂B(θ)(g) =
1

|TF |
∑
t∈TF

θ(t)−1 · L((g, t),XGT⊂B).

Let us compute each L((g, t),XGT⊂B) using the Deligne–Lusztig fixed point formula.

Recall that the action of (g, t) on XGT⊂B = {x ∈ G | x−1F (x) ∈ F (U)} is given by

x 7→ gxt. We note that the order of TF is prime-to-p. (Indeed, if we suppose that T splits
over Fqn , i.e., TFqn

= Grm for some r, we have TF = T (Fq) ⊂ TFqn
(Fqn) ∼= (F×

qn)
r.) Hence

the order of t is also prime-to-p. Thus, the decomposition (g, t) = (s, t) ◦ (u, 1) satisfies the
assumption of the Deligne–Lusztig fixed point formula.

We determine (XGT⊂B)
(s,t). In the following, we simply write X := XGT⊂B .

Proposition 7.5. We have

X (s,t) =
⊔

x∈GF /(G◦
t )

F

xt=s−1

X (s,t)(x),

where we put X (s,t)(x) := X (s,t) ∩ xG◦
t .

Proof. Suppose that y ∈ X (s,t), i.e., y ∈ G is an element satisfying syt = y and y−1F (y) ∈
F (U) (say y−1F (y) = v). By applying F to syt = y, we get sF (y)t = F (y), thus syvt = yv.
Combining syvt = yv with syt = y, we get yt−1vt = yv, hence t−1vt = v. This means that
u belongs to Gt = ZG(t). As u is unipotent, u furthermore lies in G◦

t . Let us apply Lang’s
theorem to G◦

t , which asserts that the map

G◦
t → G◦

t : z 7→ z−1F (z)

is surjective; we can find an element z ∈ G◦
t satisfying z−1F (z) = v.

We put x := yz−1. Then F (x) = F (y)F (z)−1 = yvv−1z−1 = yz−1 = x, i.e., x ∈ GF .
Note that we have y ∈ xG◦

t . Furthermore, we have

xz = y = syt = s(xz)t = sxtz
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(use that z ∈ Gt in the last equality), hence xt = s−1.
From the disxussion so far, we have obtained

X (s,t) =
⋃

x∈GF /(G◦
t )

F

xt=s−1

X (s,t)(x).

It is obvious that the union is disjoint. □

Let us investigate each summand X (s,t)(x). Note that, since t ∈ TF , we have T ⊂ G◦
t .

Moreover, B◦
t := (B ∩ G◦

t )
◦ is a Borel subgroup of G◦

t with unipotent radical U ∩ G◦
t (see

the paragraph after Lemma 7.3). Therefore, it makes sense to consider the Deligne–Lusztig
variety for G◦

t associated to T ⊂ B◦
t :

XG
◦
t

T⊂B◦
t
= {y′ ∈ G◦

t | y′−1F (y′) ∈ U ∩G◦
t }.

This is a variety equipped with an action of (G◦
t )
F × TF . On the other hand, X (s,t)(x) is

stable under the action of the subgroup (G◦
s)
F × TF of GF × TF on X .

Proposition 7.6. Let x ∈ GF be an element satisfying xt = s−1. Then have an isomor-
phism of varieties

ϕx : X (s,t)(x)
∼=−→ XG

◦
t

T⊂B◦
t
: y 7→ x−1y,

which is equivariant with respect to the actions of (G◦
s)
F ×TF on X (s,t)(x) and (G◦

t )
F ×TF

on XG
◦
t

T⊂(B∩G◦
t )

◦ . Here, (G◦
s)
F × TF and (G◦

t )
F × TF are identified by (z, t′) 7→ (x−1zx, t′).

Proof. Suppose that y ∈ X (s,t)(x), i.e., y ∈ xG◦
t is an element satisfying syt = y and

y−1F (y) ∈ F (U). Then we have x−1y ∈ G◦
t and thus

(x−1y)−1F (x−1y) = y−1F (y) ∈ F (U) ∩G◦
t = F (U ∩G◦

t ).

In other words, ϕx(y) = x−1y belongs to XG
◦
t

T⊂B◦
t
. Conversely, for any element y′ ∈ XG

◦
t

T⊂B◦
t
,

we can check that ϕ−1
x (y′) = xy′ ∈ X (s,t)(x).

Let us check the assertion on the equivariance. What we have to prove is that, for any
(z, t′) ∈ (G◦

s)
F × TF and y ∈ X (s,t)(x), we have

ϕx((z, t
′) · y) = (x−1zx, t′) · ϕx(y).

The left-hand side is given by ϕx((z, t
′) · y) = ϕx(zyt

′) = x−1zyt′. The right-hand side is
given by (x−1zx, t′) · ϕx(y) = (x−1zx, t′) · (x−1y) = x−1zx(x−1y)t′ = x−1zyt′. So these
indeed coincide. □

Now let us start the proof of the Deligne–Lusztig character formula:

Proof of Theorem 7.2. We have

RGT⊂B(θ)(g) =
1

|TF |
∑
t∈TF

θ(t)−1 · L((g, t),XGT⊂B).

By applying the Deligne–Lusztig fixed point theorem to (g, t) = (s, t) ◦ (u, 1), we get

L((g, t),XGT⊂B) = L((u, 1), (XGT⊂B)
(s,t)).

By combining the above propositions, we get

L(u, (XGT⊂B)
(s,t)) =

∑
x∈GF /(G◦

t )
F

xt=s−1

L(x−1ux,XG
◦
t

T⊂B◦
t
).
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Hence we get

RGT⊂B(θ)(g) =
1

|TF |
∑
t∈TF

θ(t)−1
∑

x∈GF /(G◦
t )

F

xt=s−1

L(x−1ux,XG
◦
t

T⊂B◦
t
)

=
1

|TF |
∑
t∈TF

θ(t)−1 · 1

|(G◦
t )
F |

∑
x∈GF

xt=s−1

L(x−1ux,XG
◦
t

T⊂B◦
t
).

Note that the internal sum is nonzero only when there exists an element x ∈ GF satisfying
t = x−1s−1x. In this case, |(G◦

t )
F | = |(G◦

s)
F |, hence the above equals

1

|TF | · |(G◦
s)
F |
∑
t∈TF

∑
x∈GF

xt=s−1

θ(t)−1 · L(x−1ux,XG
◦
t

T⊂B◦
t
).

We note that the set {(t, x) ∈ TF ×GF | xt = s−1} is bijective to {x ∈ GF | x−1sx ∈ TF }
by (t, x) 7→ x. By also noting that L(x−1ux,XG

◦
t

T⊂B◦
t
) = L(u,XG

◦
s

xT⊂B◦
s
), we rewrite the above

double sum:

1

|TF | · |(G◦
s)
F |

∑
x∈GF

x−1sx∈TF

θ(x−1s−1x)−1 · L(u,XG
◦
s

xT⊂B◦
s
)

=
1

|TF | · |(G◦
s)
F |

∑
x∈GF

x−1sx∈TF

θ(x−1sx) · L(u,XG
◦
s

xT⊂B◦
s
).

Here, in general, we have

QGT (u) =
1

|TF |
· L(u,XGT⊂B).

Indeed, by definition, we have

QGT (u) =
1

|TF |
∑
t∈TF

L((u, t),XGT⊂B).

By using the Deligne–Lusztig fixed point formula to (u, t) = (u, 1)·(1, t), we have L((u, t),XGT⊂B) =

L((u, 1), (XGT⊂B)
(1,t)). However, (XGT⊂B)

(1,t) is nonempty only when t = 1 (indeed, x ∈
XGT⊂B is fixed by (1, t) if and only if xt = x). Thus we get

QGT (u) =
1

|TF |
L(u,XGT⊂B).

Therefore, we finally obtain

RGT⊂B(g) =
1

|TF | · |(G◦
s)
F |

∑
x∈GF

x−1sx∈TF

θ(x−1sx) ·QG
◦
s

xT (u).

□

Corollary 7.7. We have RGT⊂B(θ)|GF
unip

= QGT for any character θ : TF → C×.
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Proof. Let g ∈ GFunip (hence its semisimple part s is 1 and unipotent part u is g). Then, by
applying the Deligne–Lusztig character formula to g, we get

RGT⊂B(θ)(g) =
1

|(G◦
s)
F |

∑
x∈GF

x−1sx∈TF

θ(x−1sx) ·QG
◦
s

xT (u)

=
1

|GF |
∑
x∈GF

QGxT (u).

It is not difficult to check that, in general, we have RGT⊂B(θ)(g) = RGxT⊂xB(
xθ)(xg), where xθ

denotes the character of xTF defined by xθ(xt) = θ(t). In particular, when θ = 1, hence get
QGT (u) = QGxT (

xu). By also noting that the Green function is invariant under conjugation
(since it is the restriction of a Deligne–Lusztig character, which is a class function), we get
QGT (u) = QGxT (

xu) = QGxT (u). Hence the most right-hand side of the above equalities is
QGT (u). □
Definition 7.8. We say that a semisimple element s ∈ G is regular if G◦

s is a maximal
torus of G.

Example 7.9. Let G = GL2. Let T be the diagonal maximal torus of G. We consider
an element s = ( a 0

0 b ) ∈ T . Then, since s is already diagonalized, s is semisimple. Let us
compute the centralizer Gs = ZG(s) of s in G.

• When a = b, s commutes with any element of G. Thus Gs = G, hence G◦
s = G◦ = G.

Hence s is not regular in this case.
• Suppose that a 6= b. If g = ( x y

z w ) ∈ ZG(s), we have sgs−1 = g. Since

sgs−1 =

Å
a 0
0 b

ãÅ
x y
z w

ãÅ
a 0
0 b

ã−1

=

Å
x ayb−1

a−1zb w

ã
,

we necessarily have y = z = 0, i.e., g ∈ T . Conversely, we obviously have T ⊂ ZG(s).
Hence we get Gs = T , so G◦

s = T , which means that s is regular.

Exercise 7.10. Let G = GLn and g ∈ G. Prove that g is regular semisimple if and only if
the characteristic polynomial of g has n distinct roots. (Hint: compute the centralizer of g
in G by looking at the Jordan normal form of g.)

Exercise 7.11. Let G = GLn. Recall that G
F -conjugacy classes of k-rational maximal tori

of G correspond bijectively to the conjugacy classes of Sn (see Week 5 notes). Let S be a
maximal torus of G corresponding to the cyclic permutation (1 2 · · · n) ∈ Sn. Count the
number of regular semisimple elements in SF = F×

qn .

Corollary 7.12. Suppose that s ∈ GF is a regular semisimple element. If s is not conjugate
to any element of TF , then we have RGT⊂B(θ)(s) = 0. If s is conjugate to any element of

TF (suppose that s itself belongs to TF ), then we have

RGT⊂B(θ)(s) =
∑

x∈WGF (T )

θ(x−1sx),

where WGF (T ) := NGF (T )/TF .

Proof. By the Deligne–Lusztig character formula, we have

RGT⊂B(θ)(s) =
1

|(G◦
s)
F |

∑
x∈GF

x−1sx∈TF

θ(x−1sx) ·QG
◦
s

xT (1).
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Since the index set is empty if s is not conjugate to any element of TF , we get the first
assertion.

To show the second assertion, let us suppose that s ∈ TF . Then, we must have G◦
s =

ZG(s)
◦ ⊃ ZG(T ) = T . Since G◦

s is a maximal torus of G, this implies that G◦
s = T . By

the same argument, the condition x−1sx ∈ TF of the index set implies that T = x−1Tx.
In other words, x ∈ NGF (T ). Conversely, any element x ∈ NGF (T ) satisfies x−1sx ∈ TF .
Thus, by noting that QTT (1) = 1 (this can be checked by going back to the definition), we
get

RGT⊂B(θ)(s) =
1

|TF |
∑

x∈NGF (T )

θ(x−1sx) =
∑

x∈WGF (T )

θ(x−1sx).

□
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8. Week 8: Inner product formula for Deligne–Lusztig representations

8.1. Inner product formula for Deligne–Lusztig representations. Let G be a con-
nected reductive group over k = Fq. Recall that the C-vector space C(GF ) of class functions
on GF has an inner product 〈−,−〉 given by

〈f1, f2〉 :=
1

|GF |
∑
g∈GF

f1(g) · f2(g).

Our next aim is to compute the inner product of two Deligne–Lusztig representations.
To state the theorem, we introduce some notations. For k-rational maximal tori T and T ′

of G, we put
NGF (T, T ′) := {n ∈ GF | nT = T ′},

WGF (T, T ′) := NGF (T, T ′)/TF ∼= T ′F \NGF (T, T ′).

(Recall that, in our notation, nT denotes nTn−1.) Note that, for any w ∈ WGF (T, T ′) and
a character θ : TF → C×, we can define a character wθ of T ′F by

wθ(t′) := θ(w−1t′w).

(This definition is independent of the choice of a representative of w.)

Theorem 8.1 (Inner product formula). Let T and T ′ be k-rational maximal tori of G. Let
B = TU and B′ = T ′U ′ be Borel subgroups of G containing T and T ′, respectively. For any
characters θ : TF → C× and θ′ : T ′F → C×, we have

〈RGT⊂B(θ), R
G
T ′⊂B′(θ′)〉 = |{w ∈WGF (T, T ′) | wθ = θ′}|.

Before we prove this theorem, we explain several important consequences.

Corollary 8.2. The Deligne–Lusztig representation RGT⊂B(θ) is independent of the choice

of a Bore subgroup B ⊂ T . The Green function QGT is also independent of B ⊂ T .

Proof. Recall that QGT := RGT⊂B(1)|GF
unip

. Thus it is enough to show the first assertion.

Let us take any Borel subgroup B and B′ containing T . Our task is to show that
RGT⊂B(θ) = RGT⊂B′(θ) (here, both are regarded as class functions on GF ). Equivalently, it
suffices to show that

〈RGT⊂B(θ)−RGT⊂B′(θ), RGT⊂B(θ)−RGT⊂B′(θ)〉 = 0.

The left-hand side equals

〈RGT⊂B(θ), R
G
T⊂B(θ)〉 − 2〈RGT⊂B(θ), R

G
T⊂B′(θ)〉+ 〈RGT⊂B′(θ), RGT⊂B′(θ)〉.

This equals 0 since we have

〈RGT⊂B(θ), R
G
T⊂B(θ)〉 = 〈RGT⊂B(θ), R

G
T⊂B′(θ)〉 = 〈RGT⊂B′(θ), RGT⊂B′(θ)〉

by the inner product formula. □
From now on, let us simply write RGT (θ) instead of RGT⊂B(θ). (But, in the proof of the

inner product formula, we will again write RGT⊂B(θ).)

Corollary 8.3. Suppose that T and T ′ are k-rational maximal tori of G which are not
GF -conjugate. Then, for any characters θ of T and θ′ of T ′, we have

〈RGT (θ), RGT ′(θ′)〉 = 0.

Proof. This is clear from the inner product formula; if T and T ′ are not GF -conjugate, then
NGF (T, T ′) is empty. □
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Remark 8.4. Note that even if 〈RGT (θ), RGT ′(θ′)〉 = 0, it might happen that RGT (θ) and
RGT ′(θ′) have a common irreducible constituent. For example, the inner product of virtual
representations π1 + π2 and π1 − π2 is zero, when π1 and π2 are irreducible.

Corollary 8.5. If we write

RGT (θ) =
∑
ρ

nρρ,

where ρ runs all isomorphism classes of irreducible representations of GF , we have∑
ρ

n2ρ = |{w ∈WGF (T ) | wθ = θ}|.

In particular, RGT (θ) is irreducible up to sign if and only if we have {w ∈ WGF (T ) | wθ =
θ} = {1}.

Proof. This follows from the inner product formula (choose (T ′, θ′) to be (T, θ)) and the
general fact that, for irreducible representations ρ1 and ρ2 of GF , we have

〈Θρ1 ,Θρ2〉 =
®
1 if ρ1 ∼= ρ2,

0 if ρ1 6∼= ρ2.

□

Definition 8.6. We say that a character θ : TF → C× is regular (in general position) if
{w ∈ WGF (T ) | wθ = θ} = {1}. (Note that, by the above corollary, this is equivalent to
that RGT (θ) is irreducible up to sign.)

8.2. Weyl groups of k-rational maximal tori. The inner product formula suggests that
it is practically very important to determine the set WGF (T, T ′) and its “action” on T 23.
Suppose that NGF (T, T ′) is not empty. If we fix any element n0 ∈ NGF (T, T ′), then we get
a bijection

NGF (T )
∼=−→ NGF (T, T ′) : n 7→ n0n.

Similarly, if we fix any element w0 ∈WGF (T, T ′) (as long as this set is not empty), then we
get a bijection

WGF (T )
∼=−→WGF (T, T ′) : w 7→ w0w.

Therefore, it is essentially enough to investigate the action of WGF (T ) on T .
Recall that WGF (T ) := NGF (T )/TF . We also introduce WG(T )

F := (NG(T )/T )
F . Note

the following lemma:

Lemma 8.7. We have WGF (T ) ∼=WG(T )
F .

Proof. LetNGF (T ) ↪→ NG(T ) be the natural inclusion, which induces an inclusionNGF (T )/TF ↪→
NG(T )/T . The image of this inclusion is obviously fixed by F , thus we get a natural inclusion

WGF (T ) = NGF (T )/TF ↪→ (NG(T )/T )
F =WG(T )

F .

To show the surjectivity, let us take an element w ∈ WG(T )
F and its representative

n ∈ NG(T ). Since w is fixed by F , there exists an element t ∈ T satisfying F (n) = nt. We
apply Lang’s theorem to t ∈ T ; then we can find an element s ∈ T satisfying s−1F (s) = t.
We let n′ := ns−1. As we have F (n′) = F (n)F (s)−1 = F (n)t−1s−1 = ns−1 = n′, we have
n′ ∈ NGF (T ). Moreover, obviously n′ and n maps to w. This completes the proof. □

23Since WGF (T, T ′) is not a group, it is better to say “how WGF (T, T ′) transports T to T ′”
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Based on this lemma, let us consider WG(T )
F instead of WGF (T ). We review how the

(GF -conjugacy classes of) k-rational maximal tori of G are classified. Let B0 be a k-rational
Borel subgroup G and T0 be a k-rational maximal torus of G contained in B0. We write
W0 for the Weyl group W0 := WG(T0) := NG(T0)/T0.

24 Note that this is a finite group on
which F (the Frobenius endomorphism of G) acts. In Week 5, we (Cheng-Chiang) discussed
that there exists a bijection

{k-rational maximal tori of G}/GF -conj.→W0/F -conj.

Let w ∈ W0. Let us recall how to produce a k-rational maximal torus Tw corresponding
to w. We take a representative n ∈ NG(T0) of w and apply the Lang’s theorem to n; we
can find g ∈ G satisfying g−1F (g) = n. If we put Tw := gT0 = gT0g

−1, then T gives a
k-rational maximal torus of G corresponding to (the F -conjugacy class of) w under the
above bijection. The action of F on Tw is described as follows:

Tw

F

��

T0
Int(g)
oo gtg−1

_

��

t�oo

Tw
Int(g)−1

// T0 F (g)F (t)F (g)−1 � // g−1F (g)F (t)F (g)−1g = Int(w) ◦ F (t)

Hence, in particular, we have an isomorphism

Int(g) : T
Int(w)◦F
0

∼=−→ TFw ; t 7→ gtg−1.

Note that Int(g) also gives an identification W0 =WG(T0)
∼=−→WG(Tw) : w 7→ gwg−1, which

induces

Int(g) : W
Int(w)◦F
0

∼=−→WG(Tw)
F ; w 7→ gwg−1.

Example 8.8. Let G = GLn and T0 be the diagonal maximal torus of G. Then W0 is
naturally identified with Sn, which is realized as the subgroup of permutation matrices in
GLn(Fq). In this case, the Frobenius action F on W0 is trivial.

(1) When w = 1, we have

T
Int(w)◦F
0 = TF0 = {diag(t1, . . . , tn) | ti ∈ F×

q }.

The action of W
Int(w)◦F
0 = W0 = Sn on this group is given by the natural permu-

tation action.
(2) When w is the cyclic permutation (1 2 . . . n), we have

T
Int(w)◦F
0 = {diag(t1, tq1 . . . , t

qn−1

1 ) | t1 ∈ F×
qn}

(see Week 5 notes for details). Note that W
Int(w)◦F
0 = W

Int(w)
0 is nothing but the

centralizer of w = (1 2 . . . n) in Sn. We can check that it is the subgroup 〈w〉
generated by w. Since w(t1, t

q
1 . . . , t

qn−1

1 ) = (tq1 . . . , t
qn−1

1 , t1) = (tq1 . . . , t
qn−1

1 , tq
n

1 ),

the action of 〈w〉 on T Int(w)◦F
0 is identified with the action of Gal(Fqn/Fq) on F×

qn .

24Caution: this is the “absolute” Weyl group taken in G, while we consider the “relative” Weyl group

taken in GF in the inner product formula.
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8.3. Example: the case of GL2. Let G = GL2. Recall that we exactly have two non-
isomorphic k-rational maximal tori of G (up to GF -conjugacy): the split one T and the
non-split one S.

(1) For the split one T , we have TF = T (Fq) ∼= (F×
q )

2 and WGF (T ) ∼= S2; S2 acts on

(F×
q )

2 by swapping two entries. Therefore, for any character χ = χ1 ⊠ χ2 of (F×
q )

2,
we have that
• RGT (χ) is irreducible (up to sign) if χ1 6= χ2 (χ is regular), and
• RGT (χ) consists of two irreducible representations (up to sign) if χ1 = χ2.

(2) For the non-split one S, we have SF = S(Fq) ∼= F×
q2 and WGF (S) = Z/2Z; Z/2Z

acts on F×
q2 via Gal(Fq2/Fq). Therefore, for any character θ of F×

q2 , we have that

• RGS (θ) is irreducible (up to sign) if θq 6= θ (θ is regular), and
• RGS (θ) consists of two irreducible representations (up to sign) if θq = θ.

Recall that, in Week 6, we proved that RGT⊂B(χ)
∼= IndGB(χ). Also recall that, in Week

2, we proved that Ind
GL2(Fq)

B(Fq)
χ is irreducible when χ1 6= χ2 and consists of two irreducible

representations when χ1 = χ2. Therefore, the computation in the bove example is perfectly
consistent with those!

Exercise 8.9. For any θ of SF satisfying θq−1 6= 1, we have RGS (θ)
∼= −πθ.

Hint: Recall that the irreducible representations of GL2(Fq) are classified as follows (see
Week 2 notes):

(1) Characters of GL2(Fq); χ ◦ det for a character χ : F×
q .

(2) Character twists of the Steinberg representation; StG ⊗ (χ ◦ det) for a character
χ : F×

q .

(3) Irreducible principal series representations; IndGB χ for χ = χ1 ⊠ χ2 where χ1 6= χ2.
(4) Irreducible cuspidal representations; πθ′ for a character θ′ of F×

q2 satisfying θ′q 6= θ′.

Exclude the first three possibilities by using the inner product formula for RGT (χ) and
RGT (θ), which implies that necessarily have RGS (θ)

∼= ±πθ′ for some θ′. Then compute the
characters of RGS (θ) at regular semisimple elements using the Deligne–Lusztig character
formula. Compare it with the character computation on πθ′ demonstrated in Week 2.

8.4. Proof of inner product formula for DL representations. We first prove the inner
product formula for Deligne–Lusztig representations by admitting the following:

Theorem 8.10 (Orthogonality relation for Green functions). Let T and T ′ be k-rational
maximal tori of G. Let B and B′ be Borel subgroup of G containing T and QGT and QGT ′

associated Green functions. Then we have

1

|GF |
∑

u∈GF
unip

QGT (u) ·QGT ′(u) =
|NGF (T, T ′)|
|TF | · |T ′F |

.

Proof of Theorem 8.1. Recall that the Jordan decomposition implies that we have the fol-
lowing bijection: ⊔

s∈GF
ss

(G◦
s)
F
unip

1:1−−→ GF : u 7→ su.
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By using the Deligne–Lusztig character formula, we have

〈RGT⊂B(θ), R
G
T ′⊂B′(θ′)〉

=
1

|GF |
∑
g∈GF

RGT⊂B(θ)(g) ·RGT ′⊂B′(θ′)(g)

=
1

|GF |
∑
s∈GF

ss

∑
u∈(G◦

s)
F
unip

1

|(G◦
s)
F |2

∑
x∈GF

x−1sx∈TF

θ(x−1sx)Q
G◦

s
xT (u)

∑
y∈GF

y−1sy∈T ′F

θ′(y−1sy)Q
G◦

s
yT ′(u)

=
1

|GF |
∑
s∈GF

ss

1

|(G◦
s)
F |2

∑
x,y∈GF

x−1sx∈TF

y−1sy∈T ′F

θ(x−1sx)θ′(y−1sy)
∑

u∈(G◦
s)

F
unip

Q
G◦

s
xT (u)Q

G◦
s

yT ′(u).

Here, note that the values of Green functions are integer (exercise). By applying the or-
thogonality relation for Green functions (for G◦

s), this equals

1

|GF |
∑
s∈GF

ss

1

|(G◦
s)
F |

∑
x,y∈GF

x−1sx∈TF

y−1sy∈T ′F

θ(x−1sx)θ′(y−1sy)
|N(G◦

s)
F (xT, yT ′)|

|xTF | · |yT ′F |

1

|GF |
∑
s∈GF

ss

1

|(G◦
s)
F | · |TF |2

∑
x,y∈GF

x−1sx∈TF

y−1sy∈T ′F

θ(x−1sx)θ′(y−1sy) · |N(G◦
s)

F (xT, yT ′)|.

Here, we note that the following two sets are bijective by the map (x, y, n) 7→ (x, y−1nx, n)
and its inverse (x, nxn′−1, n)←[ (x, n′, n):

{(x, y, n) ∈ GF ×GF ×GF | x−1sx ∈ TF , y−1sy ∈ T ′F , n ∈ N(G◦
s)

F (xT, yT ′)},

{(x, n′, n) ∈ GF ×NGF (T, T ′)× (G◦
s)
F | x−1sx ∈ TF }.

Hence, the above sum equals

1

|GF |
∑
s∈GF

ss

1

|(G◦
s)
F | · |TF |2

∑
x∈GF

n′∈NGF (T,T ′)

n∈(G◦
s)

F

x−1sx∈TF

θ(x−1sx)θ′((nxn′−1)−1s(nxn′−1)).

As n commutes with s, we have

θ′((nxn′−1)−1s(nxn′−1)) = θ′(n′x−1sxn′−1) = n′−1

θ′(x−1sx).

In particular, this is independent of n ∈ (G◦
s)
F . Thus we get

1

|GF | · |TF |2
∑
s∈GF

ss

∑
x∈GF

n′∈NGF (T,T ′)

x−1sx∈TF

θ(x−1sx)n′−1θ′(x−1sx).

We finally note that the following map is surjective

{(s, x) ∈ GFss ×GF | x−1sx ∈ TF }↠ TF : (s, x) 7→ x−1sx.
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Moreover, each fiber is of order |GF |. Therefore, we get

1

|GF | · |TF |2
∑
s∈GF

ss

∑
x∈GF

n′∈NGF (T,T ′)

x−1sx∈TF

θ(x−1sx)n′−1θ′(x−1sx)

=
1

|TF |2
∑
t∈TF

∑
n′∈NGF (T,T ′)

θ(t)n′−1θ′(t)

=
∑

w∈WGF (T,T ′)

1

|TF |
∑
t∈TF

θ(t)w−1θ′(t)

=
∑

w∈WGF (T,T ′)

®
1 if θ = w−1

θ′,

0 if θ 6= w−1

θ′,

= |{w ∈WGF (T, T ′) | wθ = θ′}|.
□

Exercise 8.11. For any connected reductive group G over k and its k-rational maximal
torus T , prove that the Green function QGT (−) is Z-valued.

Hint: Describe the Green function using a Lefschetz number by going back to the defini-
tion. Then utilize the fact that the Lefschetz number is an integer.
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9. Week 9: Semisimple character formula and exhaustion theorem

Recall that we proved the inner product formula for Deligne–Lusztig representations by
assuming the orthogonality relation for Green functions. The aim of this week is to partially
prove the orthogonality relation. More precisely, we introduce another result which we call
the “disjointness theorem” and then deduce the orthogonality relation from the disjointness
theorem.

Chart: Disjointness Theorem (Theorem 9.4, not proved this week)

this week
=⇒ Orthogonality relation for Green functions

last week
=⇒ Inner product formula for Deligne–Lusztig representaitons

(the second =⇒ is in fact ⇐⇒ ).
After that, we also prove that any irreducible representation can be realized in some

Deligne–Lusztig representation.

9.1. Geometric conjugacy and disjointness theorem. Let G be a connected reductive
group over k = Fq with associated Frobenius endomorphism F . Suppose that T is a k-

rational maximal torus of G. Note that then we have TF
r

= T (Fqr ) for any r ∈ Z>0. We

define the norm map Nr from TF
r

to TF by

Nr : T
F r

→ TF ; t 7→ t · F (t) · · ·F r−1(t).

Note that, if T = Gm, then Nr is nothing but the usual norm map from TF
r

= F×
qr to

TF = F×
q . Recall that the norm map from F×

qr to TF = F×
q is surjective. In fact, the same

property holds for the norm map for any T :

Lemma 9.1. The norm map Nr : T
F r → TF is surjective.

Exercise 9.2. Prove this lemma.
Hint: Suppose t ∈ TF . Apply Lang’s theorem for F r : T → T to t; then we get an s ∈ T

satisfying F r(s)s−1 = t. Show that F (s)s−1 belongs to TF
r

and maps to t under Nr.

Definition 9.3. Let T and T ′ be k-rational maximal tori of G. We say that characters θ of
TF and θ′ of T ′F are geometrically conjugate if (T, θ◦Nr) and (T ′, θ′◦Nr) are GF

r

-conjugate
for some r ∈ Z>0, i.e., there exists x ∈ GF r

satisfying T ′ = xT and θ′ ◦Nr = x(θ ◦Nr).

Note that if θ and θ′ are conjugate, then they are geometrically conjugate (r can be taken
to be 1).

The following theorem is a key to the proof of the orthogonality relation (for convenience,
let us call the following the “disjointness theorem”):

Theorem 9.4 (Disjointness theorem). Let T and T ′ be k-rational maximal tori of G. Sup-
pose that characters θ of TF and θ′ of T ′F are not geometrically conjugate. Then RGT⊂B(θ)

and RGT ′⊂B′(θ′) do not contain a common irreducible representation.

Remark 9.5. (1) The precise meaning of “a virtual representation R contains an ir-
reducible representation σ” is that “if we write R as the sum

∑
ρ nρρ over all (iso-

morphism classes of) irreducible representations (nρ ∈ Z), then nσ 6= 0”. Each
coefficient nρ is often called the “multiplicity” of ρ in R.
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(2) Recall that, as a corollary of the inner product formula, we obtained that “if θ and
θ′ are not GF -conjugate, then 〈RGT⊂B(θ), R

G
T ′⊂B′(θ′)〉 = 0”. On the other hand, the

statement of Theorem 9.4 is stronger than the equality 〈RGT⊂B(θ), R
G
T ′⊂B′(θ′)〉 = 0.

Thus both the assumption and the conclusion of Theorem 9.4 are stronger than (a
consequence of) the inner product formula.

9.2. Orthogonality relation for Green functions. Recall that, for any connected re-
ductive group G with center Z, the quotient group Gad := G/Z is of adjoint type (i.e.,
a connected reductive group with trivial center). Moreover, it is not difficult to see the
following.

• For any k-rational maximal torus T of G, its image Tad in Gad is a k-rational
maximal torus of Gad.

• The natural quotient map G→ Gad induces a bijection GFunip
1:1−−→ GFad,unip.

Lemma 9.6. For any u ∈ GFunip, we have QGT (u) = QGad

Tad
(ū), where ū ∈ GFad,unip is the

image of u.

Sketch of Proof. This follows from an alternative description of the Green function in terms
of the variants of the Deligne–Lusztig varieties. A bit more precisely, the Green function
QGT can be also interpreted as the Lefschetz number of the action of GFunip on the variety

“ XG
T⊂B” (see Week 5 notes). We can easily check that XG

T⊂B is canonically isomorphic

to XGad

Tad⊂Bad
, which implies that QGT (u) = QGad

Tad
(ū). See [DL76, Definition 1.9] and its

preceding remark for more details. □

Theorem 9.7 (Orthogonality relation for Green functions). Let T and T ′ be k-rational
maximal tori of G. Let B and B′ be Borel subgroup of G containing T and QGT and QGT ′

associated Green functions. Then we have

1

|GF |
∑

u∈GF
unip

QGT (u) ·QGT ′(u) =
|NGF (T, T ′)|
|TF | · |T ′F |

.

Proof. The asserted identity is trivial if G is a torus. We handle the general case by the
induction on dimG. (Note that any 1-dimensional connected reductive group is a torus.)
We also note that the desired identity does not change even if we replace G with Gad. (The
Green functions do not change by the previous lemma; all other numbers are multiplied by
the same number.) Thus we may suppose that G is of adjoint type in the following.

Here, let us remember the proof of the inner product formula. For any characters θ of
TF and θ′ of T ′F , we first computed 〈RGT⊂B(θ), R

G
T ′⊂B′(θ′)〉 as follows:

(∗) 〈RGT⊂B(θ), R
G
T ′⊂B′(θ′)〉

=
1

|GF |
∑
s∈GF

ss

1

|(G◦
s)
F |2

∑
x,y∈GF

x−1sx∈TF

y−1sy∈T ′F

θ(x−1sx)θ′(y−1sy)
∑

u∈(G◦
s)

F
unip

Q
G◦

s
xT (u)Q

G◦
s

yT ′(u).
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Then we utilized the orthogonality relation to rewrite this as follows:

= · · · = 1

|GF | · |TF |2
∑
s∈GF

ss

∑
x∈GF

n′∈NGF (T,T ′)

x−1sx∈TF

θ(x−1sx)n′−1θ′(x−1sx)

= · · · =
∑

w∈WGF (T,T ′)

1

|TF |
∑
t∈TF

θ(t)w−1θ′(t) = · · · .

The point here is that, in the current setting, the same computation works for any s 6= 1.
This is because, since G has trivial center, any nontrivial semisimple element s satisfies
dimG◦

s < dimG, hence we can apply the induction hypothesis to G◦
s. (Note that the

condition that s 6= 1 is rephrased as the condition that t 6= 1 in the last sum.) On the other
hand, for s = 1, the contribution to (∗) is simply given by

1

|GF |
∑

u∈GF
unip

QGT (u)Q
G
T ′(u).

Therefore, we see that (∗) is equal to
1

|GF |
∑

u∈GF
unip

QGT (u)Q
G
T ′(u)

︸ ︷︷ ︸
s=1

+
∑

w∈WGF (T,T ′)

1

|TF |
∑

t∈TF∖{1}

θ(t)w−1θ′(t)

︸ ︷︷ ︸
s6=1

.

Here note that the second term for s 6= 1 can be computed as follows:∑
w∈WGF (T,T ′)

1

|TF |
∑

t∈TF∖{1}

θ(t)w−1θ′(t)

=
∑

w∈WGF (T,T ′)

1

|TF |
∑
t∈TF

θ(t)w−1θ′(t)− |WGF (T, T ′)|
|TF |

= |{w ∈WGF (T, T ′) | wθ = θ′}| − |WGF (T, T ′)|
|TF |

.

In other words, we obtained

1

|GF |
∑

u∈GF
unip

QGT (u)Q
G
T ′(u)

= 〈RGT⊂B(θ), R
G
T ′⊂B′(θ′)〉 − |{w ∈WGF (T, T ′) | wθ = θ′}|+ |WGF (T, T ′)|

|TF |
.

This shows the following:

To obtain the orthogonality relation for QGT and QGT ′ , it is enough to find
just one example of a pair (θ, θ′) satisfying the inner product formula for
〈RGT⊂B(θ), R

G
T ′⊂B′(θ′)〉 (of course, in a way which is not based on the or-

thogonality relation)!

We first consider the case where either TF or T ′F has a nontrivial character; we may
assume that TF has a nontrivial character θ. Note that, since the norm map for a torus is
surjective (Lemma 9.1), θ cannot be geometrically conjugate to the trivial character of T ′F .
Thus, by the disjointness theorem (Theorem 9.4), we have 〈RGT⊂B(θ), R

G
T ′⊂B′(1)〉 = 0. On

the other hand, obviously we have |{w ∈WGF (T, T ′) | wθ = 1}| = 0.
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We next consider the case where TF and T ′F do not have a nontrivial character; this is
equivalent to that |TF | = |T ′F | = 1. In this case, q must be 2 and T and T ′ must be split
over k. (We leave this for an exercise below.) This implies that T and T ′ are GF -conjugate

to a split k-rational maximal torus T0 and also that RGT⊂B(1)
∼= RGT ′⊂B′(1) ∼= IndG

F

BF
0
1 (we

proved this in Week 6), where B0 is a k-rational Borel subgroup of G containing T0. Then
we can check that

〈RGT⊂B(1), R
G
T ′⊂B′(1)〉 = 〈IndG

F

BF
0
1, IndG

F

BF
0
1〉 = |WGF (T )|

(let me also leave this for an exercise!). On the other hand, obviously we have |{w ∈
WGF (T, T ′) | w1 = 1}| = |WGF (T )|.

Therefore, in both cases, we found an example of a pair (θ, θ′) satisfying the inner product
formula. This completes the proof. □

Exercise 9.8. Let T be a k-rational maximal torus of a connected reductive group G over
k. Prove that |TF | = 1 only when q = 2 and T is split over k.

Hint: utilize the formula of |TF | in terms of the character group of T ; see Week 5 notes.

Exercise 9.9. Prove that

〈IndG
F

BF
0
1, IndG

F

BF
0
1〉 = |WGF (T )|.

Hint: Recall that we proved this in the GL2 case in Week 2. In fact, the same argument
works; combine (1) Frobenius reciprocity, (2) Mackey decomposition formula, and (3) Bruhat
decomposition.

9.3. Steinberg representations. Recall that, for G = GL2, the principal series represen-
tation IndGB 1 is the sum of two irreducible representations; the trivial representation and the
Steinberg representations. (In this subsection, we temporarily omit the symbol “F” in the
induced representations to make the notation lighter.) In fact, the notion of the Steinberg
representation can be generalized to any connected reductive group over k.

Instead of explaining its definition in general, let us present an example of GL3. Let G :=
GL3 and B be the upper-triangular Borel subgroup of G. We consider the principal series
representation IndGB 1. Then, as in the GL2 case, IndGB 1 contains the trivial representation.

However, the different point is that IndGB 1 contains further more irreducible representations.
To see this, let us consider the following subgroup:

P2,1 :=

Ñ
∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

é
⊂ G.

Since B is contained in P2,1, the associativity of the induction implies that

IndGB 1 = IndGP2,1
(Ind

P2,1

B 1) ⊃ IndGP2,1
1.

Then, how about subtracting IndGP2,1
1 from IndGB 1? In fact, the remaining representation

is still not irreducible! So let us also consider the following subgroup:

P1,2 :=

Ñ
∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

é
⊂ G.

Then, for the same reason as above, we have IndGB 1 ⊃ IndGP1,2
1. In fact, IndGP1,2

1 is a

different subrepresentation from IndGP2,1
1. So, how about subtracting both IndGP1,2

1 and
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IndGP2,1
1 from IndGB 1? This also does not work because both IndGP1,2

1 and IndGP2,1
1 contains

the trivial representation, but the multiplicity of the trivial representation in IndGB 1 is
exactly one! In other words, the trivial representation is subtracted doubly. We shouldn’t
give up here; how about considering the following representation:

(IndGB 1)− (IndGP1,2
1)− (IndGP2,1

1) + 1.

In fact, this gives an irreducible subrepresentation of IndGB 1! This is the definition of the
Steinberg representation of GL3(Fq).

In general, the Steinberg representation is defined according to a similar idea. The sub-
groups P1,2 and P2,1 are examples of so-called parabolic subgroups of G. The idea is to
consider a certain signed sum of the induced representations from all parabolic subgroups
based on the “inclusion-exclusion principle” as in the GL3 case. The Steinberg representa-
tion can be investigated independently of Deligne–Lusztig theory. The precise definition of
the Steinberg representation of GF (let us write StG) and its basic properties are summarized
in, for example, [Car85, Chapter 6].

Therefore, in this course, let us just believe the existence of the representation StG of GF

satisfying the following properties.

Proposition 9.10 (Character formula for StG). For any g ∈ GF , we have

StG(g) =

®
(−1)rG−rG◦

s · StG◦
s
(1) if g = s is semisimple,

0 otherwise.

Here, for any connected reductive group G over k, we let rG denote its k-split rank, i.e., the
dimension of the maximal k-split torus of G.

Proposition 9.11 (Dimension formula). We let B0 be a k-rational Borel subgroup of G
with unipotent radical U0. Then we have StG(1) = |UF0 |.

Exercise 9.12. Show that the above propositions in the case where G = GL2.

9.4. Character formula for DL representations on semisimple elements.

Theorem 9.13 (Dimension formula). We have

RGT (1) = (−1)rG−rT · |GF |
|TF | · StG(1)

= (−1)rG−rT · |GF /TF |p′ ,

where (−)p′ denotes the prime-to-p part.

Proof. In fact, |UF0 | is equal to the p-part of |GF |. On the other hand, |TF | is prime-to-p
for any k-rational maximal torus of G. Hence, by the dimension formula of the Steinberg
representation, we have

|GF /TF |p′ =
|GF |

|TF | · StG(1)
.

Thus our task is to show the first equality.
Recall thatRGT (1) = QGT (1) by the definition of the Green function. By the same reasoning

as in the proof of the orthogonality relation, we may assume that G is of adjoint type.
Moreover, by induction on dimG, we may assume that the identity holds for G◦

s for any
semisimple s 6= 1.
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We first consider the case where TF does not have a nontrivial character. Recall that, in
this case, T must be a split maximal torus T0. Thus we have

RGT (1) = dim IndG
F

BF
0
1 =

|GF |
|BF0 |

=
|GF |

|TF0 | · |UF0 |
=

|GF |
|TF | · |StG(1)|

.

We next consider the case where TF has a nontrivial character θ. Recall that the Steinberg

representation StG is contained in RGT0
(1) = IndG

F

BF
0
1. Thus, by applying the disjointness

theorem to RGT (θ) and R
G
T0
(1), we get

〈RGT (θ),StG〉 = 0.

On the other hand, we can also compute 〈RGT (θ),StG〉 directly by using the Deligne–Lusztig
character formula and the character formula for Steinberg representations as follows:

〈RGT (θ),StG〉 =
1

|GF |
∑
g∈GF

RGT (θ)(g) · StG(g)

=
1

|GF |
∑
s∈GF

ss

∑
u∈(G◦

s)
F
unip

RGT (θ)(su) · StG(su)

=
1

|GF |
∑
s∈GF

ss

RGT (θ)(s) · StG(s)

=
1

|GF |
∑
s∈GF

ss

1

|(G◦
s)
F |

∑
x∈GF

x−1sx∈TF

xθ(s) ·QG
◦
s

xT (1) · (−1)
rG−rG◦

s · StG◦
s
(1).

The idea of the proof is similar to that of the orthogonality relation. We divide the above
sum according to s = 1 or s 6= 1. For s = 1, the summand is QGT (1) · StG(1). For s 6= 1, by
the induction hypothesis, the summand is given by

1

|(G◦
s)
F |

∑
x∈GF

x−1sx∈TF

xθ(s) ·QG
◦
s

xT (1) · (−1)
rG−rG◦

s · StG◦
s
(1)

=
1

|(G◦
s)
F |

∑
x∈GF

x−1sx∈TF

xθ(s) · (−1)rG◦
s
−rxT · |(G◦

s)
F |

|xTF | · StG◦
s
(1)
· (−1)rG−rG◦

s · StG◦
s
(1)

=
1

|TF |
∑
x∈GF

x−1sx∈TF

(−1)rG−rT xθ(s).

Therefore, since 〈RGT (θ),StG〉 = 0, we get

QGT (1) · StG(1)︸ ︷︷ ︸
s=1

+
∑

s∈GF
ss∖{1}

(−1)rG−rT

|TF |
∑
x∈GF

x−1sx∈TF

xθ(s)

︸ ︷︷ ︸
s6=1

= 0.
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By the same trick as in the proof of the orthogonality relation, the second term (the s 6= 1
part) on the left-hand side is equal to

|GF |
|TF |

· (−1)rG−rT
∑

t∈TF∖{1}

θ(t) = −|G
F |

|TF |
· (−1)rG−rT

(we used that θ is a nontrivial character). Hence we get

QGT (1) = (−1)rG−rT · |GF |
|TF | · StG(1)

.

□

Corollary 9.14 (Deligne–Lusztig character formula on semisimple elements). For any s ∈
GFss, we have

RGT (θ)(s) =
(−1)rG◦

s
−rT

|TF | · StG◦
s
(1)

∑
x∈GF

x−1sx∈TF

xθ(s).

Proof. By the Deligne–Lusztig character formula and the dimension formula, we have

RGT (θ)(s) =
1

|(G◦
s)
F |

∑
x∈GF

x−1sx∈TF

xθ(s) ·QG
◦
s

xT (1)

=
1

|(G◦
s)
F |

∑
x∈GF

x−1sx∈TF

xθ(s) · (−1)rG◦
s
−rT · |(G◦

s)
F |

|xTF | · StG◦
s
(1)

=
(−1)rG◦

s
−rT

|TF | · StG◦
s
(1)

∑
x∈GF

x−1sx∈TF

xθ(s).

□

Exercise 9.15. Show that the above corollary implies that RGT (θ)⊗ StG ∼= IndG
F

TF θ.
Hint: Use the Frobenius character formula for induced representations.

9.5. Exhaustion theorem. For any s ∈ GF , we let 1[s] denote the characteristic function

of the GF -conjugacy class GF · s := {xsx−1 | x ∈ GF } of s, i.e., 1[s] : G
F → C is a class

function such that

1[s](g) =

®
1 g ∈ GF · s,
0 g /∈ GF · s.

We write TG for the set of k-rational maximal tori of G (literally, all such tori; not GF -
conjugacy classes). For any T ∈ TG, we write (TF )∨ for the set of characters of TF .

Proposition 9.16. For any s ∈ GFss, we have

1

StG(s)

∑
s∈T∈T

∑
θ∈(TF )∨

(−1)rG−rT · θ(s)−1 ·RGT (θ) = |(GF )s| · 1[s].

Note that (GF )s denotes the centralizer of s in GF .
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Proof. We put µ := LHS and µ′ := RHS. To show that µ = µ′, it is enough to check that
〈µ − µ′, µ − µ′〉 = 0. For this, it suffices to show that all of 〈µ, µ〉, 〈µ, µ′〉, and 〈µ′, µ′〉 are
equal.

Let us first compute 〈µ, µ〉. By using the inner product formula, we get

〈µ, µ〉 = 1

StG(s)2

∑
s∈T∈TG

s∈T ′∈TG

∑
θ∈(TF )∨

θ′∈(T ′F )∨

θ(s)−1θ′(s)−1 · 〈RGT (θ), RGT ′(θ′)〉

=
1

StG(s)2

∑
s∈T∈TG

s∈T ′∈TG

∑
θ∈(TF )∨

θ′∈(T ′F )∨

θ(s)−1θ′(s)−1 · |{w ∈WGF (T, T ′) | θ′ = wθ}|.

Here, we change the index sets by noting the following bijection:

{((T, θ), n) ∈ I ×GF | s ∈ T, s ∈ nT}
1:1−−→ {((T, θ), (T ′θ′), n) ∈ I × I ×GF | s ∈ T, s ∈ T ′, n ∈ NGF (T, T ′), θ′ = nθ}

: ((T, θ), n) 7→ ((T, θ), (nT, nθ), n)

where we put I to be the set of pairs (T, θ) of T ∈ TG and θ ∈ (TF )∨. Then the above sum
equals

1

StG(s)2 · |TF |
∑

((T,θ),n)∈I×GF

s∈T
s∈nT

θ(s)−1 · nθ(s).

We note that the sum of θ(s)−1n · θ(s) = θ(s−1n−1sn) over all characters θ of TF is zero
when s−1n−1sn 6= 1 and equal to |TF | when s−1n−1sn = 1 (equivalently, n ∈ (GF )s).
Therefore, the above equals

1

StG(s)2 · |TF |
∑

(T,n)∈TG×(GF )s
s∈T

|TF | = |(G
F )s|

StG(s)2
· |{T ∈ TG | s ∈ T}|.

We note that StG(s) = (−1)rG−r(Gs)◦StG◦
s
(1) and also that s ∈ T if and only if T ⊂ G◦

s

(hence {T ∈ TG | s ∈ T} is nothing but TG◦
s
). Then, by using the fact that |TG◦

s
| = StG◦

s
(1)2

(see [Car85, Theorem 3.4.1]), we arrive at

〈µ, µ〉 = |(GF )s|.

Let us next compute 〈µ, µ′〉. We note that, for any class function f ∈ C(G), we have
〈f,1[s]〉 = f(s). Indeed,

〈f,1[s]〉 =
1

|GF |
∑

g∈GF ·s

f(g) · |(GF )s| =
|GF · s| · |(GF )s|

|GF |
f(s) = f(s).
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Keeping this in mind, by using the Deligne–Lusztig character formula on semisimple ele-
ments, we get

〈µ, µ′〉 = µ(s)

=
1

StG(s)

∑
s∈T∈TG

∑
θ∈(TF )∨

(−1)rG−rT · θ(s)−1 ·RGT (θ)(s)

=
1

StG(s)

∑
s∈T∈TG

∑
θ∈(TF )∨

(−1)rG−rT · θ(s)−1 · (−1)rG◦
s
−rT

|TF | · StG◦
s
(1)

∑
x∈GF

x−1sx∈TF

θx(s)

=
1

StG(s)

∑
s∈T∈TG

∑
θ∈(TF )∨

∑
x∈GF

x−1sx∈TF

(−1)rG−rG◦
s

|TF | · StG◦
s
(1)

θ(s−1x−1sx).

Here we carry out a similar argument to the previous computation; the sum of θ(s−1x−1sx)
over all characters θ of TF is zero when s−1x−1sx = 1 and equal to |TF | when s−1x−1sx = 1
(equivalently, x ∈ (GF )s). Hence the above equals

1

StG(s)

∑
s∈T∈TG

(−1)rG−rG◦
s

StG◦
s
(1)

· |(GF )s|.

Again noting that the index set is equal to TG◦
s
and that StG(s) = (−1)rG−r(Gs)◦StG◦

s
(1),

we conclude
〈µ, µ′〉 = |(GF )s|

by using [Car85, Theorem 3.4.1].
Let us finally compute 〈µ′, µ′〉:

〈µ′, µ′〉 = µ′(s) = |(GF )s|.
□

Corollary 9.17. Let ρ be an irreducible representation of GF . For any s ∈ GFss, we have

Θρ(s) =
1

StG(s)

∑
s∈T∈TG

∑
θ∈(TF )∨

(−1)rG−rT · θ(s)−1 · 〈ρ,RGT (θ)〉.

Proof. As noted in the proof of the previous proposition, we have Θρ(s) = 〈Θρ, µ′〉 with
the notation as there. By the proposition, we get Θρ(s) = 〈Θρ, µ〉; this is nothing but the
right-hand side of the asserted equality. □
Theorem 9.18 (Exhaustion theorem). For any irreducible representation ρ of GF , there
exists a k-rational maximal torus T of G and its character θ such that ρ is contained in
RGT (θ).

Proof. Apply the previous corollary to s = 1; then we get

Θρ(1) =
1

StG(1)

∑
T∈TG

∑
θ∈(TF )∨

(−1)rG−rT · 〈ρ,RGT (θ)〉.

The left-hand side is the dimension of ρ, hence not zero. Thus the right-hand side is also
not zero. In particular, 〈ρ,RGT (θ)〉 must be nonzero for at least one (T, θ). □

67



10. Week 10: Proof of the orthogonality relation for Green functions

Recall that we proved the inner product formula for Deligne–Lusztig representations by
assuming the following:

Theorem 10.1 (Disjointness theorem). Let T and T ′ be k-rational maximal tori of G. Sup-
pose that characters θ of TF and θ′ of T ′F are not geometrically conjugate. Then RGT⊂B(θ)

and RGT ′⊂B′(θ′) do not contain a common irreducible representation.

The aim of this week is to prove the disjointness theorem.

10.1. Preliminary reduction. Before we prove the disjointness theorem, let us introduce
some purely-algebraic lemmas. Recall that, for any representation (ρ, V ) of GF , its dual
(contragredient) representation (ρ∨, V ∨) is defined by V ∨ := HomC(V,C) and

〈ρ∨(g)(v∨), v〉 = 〈v∨, ρ(g−1)(v)〉
for any g ∈ GF , v ∈ V , v∨ ∈ V ∨.

Lemma 10.2. For any representation ρ of GF , we have Θπ∨(g) = Θπ(g
−1) = Θπ(g).

Exercise 10.3. Prove Lemma 10.2.

Lemma 10.4. We have RGT⊂B(θ)
∨ ∼= RGT⊂B(θ

−1).

Proof. By Lemma 10.2, to prove the assertion, it suffices to check that RGT⊂B(θ)(g) =

RGT⊂B(θ
−1)(g) for any g ∈ GF . If we write g = su for the Jordan decomposition of g, then,

by the Deligne–Lustig character formula, we have

RGT⊂B(θ)(g) =
1

|(G◦
s)
F |

∑
x∈GF

x−1sx∈TF

θ(x−1sx) ·QG
◦
s

xT (u)

=
1

|(G◦
s)
F |

∑
x∈GF

x−1sx∈TF

θ−1(x−1sx) ·QG
◦
s

xT (u) = RGT⊂B(θ
−1)(g).

(Recall that the Green function is Z-valued and that θ = θ−1). □
Lemma 10.5. Let R and R′ be representations of GF . Then R and R′ contain a common
irreducible representation if and only if R⊗R′∨ contains the trivial representation of GF .

Proof. Let us write R =
∑
ρ nρρ and R′ =

∑
ρ n

′
ρρ. Here, note that nρ, n

′
ρ ∈ Z≥0 since R

and R′ are “genuine” (not “virtual”) representations of GF . Then we have

R⊗R′∨ =
∑
ρ,ρ′

nρn
′
ρ′ρ⊗ ρ′∨,

where ρ and ρ′ run all (isomorphism classes of) irreducible representations of GF . Note that
ρ⊗ ρ′∨ contains 1 if and only if HomGF (1, ρ⊗ ρ′∨) 6= 0. Since we have

HomGF (1, ρ⊗ ρ′∨) ∼= HomGF (ρ′, ρ)

(so-called the Hom−⊗ adjunction), it is furthermore equivalent to that ρ ∼= ρ′ since ρ and
ρ′ are irreducible. Moreover, in this case, HomGF (ρ′, ρ) is 1-dimensional by Schur’s lemma.
In other words, ρ ⊗ ρ′∨ contains 1 with multiplicity one. Therefore, the multiplicity of
the trivial representation 1 in R ⊗ R′∨ is given by

∑
ρ nρn

′
ρ. Since nρ, n

′
ρ ∈ Z≥0, we have∑

ρ nρn
′
ρ 6= 0 if and only if there exists ρ satisfying nρn

′
ρ 6= 0, i.e., both R and R′ contains

ρ. □
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Now let us start to prove the disjointness theorem. Suppose that θ of TF and θ′ of T ′F are
characters not geometrically conjugate. Our goal is to show that RGT⊂B(θ) and R

G
T ′⊂B′(θ′)

have no common irreducible constituent. To show this, it is enough to show the following:

Proposition 10.6. If θ of TF and θ′ of T ′F are characters not geometrically conjugate,
then Hi

c(XGT⊂B ,Qℓ)[θ−1] ⊗Hj
c (XGT ′⊂B′ ,Qℓ)[θ′] do not contain the trivial representation for

any i, j ∈ Z≥0.

Indeed, since we have

RGT⊂B(θ
−1)⊗RGT ′⊂B′(θ′) ∼=

∑
i,j∈Z≥0

Hi
c(XGT⊂B ,Qℓ)[θ−1]⊗Hj

c (XGT ′⊂B′ ,Qℓ)[θ′],

Proposition 10.6 implies that RGT⊂B(θ
−1)⊗RGT ′⊂B′(θ′) do not contain the trivial representa-

tion. Then, by Lemmas 10.5 and 10.4, we see that RGT⊂B(θ) and R
G
T ′⊂B′(θ′) do not contain

the same irreducible representation.

Remark 10.7. Here is a “dangerous bend”. To show that RGT (θ)
∨ ∼= RGT (θ

−1) in Lemma
10.4, we utilized the Deligne–Lusztig character formula; taking the alternating sum is
crucially important for this. In other words, it could be possible that each individual
Hi
c(XGT⊂B ,Qℓ)[θ]∨ is not isomorphic to Hi

c(XGT⊂B ,Qℓ)[θ−1]. Therefore, we cannot discuss

in the following way: 25

If Hi
c(XGT⊂B ,Qℓ)[θ−1]⊗Hj

c (XGT ′⊂B′ ,Qℓ)[θ′] do not contain the trivial repre-

sentation, then Hi
c(XGT⊂B ,Qℓ)[θ] and Hj

c (XGT ′⊂B′ ,Qℓ)[θ′] do not contain the
same irreducible representation (this part is wrong for the above reason).
Hence, in particular, RGT⊂B(θ) and RGT ′⊂B′(θ′) do not contain the trivial
representation.

By the “Künneth formula”, we have

Hk
c (XGT⊂B ×XGT ′⊂B′ ,Qℓ) ∼=

⊕
i+j=k

Hi
c(XGT⊂B ,Qℓ)⊗Hj

c (XGT ′⊂B′ ,Qℓ)

(this is a general fact about `-adic cohomology, which holds for any product X1 × X2 of
algebraic varieties X1 and X2; see [Car85, Property 7.1.9]). This isomorphism is GF ×TF ×
T ′F -equivariant. Here, on the left-hand side, we consider the action of GF × TF × T ′F on
XGT⊂B ×XGT ′⊂B′ given by (g, t, t′) · (x, x′) := (gxt, gx′t′). Therefore, we get

Hk
c (XGT⊂B ×XGT ′⊂B′ ,Qℓ)[θ−1 ⊠ θ′] ∼=

⊕
i+j=k

Hi
c(XGT⊂B ,Qℓ)[θ−1]⊗Hj

c (XGT ′⊂B′ ,Qℓ)[θ′].

Hence, by putting θ := θ−1 ⊠ θ′, it is enough to show that

Hk
c (XGT⊂B ×XGT ′⊂B′ ,Qℓ)[θ]

does not contain the trivial representation for any k, or equivalently,

Hk
c (XGT⊂B ×XGT ′⊂B′ ,Qℓ)G

F

[θ] = 0

for any k (the upper GF denotes the GF -invariant part).
Now we appeal to another fact on the `-adic cohomology (see [Car85, Property 7.1.8]):

Hk
c (XGT⊂B ×XGT ′⊂B′ ,Qℓ)G

F ∼= Hk
c ((XGT⊂B ×XGT ′⊂B′)/GF ,Qℓ),

25I have to confess that I was enough stupid to try this at the beginning.
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where (XGT⊂B × XGT ′⊂B′)/GF denotes the quotient of XGT⊂B × XGT ′⊂B′ by the action of the

finite group GF (given by g · (x, x′) = (gx, gx′)).
We summarize our discussion so far. The disjoint theorem for RGT⊂B(θ) and R

G
T ′⊂B′(θ′)

is now reduced to the following:

Claim. If θ and θ′ are characters of TF and T ′F not geometrically conjugate, then

Hk
c ((XGT⊂B ×XGT ′⊂B′)/GF ,Qℓ)[θ] = 0

for any k ∈ Z≥0, where we put θ := θ−1 ⊠ θ′.

10.2. Reformulation of geometric conjugacy. Let Z(p) be the localization of Z with
respect to the prime ideal (p), i.e.,

Z(p) := {a/b ∈ Q | a, b ∈ Z, p ∤ b} ⊂ Q.

Note that the groups F×
p and Z(p)/Z are isomorphic. A naive explanation of this fact is

as follows. Recall that, for any n ∈ Z>0, Fpn is generated over Fp by the solutions to the

equation xp
n−x = 0. Hence F×

pn is a subset of F×
p consisting of the solutions to xp

n−1−1 = 0,
i.e., the subset of (pn− 1)-th roots of unity. Thus, if we fix its generator ζpn−1, then we can
define an isomorphism

F×
pn

∼=−→ 1
pn−1Z/Z : ζkpn−1 7→ k.

Since Fp =
⋃
n∈Z>0

Fpn , by choosing the generators ζpn−1 in a “coherent way”, we can
extend the above isomorphism to

F×
p

∼=−→ lim−→
n∈Z>0

1
pn−1Z/Z.

The right-hand side is nothing but Z(p)/Z (note that any prime-to-p positive integer divides
pn − 1 for some n ∈ Z>0).

As we can see from this construction, we do not have a canonical choice of an isomorphism

F×
p
∼= Z(p)/Z. In the following, let us fix such an isomorphism.
Now let T be a k-rational maximal torus of a connected reductive group G over k. Recall

that its cocharacter group X∗(T ) = Hom(Gm, T ) has an action of the Frobenius F , which
is given by γ 7→ F ◦ γ. We write X∗(T )(p) := X∗(T )⊗Z Z(p). Let us consider the following
short exact sequence:

0→ Z→ Z(p) → Z(p)/Z→ 0.

Since X∗(T ) is a free Z-module, this induces

0→ X∗(T )→ X∗(T )(p) → X∗(T )⊗Z (Z(p)/Z)→ 0.

Since the Frobenius action preserves each term, we get a commutative diagram

0 // X∗(T ) //

F−1

��

X∗(T )(p) //

F−1

��

X∗(T )⊗Z (Z(p)/Z) //

F−1

��

0

0 // X∗(T ) // X∗(T )(p) // X∗(T )⊗Z (Z(p)/Z) // 0.

Therefore, by applying the snake lemma, we get an exact sequence

Ker(F − 1 | X∗(T )(p))→ Ker(F − 1 | X∗(T )⊗Z (Z(p)/Z))
→ Cok(F − 1 | X∗(T ))→ Cok(F − 1 | X∗(T )(p)).
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Lemma 10.8. The kernel of the endomorphism F − 1 of X∗(T )⊗Z (Z(p)/Z) is isomorphic

to TF .

Proof. Recall that we have fixed an isomorphism F×
q
∼= Z(p)/Z, hence we have X∗(T ) ⊗Z

(Z(p)/Z) ∼= X∗(T )⊗Z F×
q . We consider the following map:

X∗(T )⊗Z F×
q → T (Fq) = T : γ ⊗ x 7→ γ(x).

Then this is a well-defined homomorphism, which is consistent with the Frobenius actions
on the both sides. Moreover, this is a bijection (for example, we can easily check it by fixing

an isomorphism T ∼= Grm). Hence the kernel of the endomorphism F − 1 of X∗(T )⊗Z F×
q is

identified with TF on the right-hand side. □

Lemma 10.9. The endomorphism F − 1 of X∗(T )(p) is an isomorphism. In particular, the
connecting homomorphism

TF → Cok(F − 1 | X∗(T )) = X∗(T )/(F − 1)X∗(T ).

constructed above is an isomorpshim.

Proof. Note that X∗(T )(p) is contained in X∗(T )Q := X∗(T ) ⊗Z Q. To show that F − 1 is
an isomorphism, it is enough to check that the determinant of F − 1 is a prime-to-p integer.
(Then, the inverse matrix to F − 1, which is taken in X∗(T )Q, has its entries in X∗(T )(p)).

Recall (from Week 5) that the endomorphism F of X∗(T )Q is equal to qF0, where q
denotes the q-multiplication map and F0 is an endomorphism of X∗(T )Q of finite order.
This means that det(F − 1) is expressed as

∏r
i=1(qζi− 1), where r = dimT and ζi is a root

of unity. Let K := Q(ζi | i = 1, . . . , r); then each qζi − 1 belongs to the ring of intergers
OK of K. It suffices to check that qζi− 1 is not contained in pOK , but this is clear because
qζi − 1 is equivalent to −1 modulo pOK . □

We have obtained an identification

X∗(T )/(F − 1)X∗(T ) ∼= TF .

In particular, if a character θ of TF is given, then we can regard it as a character of X∗(T ).

Proposition 10.10. Let T and T ′ be k-rational maximal tori of G. Let θ and θ′ be char-
acters of TF and T ′F . Then θ and θ′ are geometrically conjugate if and only if there exists
g ∈ G such that T ′ = gT and the induced map Int(g) : X∗(T ) ∼= X∗(T

′) transfers θ to θ′.

The proof of this proposition is not difficult, but we omit; see [Car85, Propositions 4.1.2
and 4.1.3]. When the latter condition of the above proposition is satisfied, let us say “the
characters of X∗(T ) and X∗(T

′) induced by θ and θ′ are geometrically conjugate”.

10.3. Structure of the quotient of Deligne–Lusztig varieties. Let us investigate the
structure of the quotient variety (XGT⊂B×XGT ′⊂B′)/GF . We write S for this quotient variety.
We put

S ′ := {(u, u′, z) ∈ F (U)× F (U ′)×G | uF (z) = zu′}.

Proposition 10.11. The following map is bijective and TF × T ′F -equivariant:

ϕ : S → S ′ : (x, x′) 7→ (x−1F (x), x′−1F (x′), x−1x′).

Here, TF × T ′F acts on the left-hand side by (t, t′) · (x, x′) = (xt, xt′) and on the right-
hand side by (t, t′) · (u, u′, z) = (t−1ut, t′−1u′t′, t−1zt′). Furthermore, this bijection is an
isomorphism of algebraic varieties.
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Proof. The well-definedness of the map can be easily checked by recalling the definition of
the Deligne–Lusztig variety:

XGT⊂B := {x ∈ G | x−1F (x) ∈ F (U)}.
The equivariance is also clear.

Let us check the injectivity of the map. Suppose that (x, x′), (y, y′) ∈ XGT⊂B × XGT ′⊂B′

map to the same element, i.e,

(x−1F (x), x′−1F (x′), x−1x′) = (y−1F (y), y′−1F (y′), y−1y′).

By comparing the first entries, we see that yx−1 ∈ GF ; in other words, there exists an
element g ∈ GF satisfying y = gx. Similarly, by comparing the second entries, there exists
an element g′ ∈ GF satisfying y′ = g′x′. Finally, by looking at the third entries, we obtain
g = g′. This means that (x, x′) and (y, y′) are in the same GF -orbit.

Let us next check the surjectivity. Suppose that (u, u′, z) ∈ S, i.e., u ∈ F (U), u′ ∈ F (U ′),
z ∈ G satisfy uF (z) = zu′. By applying Lang’s theorem to u and u′, we can find an
element x, x′ ∈ G satisfying x−1F (x) = u and x′−1F (x′) = u′, respectively. Note that then
xzx′−1 ∈ GF . Indeed, we have

F (xzx′−1) = F (x)F (z)F (x′)−1 = (xu) · (u−1zu′) · (x′u′)−1 = xzx′−1.

Hence, if we put g := xzx′−1 ∈ GF , then we have ϕ(x, gx′) = (u, u′, z).
To show that this bijection is in fact an isomorphism of algebraic varieties, we need more

about algebraic geometry. We do not explain the details in this course; please see [Car85,
Proof of Theorem 7.3.8, 221-222 pages]. □

By this proposition, our task is furthermore reduced to show the vanishing ofHi
c(S ′,Qℓ)[θ]

for each i ∈ Z≥0. The idea of computing the cohomology of S ′ is to divide S ′ into “cells”,
where the cohomologies are more computable. The key is the following general fact, which
is a generalization of the decomposition GL2 = B tB( 0 1

1 0 )B used in Week2:

Theorem 10.12 (Bruhat decomposition). We have the following disjoint union decompo-
sition:

G =
⊔

w∈WG(T )

BẇB,

where ẇ ∈ NG(T ) is any representative of w ∈ WG(T ). Here, each BẇB is locally closed
and equal to UTẇUw, where Uw := U ∩ w−1Uw.26 Moreover, for any w′ ∈ WG(T ), the
union

⊔
w≤w′ BẇB is closed, where “≤” denotes the “Bruhat order” on the Weyl group.

Let us first rewrite the Bruhat decomposition in a way more useful for our purpose.
Recall that B be a Borel subgroup of G containing T with unipotent radical U . Since T is
k-rational, F−1(B) is also a Borel subgroup of G containing T ; its unipotent radical is given
by F−1(U). The same statement holds for B′ = T ′U ′. We fix g ∈ G satisfying gT ′ = T
and gF−1(B′) = F−1(B) (hence gF−1(U ′) = F−1(U)). For each w ∈ WG(T ), we fix its
representative ẇ ∈ NG(T ) and put

Gw := (U ∩ wU)TẇgU ′.

Lemma 10.13. We have G =
⊔
w∈WG(T )Gw. Moreover, each Gw is locally closed in G

and satisfies the same closure relation as the Bruhat decomposition G =
⊔
w∈WG(T )BẇB.

26The symbol U denotes the unipotent radical of the “opposite” Borel subgroup B. You can just think

of it as a generalization of the lower-triangular Borel subgroup of GLn.
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Proof. By the Bruhat decomposition, we have

G =
⊔

w∈WG(T )

UTẇUw =
⊔

w∈WG(T )

UTẇ(U ∩ w−1(U)w)

By inverting the both side, we get

G =
⊔

w∈WG(T )

(U ∩ w−1(U)w)ẇ−1TU =
⊔

w∈WG(T )

(U ∩ wU)ẇTU.

(Here, in the second equality, we replaced w with w−1.) Since we have gU ′ = U , we get

G =
⊔

w∈WG(T )

(U ∩ wU)ẇT gU ′.

By multiplying both sides by g from the right, we get

G =
⊔

w∈WG(T )

(U ∩ wU)ẇTgU ′ =
⊔

w∈WG(T )

Gw

(note that Tẇ = ẇT ).
The assertion on the topology follows from by the above proof (we just rewrote each

cell). □

Recall that
S ′ := {(u, u′, z) ∈ F (U)× F (U ′)×G | uF (z) = zu′}.

For each w ∈W , we put

S ′w := {(u, u′, z) ∈ F (U)× F (U ′)×Gw | uF (z) = zu′}.
Then we obviously have S ′ =

⊔
w∈WG(T ) S ′w and each cell S ′w is locally closed in S ′. More-

over, it can be easily checked that each Gw is stable under the left T -multiplication and the
right T ′-multiplication. This implies that S ′w is stable under the action of TF × T ′F on S ′.
Therefore, by a property of `-adic cohomology (see [Car85, Property 7.1.6]), we have the
following:

If Hi
c(S ′w,Qℓ)[θ] = 0 for each i ∈ Z≥0 and w ∈ WG(T ), then we have

Hi
c(S ′,Qℓ)[θ] for each i ∈ Z≥0.

Note that, by a property of the Bruhat decomposition, the natural product map

(U ∩ wU)× Tẇg × U ′ → (U ∩ wU)TẇgU ′ =: Gw

is bijective Thus we have

S ′w = {(u, u′, v, a, v′) ∈ F (U)× F (U ′)× (U ∩ wU)× Tẇg × U ′ | uF (vav′) = vav′u′}.
We finally introduce the following variety for each w ∈WG(T ):

S ′′w := {(ξ, ξ′, v, a, v′) ∈ F (U)× F (U ′)× (U ∩ wU)× Tẇg × U ′ | ξF (a) = vav′ξ′}.
Then it is easy to verify that the map

(u, u′, v, a, v′) 7→ (uF (v), u′F (v′)−1, v, a, v′)

gives an isomorphism of varieties S ′w ∼= S ′′w. Moreover, under this isomorphism, the action
of TF × T ′F on S ′w is transformed into an action on S ′′w given by

(t, t′) · (ξ, ξ′, v, a, v′) = (t−1ξt, t′−1ξ′t′, t−1vt, t−1at′, t′−1v′t′).

Let us summarize our discussion so far. Now the proof of the disjointness theorem is
reduced to the following:
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Claim. If θ and θ′ are characters of TF and T ′F not geometrically conjugate, then

Hk
c (S ′′w,Qℓ)[θ] = 0

for any k ∈ Z≥0 and w ∈WG(T ), where we put θ := θ−1 ⊠ θ′.

10.4. Proof of the disjointness theorem. We introduce a subgroup Hw of T × T ′ as
follows:

Hw := {(t, t′) ∈ T × T ′ | F (t′)t′−1 = F (ẇg)−1(F (t)t−1)F (ẇg)}.
Thus is a closed subgroup of T × T ′ contains TF × T ′F . The crucially important property
of this subgroup is the following:

Lemma 10.14. The action of TF × T ′F on S ′′w extends to an action of Hw which is given
by the same formula.

Proof. For any (t, t′) ∈ Hw and (ξ, ξ′, v, a, v′) ∈ S ′′w, let us check that (t, t′) · (ξ, ξ′, v, a, v′) =
(t−1ξt, t′−1ξ′t′, t−1vt, t−1at′, t′−1v′t′) belongs to S ′′w. Recall that

(t, t′) · (ξ, ξ′, v, a, v′) = (t−1ξt, t′−1ξ′t′, t−1vt, t−1at′, t′−1v′t′).

Thus the right-hand side of the defining equation of S ′′w (i.e., “ξF (a)”) is given by

(t−1ξt) · F (t−1at′) = t−1ξtF (t)−1F (a)F (t′).

On the other hand, the left-hand side of the defining equation of S ′′w (i.e., “vav′ξ′”) is given
by

(t−1vt) · (t−1at′) · (t′−1v′t′) · (t′−1ξ′t′) = t−1vav′ξ′t′ = t−1ξF (a)t′

(we used the defining equation of S ′′w in the second equality). Hence these coincide if and
only if we have

tF (t)−1F (a)F (t′) = F (a)t′.

By putting a = sẇg for some s ∈ T , this is equivalent to

tF (t)−1F (ẇg)F (t′) = F (ẇg)t′

(we used that F (s) commutes with tF (t)−1). This is nothing but the defining equation of
Hw. □

Proposition 10.15. Let X be an algebraic variety with an action of a connected algebraic
group H. Then the action of H on Hi

c(X,Qℓ) is trivial.

By this proposition, the action of H◦
w on Hi

c(S ′′w,Qℓ) is trivial. In particular, the action
of (TF × T ′F ) ∩H◦

w on Hi
c(S ′′w,Qℓ) is trivial.

Now let us complete the proof of the disjointness theorem. We write θ̃ and θ̃′ for the
characters of X∗(T ) and X∗(T

′) induced by θ and θ′, respectively. By the characterization
of the geometric conjugacy, our task is to show the following:

Claim. Suppose that

Hi
c(S ′′w,Qℓ)[θ] 6= 0

for some i ∈ Z≥0 and w ∈ WG(T ), where we put θ := θ−1 ⊠ θ′. Then θ̃ and θ̃′ are
geometrically conjugate.
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We suppose that Hi
c(S ′,Qℓ)[θ] 6= 0. Then, since (TF × T ′F ) ∩ H◦

w acts on this space
trivially, we have that θ = θ−1 ⊠ θ′ is trivial on (TF × T ′F ) ∩H◦

w.
We define a group homomorphism

φ : T × T ′ → T ; (t, t′) 7→ F (ẇg)t′F (ẇg)−1t.

We consider the “Lang map” of T×T ′ (note that this is a group homomorphism since T×T ′

is abelian):
L : T × T ′ → T × T ′; (t, t′) 7→ (F (t)t−1, F (t′)t′−1).

Then, by definition, we see that Hw ⊂ T × T ′ is nothing but the kernel of φ ◦ L.
We look at the maps on cocharacter groups induced by φ and L.

Lemma 10.16. Let S be a k-rational subtorus of T . Let X∗(T ) ↠ X∗(T )/(F − 1)X∗(T ) ∼=
TF be the surjective homomorphism constructed above. Then the image of X∗(T ) ∩ (F −
1)X∗(S)p′ is contained in TF ∩ S.

Exercise 10.17. Prove this lemma. Hint: Go back to the construction of the identification
X∗(T )/(F − 1)X∗(T ) ∼= TF in Section 10.2 (the connecting homomorphism of the snake
lemma).

We apply this lemma to H◦
w ⊂ T × T ′. Then we see that, under the homomorphism

X∗(T )⊕X∗(T
′)→ TF × T ′F ,

the subgroup (X∗(T ) ⊕X∗(T
′)) ∩ (F − 1)X∗(H

◦
w)(p) is mapped into (TF × T ′F ) ∩H◦

w. In

other words, the character (θ̃−1, θ̃′) of X∗(T )⊕X∗(T
′) is trivial on (X∗(T )⊕X∗(T

′))∩ (F −
1)X∗(H

◦
w)(p).

Lemma 10.18. We put M := Ker(φ : X∗(T )⊕X∗(T
′)→ X∗(T )). Then M is contained in

the kernel of (θ̃−1, θ̃′).

Proof. Let m ∈ M . Since (X∗(T ) ⊕ X∗(T
′))/(F − 1)(X∗(T ) ⊕ X∗(T

′)) is isomorphic to
TF × T ′F , its order is finite and prime-to-p. Thus there exists a prime-to-p integer n ∈ Z
such that nm = (F − 1)ξ for some ξ ∈ X∗(T ) ⊕ X∗(T

′). As (F − 1)ξ = nm ∈ M , we
have that ξ ∈ Ker(φ ◦ L) = X∗(Hw) = X∗(H

◦
w). Hence m belongs to (F − 1)X∗(H

◦
w)(p),

which means that m lies in the kernel of (θ̃−1, θ̃′) by the remark in the paragraph above
Lemma. □

Let γ ∈ X∗(T ). Then, by the definition of M , (γ, Int(F (ẇg)) ◦ γ) ∈ X∗(T ) ⊕ X∗(T
′)

belongs to M . Hence, by the above lemma, (θ̃−1, θ̃′) maps (γ, Int(F (ẇg)) ◦γ) to 1. In other
words, we have

θ̃−1(γ) · θ̃′(Int(F (ẇg)) ◦ γ) = 1.

Equivalently, we have
θ̃(γ) = θ̃′(Int(F (ẇg)) ◦ γ).

This means that the characters θ̃ and θ̃′ are geometrically conjugate.
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11. Week 11: Cuspidal representations

Recall that, in Week 2, we investigated cuspidal representations of GL2(Fq). We first
defined principal representations of GL2(Fq) by considering the induction from Borel sub-
groups, and then defined the cuspidality. The aim of this week is to first generalize the notion
of the cuspidality to any finite group of Lie type and investigate it from the viewpoint of
Deligne–Lusztig theory.

11.1. Parabolic subgroups. Let G be a connected reductive group over k = Fq.

Proposition/Definition 11.1. (1) Let P be a k-rational closed subgroup of G. We
say that P is a k-rational parabolic subgroup of G if Pk contains a Borel subgroup
of Gk.

(2) For any k-rational parabolic subgroup P of G, there exists a k-rational connected
reductive subgroup L of P such that P is the semi-direct product P = L⋉UP , where
UP is the unipotent radical of P . We call such an L a k-rational Levi subgroup of
P . We call the decomposition P = L⋉ UP a Levi decomposition.

Remark 11.2. (1) By definition, G and any k-rational Borel subgroup of G are obvi-
ously parabolic subgroups; these are maximal/minimal parabolic subgroups.

(2) Note that a Levi subgroup of a given parabolic subgroup is not unique in general.

Example 11.3. Let G = GL3.

(1) We put

P :=

Ñ
∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

é
⊂ G.

Then this is a k-rational parabolic subgroup of G. The unipotent radical of P is
given by

UP =

Ñ
1 0 ∗
0 1 ∗
0 0 1

é
⊂ P.

Hence, for example, a Levi subgroup of P can be taken to beÑ
∗ ∗ 0
∗ ∗ 0
0 0 ∗

é
⊂ P.

(2) We put

P ′ :=

Ñ
∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

é
⊂ G.

Then this is a k-rational parabolic subgroup of G. The unipotent radical of P ′ is
given by

UP ′ =

Ñ
1 ∗ ∗
0 1 0
0 0 1

é
⊂ P ′.

Hence, for example, a Levi subgroup of P ′ can be taken to beÑ
∗ 0 0
0 ∗ ∗
0 ∗ ∗

é
⊂ P ′.
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Recall that there always exists a k-rational Borel subgroup of G since k = Fq; let us fix
such a B0. We call a k-rational parabolic subgroup P standard parabolic if P contains B0.

Fact 11.4. Any k-rational parabolic subgroup of G is G(k)-conjugate to a k-rational stan-
dard parabolic subgroup of G.

The above definition of a parabolic subgroup is too abstract. So let us also introduce a
concrete description of (standard) parabolic subgroups. In the following (in this subsection),
we assume that G is split for simplicity. But the theory does not change even when G is
non-split.

Recall that reductive groups are classified by root data “(X,R,X∨, R∨)”. Let us first
review how (X,R,X∨, R∨) is associated to G (Week 4). We let T0 be a split k-rational
maximal torus of G contained in B0. Then X and X∨ are defined to be X∗(T0) and
X∗(T0). The sets R and R∨ are finite subsets of X and X∨; these are called the sets of
roots and coroots. An element α ∈ X belongs to R if and only if there exists a closed
subgroup Uα of G such that

• Uα is isomorphic to Ga (fix ι : Ga
∼= Uα), and

• Uα is normalized by T0-conjugation and satisfies

t · ι(x) · t−1 = ι(α(t) · x)

for any t ∈ T0 and x ∈ Ga.

Let us call a root α ∈ R a positive root if its associated root subgroup Uα is contained in
the unipotent radical U0 of the fixed Borel subgroup B0. We write R+ for the subset of R
of positive roots. We put R− := −R+ and call an element of R− a negative root. Note that
R− is also a subset of R since we have −R = R.

Fact 11.5. (1) We have R = R+ tR−.
(2) There exists a unique subset ∆ = {α1, . . . , αl} of R+ such that any positive root is

uniquely written as a Z≥0-linear combination of α1, . . . , αl; α =
∑l
i=1 niαi (ni ∈

Z≥0).

We call ∆ the set of simple roots. Note that, by this fact and the definition of R−, any
negative root is uniquely written as a Z≤0-linear combination of simple roots.

Remark 11.6. Recall that, the construction of root datum (X,R,X∨, R∨) depends on the
choice of T0, but does not on B0. On the other hand, the notions of a positive root and a
simple root depends on B0.

Now let I be any subset of ∆. We consider the following subset RI of R:

RI :=
{
α =

l∑
i=1

niαi ∈ R
∣∣∣ni ≥ 0 if i /∈ I

}
.

We define a k-rational closed subgroup PI of G by

PI := 〈T0, Uα | α ∈ RI〉.

For example:

• When I = ∆, we have R∆ = R and P∆ = 〈T0, Uα | α ∈ R〉 = G.
• When I = ∅, we have R∅ = R+ and P∅ = 〈T0, Uα | α ∈ R+〉 = B0.

In particular, in general, PI is a k-rational closed subgroup of G containing B0, hence a
standard parabolic subgroup.
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Fact 11.7. The above construction gives an order-preserving bijection

{I ⊂ ∆} 1:1−−→ {k-rational standard parabolic subgroups of G} : I 7→ PI .

Moreover, each PI is equipped with a natural Levi subgroup (we call the “standard Levi
subgroup”) LI , which is given by

LI = 〈T0, Uα | α ∈ R0
I〉,

where

R0
I :=

{
α =

l∑
i=1

niαi ∈ R
∣∣∣ni = 0 if i /∈ I

}
.

Example 11.8. Let G = GL3. Let T0 be its diagonal maximal torus. As usual, we choose
B0 to be the upper-triangular one.

B0 :=

Ñ
∗ ∗ ∗
0 ∗ ∗
0 0 ∗

é
,

then both P and P ′ contains B0, hence are standard. The set R of roots is given by

R = {±(e1 − e2),±(e2 − e3),±(e1 − e3)}.

The corresponding root subgroups are as follows:

Ue1−e2 =

Ñ
1 ∗ 0
0 1 0
0 0 1

é
, Ue2−e1 =

Ñ
1 0 0
∗ 1 0
0 0 1

é
,

Ue2−e3 =

Ñ
1 0 0
0 1 ∗
0 0 1

é
, Ue3−e2 =

Ñ
1 0 0
0 1 0
0 ∗ 1

é
,

Ue1−e3 =

Ñ
1 0 ∗
0 1 0
0 0 1

é
, Ue3−e1 =

Ñ
1 0 0
0 1 0
∗ 0 1

é
.

Thus the positive roots are e1− e2, e2− e3, e1− e3. The negative roots are e2− e1, e3− e2,
e3 − e1. The set of simple roots ∆ in this case is given by {e1 − e2, e2 − e3} (indeed, we
have e1 − e3 = (e1 − e2) + (e2 − e3)). We can check that the standard parabolic subgroups
corresponding to subsets of ∆ are as follows:

P∆ =

Ñ
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

é
,

P{e1−e2} =

Ñ
∗ ∗ ∗
∗ ∗ ∗
0 0 ∗

é
, P{e2−e3} =

Ñ
∗ ∗ ∗
0 ∗ ∗
0 ∗ ∗

é
,

P∅ =

Ñ
∗ ∗ ∗
0 ∗ ∗
0 0 ∗

é
.
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11.2. Parabolic induction. Let P be a k-rational parabolic subgroup of G. Let L be
a k-rational Levi subgroup of P and UP be the unipotent radical of P ; hence we have
P = L⋉ UP . Note that, as UP is connected, we can check that (P/UP )

F ∼= PF /UFP by the
usual argument via Lang’s theorem. In particular, we have a canonical surjection (quotient)

PF ↠ PF /UFP
∼= (P/UP )

F ∼= LF .

Definition 11.9. Suppose that σ is a representation of LF . By pulling back σ to PF via

PF ↠ LF , we regard σ as a representation of PF . We call its induction IndG
F

PF σ to GF the
parabolic induction of σ.

Example 11.10. Recall that a Borel subgroup is a minimal parabolic subgroup. Thus
let us take P to be B0. In this case, a Levi subgroup of B0 can be taken to be T0. The

parabolic induction of a 1-dimensional representation (IndG
F

BF
0
χ for a character χ : BF0 → C×)

is nothing but the principal series representation, which was introduced before.

Definition 11.11. Let ρ be a representation of GF . We say that ρ is cuspidal if there does
not exist a pair (P, σ) of a proper k-rational parabolic subgroup P ⊊ G with a Levi L and

a representation σ of LF such that 〈ρ, IndG
F

PF σ〉 6= 0.

We explain why the cuspidal representations are so important. Suppose that ρ is a
non-cuspidal irreducible representation of GF . Then, by definition, there exists a pair

(P1 ⊊ G, σ1) such that ρ is contained in IndG
F

PF
1
σ1. We may assume that such a σ1 is

irreducible. Let us consider what will happen if σ1 is not a cuspidal representation of LF1 .

Then, again by definition, σ1 is contained in Ind
LF

1

PF
2
σ2 for some proper parabolic subgroup

P2 ⊊ L1 with a Levi L2 and an irreducible representation σ2 of LF2 . We can continue this
procedure, but not forever because there cannot exist an infinite chain of proper parabolic
subgroups. In other words, eventually we arrive at a pair (P, σ), where σ is a cuspidal
irreducible representation of LF .

Exercise 11.12. Prove the associativity of the parabolic induction.

Proposition 11.13. Let ρ be a representation of GF . The following are equivalent:

(1) ρ is cuspidal;

(2) for any k-rational parabolic subgroup P with a k-rational Levi L, we have 〈ρ, IndG
F

UF
P
1〉 =

0.

Proof. Note that

IndG
F

UF
P
1 ∼= IndG

F

PF (Ind
PF

UF
P
1) ∼=

⊕
σ∈Irr(LF )

IndG
F

PF σ,

where the sum is over all irreducible representations of LF (we used that PF /UFP
∼= LF ).

Therefore, we have 〈ρ, IndG
F

UF
P
1〉 = 0 if and only if 〈ρ, IndG

F

PF σ〉 = 0 for all irreducible

representations σ of LF . □
11.3. DL’s cuspidality criterion. Suppose that T is a k-rational maximal torus of G
contained in a k-rational parabolic subgroup P of G. Let L be a Levi subgroup of P and
UP the unipotent radical of P . Then, under the map P ↠ P/UP ∼= L, T is mapped to a
k-rational maximal torus of L isomorphically (the kernel of the map is T ∩ UP , which is
semisimple and unipotent, hence trivial). Let us again write T for the k-rational maximal
torus of L determined in this way.
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Proposition 11.14. For any character θ : TF → C×, we have IndG
F

PF (RLT (θ))
∼= RGT (θ).

Proof. Let us fix a Borel subgroup B of G such that T ⊂ B ⊂ P . Note that we can always
find such a Borel subgroup. (Indeed, by definition, P contains a Borel subgroup of G, say
B′. Let T ′ be any maximal torus contained in B′. Then, as any two maximal tori of a
connected linear algebraic group are conjugate, T and T ′ are P -conjugate, say T = pT ′p−1.
By putting B := pB′p−1, we get a desired Borel.) Let U be the unipotent radical of B.

We introduce a set P as follows:

P := {P ′ ⊂ G | P ′ is a parabolic subgroup of G which is GF -conjugate to P}.

Note that we have a bijection GF /PF
1:1−−→ P given by y 7→ yPy−1 (here, we use a fact

that, for any parabolic subgroup P , its normalizer group NG(P ) is P itself). Recall that
the Deligne–Lusztig variety XGT⊂B is defined by

XGT⊂B := {x ∈ G | x−1F (x) ∈ F (U)}.

For each P ′ ∈ P, we define a subvariety XGT⊂B(P
′) of XGT⊂B by

XGT⊂B(P
′) := {x ∈ G | x−1F (x) ∈ F (U), xPx−1 = P ′}.

Claim. We have XGT⊂B =
⊔
P ′∈P XGT⊂B(P

′).

Proof of Claim. The union on the right-hand side is obviously contained in the left-hand
side and also disjoint. Thus it is enough to check the converse inclusion. Let x ∈ X . Then
our task is to show that there exists P ′ ∈ P satisfying xPx−1 = P ′. In other words,
it suffices to show that there exists y ∈ GF satisfying xPx−1 = yPy−1. Since we have
x−1F (x) ∈ F (U) ⊂ F (B) ⊂ F (P ) = P , we have an element z ∈ P such that x−1F (x) = z.
By applying Lang’s lemma to z ∈ P , we can find an element p ∈ P satisfying x−1F (x) =
p−1F (p), or equivalently, xp−1 ∈ GF . Then we have xPx−1 = (xp−1)P (xp−1)−1. So y can
be taken to be xp−1. □

Here, we appeal to a general fact that BL := L ∩ B is a Borel subgroup of L with
unipotent radical L ∩ U . Thus it makes sense to talk about the Deligne–Lusztig variety
XLT⊂BL

associated to T ⊂ BL ⊂ L.
Now let us suppose that x ∈ XGT⊂B(P

′), where P ′ = yPy−1 with y ∈ GF . Then, since
xPx−1 = P ′ = yPy−1, we have y−1x ∈ NG(P ) = P . If we again write y−1x for the image
of yx−1 in L under the map P → P/UP ∼= L, then we have (y−1x)−1F (yx−1) = x−1F (x) ∈
F (U), hence (y−1x)−1F (yx−1) ∈ L ∩ F (U) = F (L ∩ U). In other words, yx−1 belongs to
XLT⊂BL

. Thus we obtain a morphism

XGT⊂B(P
′)→ XLT⊂BL

: x 7→ y−1x,

which is an isomorphism whose inverse is simply given by yx←[ x.
Therefore, in summary, we get a decomposition

XGT⊂B =
⊔
P ′∈P

XGT⊂B(P
′) =

⊔
y∈GF /PF

yXLT⊂BL
.

It is not difficult to check that this decomposition implies that the representation of GF

realized on Hi
c(XGT⊂B ,Qℓ) is nothing but the induced representation of the representation of

PF realized on Hi
c(XLT⊂BL

,Qℓ) (through the map PF → LF ). By also noting that the above

decomposition is equivariant with respect to the right TF -translation action, we conclude

that RGT (θ)
∼= IndG

F

PF (RLT (θ)). □
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Definition 11.15. We say that a k-rational maximal torus T of G is elliptic if T is not
contained in any proper k-rational parabolic subgroup of G.

Corollary 11.16. If the Deligne–Lusztig representation RGT (θ) contains a cuspidal irre-
ducible constituent, then T must be elliptic.

Proof. Let us suppose that T is not elliptic, hence there exists a proper k-rational parabolic
subgroup P with a k-rational Levi subgroup L. Let ρ be any irreducible representation

contained in RGT (θ). Then, by the previous proposition, we have RGT (θ)
∼= IndG

F

PF RLT (θ).
This means that there exists an irreducible representation ρL of LF contained in RLT (θ)

such that ρ is contained in IndG
F

PF ρL. Hence ρ is not cuspidal. □

Then, how about the converse statement? In fact, when the Deligne–Lusztig represen-
tation is irreducible (recall that we call such representation “regular”), the situation is
understandable:

Proposition 11.17. Suppose that S is an elliptic k-rational maximal torus of G. If
η : SF → C× is a regular character, then (−1)rG−rSRGS (η) is an irreducible cuspidal repre-
sentation of GF .

Proof. Recall that, in the proof of the exhaustion theorem, we established a formula

1

StG(s)

∑
s∈T∈TG

∑
θ∈(TF )∨

(−1)rG−rT · θ(s)−1 ·RGT (θ) = |(GF )s| · 1[s]

for any s ∈ GFss. In particular, when s = 1, we get

1

StG(1)

∑
T∈TG

∑
θ∈(TF )∨

(−1)rG−rT ·RGT (θ) = |GF | · 1{1}.

Note that we have |GF | · 1{1} = IndG
F

{1} 1. We utilize this formula for any k-rational Levi
subgroup L of a k-rational parabolic subgroup P :

1

StL(1)

∑
T∈TL

∑
θ∈(TF )∨

(−1)rL−rT ·RLT (θ) = IndL
F

{1} 1.

We apply the parabolic induction from PF to GF to the both sides. Since we have

IndG
F

PF (Ind
LF

{1} 1)
∼= IndG

F

UF
P
1 (Exercise), the previous proposition implies that

1

StL(1)

∑
T∈TL

∑
θ∈(TF )∨

(−1)rL−rT ·RGT (θ) = IndG
F

UF
P
1.

Since

• there are |UFP |-many lifts of a k-rational maximal torus T of L to a k-rational
maximal torus of P ,

• StG(1) = StL(1) · |UFP |,
• rG = rL (this follows from that L is a k-rational Levi),

we get
1

StG(1)

∑
T∈TP

∑
θ∈(TF )∨

(−1)rG−rT ·RGT (θ) = IndG
F

UF
P
1.
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Now we prove the cuspidality of the irreducible representation (−1)rG−rSRGS (η). (Recall
that the irreducibility follows from the regularity of η and the dimension formula.) Our task
is to show that, for any proper k-rational parabolic subgroup P of G, we have

〈(−1)rG−rSRGS (η), Ind
GF

UF
P

1〉 = 0.

By using the previous decomposition, we have

〈(−1)rG−rSRGS (η), Ind
GF

UF
P

1〉 = 1

StG(1)

∑
T∈TP

∑
θ∈(TF )∨

(−1)rT−rS · 〈RGS (η), RGT (θ)〉.

By the inner product formula, each summand is given by

|{w ∈WGF (S, T ) | wη = θ}|.
However, by the assumption that S is elliptic, S cannot conjugate to any k-rational maximal
torus T of P ; in particular, this summand is zero. □
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12. Week 12: Unipotent representations and Lusztig’s Jordan decomposition

12.1. Langlands dual and geometric conjugacy. Let G be a connected reductive group
over k = Fq as usual (F denotes its geometric Frobenius endomorphism). For simplicity, in
the following discussion, we assume that G is split.

Recall that split connected reductive groups over k are classified by root data. Let
(X,R,X∨, R∨) the root datum determined by G (if we take a k-rational split maximal
torus T0 of G, then X and X∨ can be taken to be X∗(T0) and X∗(T0), respectively). We
note that the swapped quadruple (X∨, R∨, X,R) also satisfies the axioms of a root datum.
We call this root datum the dual root datum of (X,R,X∨, R∨). Again by the classification
theorem of reductive groups, there exists a split connected reductive group over k whose
root datum is given by (X∨, R∨, X,R). We call this reductive group the Langlands dual

group of G. Let Ĝ denote it (we use the same symbol “F” for the geometric Frobenius of

Ĝ). Hence, if we take a k-rational split maximal torus T̂0 of Ĝ, then we have X∨ ∼= X∗(T̂0)

and X ∼= X∗(T̂0).

Remark 12.1. (1) The Dynkin diagram of Ĝ is the dual diagram of that of G in the
sense that the underlying diagram is the same and the directions of arrows are
reversed. In particular, among An, Bn, Cn, Dn, E6, E7, E8, F4, G2, only Bn and
Cn are swapped under taking the dual; all other diagrams are self-dual.

(2) The Langlands dual group Ĝ is simply-connected (resp. adjoint) if and only if G is
adjoint (resp. simply-connected).

type of G type An−1 type Bn
G GLn SLn PGLn Spin2n+1 SO2n+1

Ĝ GLn PGLn SLn PSp2n Sp2n
type of Ĝ type An−1 type Cn

type of G type Cn type Dn

G Sp2n PSp2n Spin2n SO2n PSO2n

Ĝ SO2n+1 Spin2n+1 PSO2n SO2n Spin2n
type of Ĝ type Bn type Dn

Now we reinterpret the notion of the geometric conjugacy in terms of the Langlands dual
group. Recall that GF -conjugacy classes of k-rational maximal tori of G are classified by
the conjugacy classes of W0 := WG(T0). Let T be a k-rational maximal torus of G whose
conjugacy class is represented by w ∈ W0. In fact, the Weyl group of the Langlands dual
group Ŵ0 := WĜ(T̂0) is isomorphic to W0. Thus, by regarding w as an element of Ŵ0,

we can find a k-rational maximal torus T̂ of Ĝ0 whose conjugacy class is represented by
w ∈ Ŵ0.

We note that X∗(T0) ∼= X∨ ∼= X∗(T̂0). This isomorphism is equivariant with respect to
the action of the Frobenius (in fact, since we are assuming that G is split, the Frobenius

actions on X∗(T0) and X
∗(T̂0) are trivial). Since any maximal tori are conjugate, by fixing

g ∈ G such that T = gT0, we obtain an isomorphism X∗(T0) ∼= X∗(T ) (given by the
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pull-back via g-conjugation). Similarly, we also have an isomorphism X∗(T̂0) ∼= X∗(T̂ ).
Consequently, we obtain

X∗(T ) ∼= X∗(T0) ∼= X∨ ∼= X∗(T̂0) ∼= X∗(T̂ ).

By chasing the above construction of T̂ carefully, we can check the following:

we may find T̂ such that the resulting isomorphism X∗(T ) ∼= X∗(T̂ ) is
equivariant with respect to the Frobenius actions.

Now recall that we have an isomorphism

TF ∼= X∗(T )/(F − 1)X∗(T ).

(Week 10). In fact, we also have

(TF )∨ ∼= X∗(T )/(F − 1)X∗(T ),

where (TF )∨ := Hom(TF ,C×) (see [Car85, Proposition 3.2.3]). Therefore, by also using the

previous Frobenius-equivariant identification X∗(T ) ∼= X∗(T̂ ), we finally obtain an identifi-
cation

(TF )∨ ∼= X∗(T )/(F − 1)X∗(T ) ∼= X∗(T̂ )/(F − 1)X∗(T̂ ) ∼= T̂F .

Hence, any character of TF can be regarded as an element of T̂F ⊂ ĜF .
Let us summarize our discussion. We put TG to be the set of k-rational maximal tori of

G. We put IG to be the set of pairs (T, θ) such that T ∈ TG and θ ∈ (TF )∨. Similarly,

we put JĜ to be the set of pairs (T̂ , s) such that T̂ ∈ TĜ and s ∈ T̂F . We constructed an

element (T̂ , s) ∈ JĜ from a pair (T, θ) ∈ IG.
Note that both sets IG and JĜ are equipped with the actions of GF and ĜF by conjuga-

tion, respectively. We denote the sets of their GF -conjugacy classes by the symbol IG/∼GF

and JG/∼ĜF .
On the other hand, we also have an equivalence relation on IG given by (T1, θ1) ∼ (T2, θ2)

if and only if RGT1
(θ1) and R

G
T2
(θ2) contains a common irreducible constituent.

Theorem 12.2. The previous construction induces the following diagram

IG/∼GF
1:1 //

����

JG/∼ĜF

����

(T, θ)
� //

_

��

(T̂ , s)
_

��
IG/∼

1:1 // ĜFss/∼ĜF (T, θ)
� // s

Proof. We omit the proof; see, for example, [GM20, Corollary 2.5.14]. □

12.2. Lusztig’s Jordan decomposition.

Definition 12.3. Let s ∈ ĜFss. We let E(GF , s) be the set of isomorphism classes of
irreducible representations ρ of GF such that 〈ρ,RGT (θ)〉 for some (T, θ) ∈ IG whose GF -
conjugacy class (associated as in the previous section) corresponds to s. We call the set

E(GF , s) the Lustig series of irreducible representations associated to s ∈ ĜFss.

Remark 12.4. Recall that we say an irreducible representation ρ of GF is unipotent if
there exists a k-rational maximal torus T of G satisfying 〈ρ,RGT (1)〉. Then the associ-
ated semisimple element of GF is 1. Hence, E(GF , 1) is nothing but the set of irreducible
unipotent representations of GF .

84



Let us write Irr(GF ) for the set of isomorphism classes of irreducible representations of
GF .

Theorem 12.5. We have a decomposition

Irr(GF ) =
⊔

s∈ĜF
ss/∼

E(GF , s),

where the sum is over ĜF -conjugacy classes of semisimple elements of ĜF .

Proof. We first utilize the exhaustion theorem. The exhaustion theorem tells us that, for
any ρ ∈ Irr(G), we can find a pair (T, θ) ∈ IG such that the associated Deligne–Lusztig

representation RGT (θ) contains ρ, i.e., 〈ρ,RGT (θ)〉 6= 0. Hence, by putting s ∈ ĜFss to be an
element corresponding to (T, θ), we have ρ ∈ E(GF , s). In other words, we get Irr(GF ) =⋃
s∈ĜF

ss
E(GF , s). Moreover, by definition, E(GF , s) depends only on the GF -conjugacy class

of s. Hence Irr(GF ) =
⋃
s∈ĜF

ss/∼
E(GF , s).

We next use the disjointness theorem. Suppose that E(GF , s1) and E(GF , s2) has nonempty
intersection (s1, s2 ∈ GFss); let ρ be any element of E(GF , s1)∩ E(GF , s2). Then there exists
(Ti, θi) ∈ IG whose geometric conjugacy class corresponds to the GF -conjugacy class of si
for each i = 1, 2. By the disjointness theorem, the geometric conjugacy classes of (T2, θ1) and
(T2, θ2) must coincide. In other words, GF -conjugacy classes of s1 and s2 are the same. □

By the above theorem, to classify the irreducible representations of GF , it is enough to
determine E(GF , s) for each s ∈ GFss.

Theorem 12.6 (Lusztig). Suppose that the center of G is connencted. Then, for each
s ∈ GFss, there exists a bijection

E(GF , s) 1:1−−→ E(GFs , 1) : ρ 7→ ρ0

such that, for any (T, θ) ∈ IGs
⊂ IG which corresponds to s, we have

(−1)rG〈ρ,RGT (θ)〉GF = (−1)rGs 〈ρ0, RGs

T (θ)〉GF
s
.

In particular, by combining this theorem with the previous one, we get

Irr(GF ) ∼=
⊔

s∈ĜF
ss/∼

E(GFs , 1).

This decomposition is called Lusztig’s Jordan decomposition. By Lusztig’s Jordan decom-
position, in order to classify irreducible representations of GF , we are reduced to classify all
irreducible unipotent representations of GF and its smaller reductive subgroups.

Here let us compare Lusztig’s Jordan decomposition with the normal Jordan decomposi-
tion:

GF =
⊔
s∈GF

ss

(GFs )unip,

which induces a decomposition of the rational conjugacy classes:

GF /∼GF =
⊔

s∈GF
ss/∼GF

(GFs )unip/∼GF
s
.

(Here, we are still assuming that the center of G is connected. In fact, this implies that the
centralizer group ZG(s) of any element s ∈ GFss is connected.)

Recall that, for any finite group G, the number of the isomorphism classes of irreducible
representations of G is equal to the number of the GF -conjugacy classes of G. Then, does
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this suggests that there is an explicit relationship (in particular, a bijection) between them?
In general, the answer is NO (although sometimes it is possible; for example, when G = Sn,
both the sets of irreducible representations and conjugacy classes are parametrized by Young
diagrams.) Nevertheless, we can often find parallel phenomena in these two different worlds;
the phenomena on representations and conjugacy classes are often referred to as spectral and
geometric counterparts of the group theory of G, respectively. In this sense, Lusztig’s Jordan
decomposition can be thought of as a spectral analogue of the usual Jordan decomposition.

12.3. Representations of Weyl groups. In Lusztig’s classification of irreducible unipo-
tent representations of GF , irreducible representations of the Weyl group W0 play a crucial
rule. Here we introduce some ingredients needed to state Lusztig’s results.

Recall that the dimension of EndGF (IndG
F

BF 1) is given by |W0|. In fact, we furthermore

have that EndGF (IndG
F

BF 1) and C[W0] are isomorphic as C-algebras. This implies that the

irreducible representations of GF contained in IndG
F

BF 1 bijectively correspond to irreducible

representations of W0. Let ρχ denote the irreducible constituent of IndG
F

BF 1 corresponding
to χ ∈ Irr(W0).

By the theory of Iwahori–Hecke algebra, we can explicitly describe the dimension of ρχ
as a polynomial in q (the cardinality of k = Fq). We let dχ(t) ∈ Q[t] be the polynomial
obtained by replacing q in the explicit dimension formula of ρχ with “t”, which is a formal
variable. We call this polynomial generic degree or formal dimension of χ ∈ Irr(W0). We
define a non-negative integer aχ ∈ Z≥0 to be the greatest integer such that taχ divides dχ(t).

On the other hand, we introduce the coinvariant ring R(W0) of W0 in the following
way. Let S be the symmetric algebra associated to the real vector space X∗(T0)R. Since
X∗(T0) has an action of W0, this is a graded R-algebra equipped with an action of W0. Let
J+ be the ideal of S generated by all W -invariant homogeneous vectors of positive degree.
Then we define R(W0) := S/J+. It is known that R(W0) is a finite-dimensional graded
algebra R(W0) =

⊕
i≥0Ri such that each Ri has an action of W0. We define a non-negative

integer bχ ∈ Z≥0 for χ ∈ Irr(W0) to be the smallest integer such that Rbχ contains χ as a
representation of W0.

Proposition/Definition 12.7. In general, it is known that we have aχ ≤ bχ. We say that
χ ∈ Irr(W0) is special when aχ = bχ.

12.4. Unipotent representations. Let us still keep assuming that G is split. Again recall
that the GF -conjugacy classes of k-rational maximal tori of G are parametrized by the
conjugacy classes of the Weyl group W0. Now our aim is to classify all irreducible unipotent
representations of G. In other words, we want to determine the irreducible decompositions
of RGTw

(1) for w ∈W0, where Tw denotes any k-rational maximal torus of GF corresponding
to w.

For any χ ∈ Irr(W0), we define a virtual representation Rχ of GF by

Rχ :=
1

|W0|
∑
w∈W0

Θχ(w) ·RGTw
(1).

Then determining the irreducible decompositions of RGTw
(1) for w ∈ W0 is equivalent to

determining the irreducible decompositions of Rχ for χ ∈ Irr(W0). Indeed, suppose that we
know “all” about Rχ for any χ ∈ Irr(W0). Then we can extract the information of RGTw0

(1)
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for a given w0 ∈W0 in the following way:∑
χ∈Irr(W0)

Rχ ·Θχ(w0) =
∑

χ∈Irr(W0)

1

|W0|
∑
w∈W0

Θχ(w) ·RGTw
(1) ·Θχ(w0)

=
∑
w∈W0

1

|W0|
∑

χ∈Irr(W0)

Θχ(w) ·Θχ(w0) ·RGTw
(1) = RGTw0

(1).

Here, in the last equality, we used the fact that∑
χ∈Irr(W0)

Θχ(w) ·Θχ(w0) =

® |W0|
|W0·w0| if w is conjugate to w0,

0 otherwise,

where W0 · w0 denotes the conjugacy class of w0 (the orthogonality relation of irreducible
characters of a finite group; for example, see [Ser77, Chapter 2, Proposition 7]).

For any finite group Γ, we put

M(Γ) := {(x, σ) | x ∈ Γ/∼Γ, σ ∈ Irr(Γx)},

where Γ/∼Γ is the set of conjugacy classes and Γx := ZΓ(x). We define a pairing {−,−} :M(Γ)×
M(Γ)→ C by

{(x, σ), (y, τ)} :=
∑
g∈Γ

xgyg−1=gyg−1x

|Γx|−1 · |Γy|−1 ·Θσ(gyg−1) ·Θτ (g−1xg).

For any function f :M(Γ)→ C, we define a function f̂ :M(Γ)→ C by

f̂((y, τ)) :=
∑

(x,σ)∈M(Γ)

{(x, σ), (y, τ)} · f((x, σ)).

We call the function f̂ the non-abelian Fourier transform of f .
Now we explain Lusztig’s result. For each family F ⊂ Irr(W0), Lusztig constructed a

finite group ΓF equipped with an embedding F ⊂M(ΓF ). We define

X(W0) :=
⊔
F
M(ΓF ),

where the sum is over all families of Irr(W0). For each χ ∈ F , we let zχ denote its image in
M(ΓF ) ⊂ X(W0). Recall that eachM(ΓF ) is equipped with a pairing {−,−}. We extend
them to X(W0) in an obvious way, i.e., for any distinct families F 6= F ′, the extended
pairing {−,−} is zero onM(ΓF )×M(ΓF ′).

Theorem 12.8. There exists a bijection

X(W0)→ E(GF , 1) : z 7→ ρz

satisfying

Rχ =
∑

z′∈X(W0)

{z′, zχ} · ρz′ .

Remark 12.9. (1) The above theorem says that, in particular, the number of irre-
ducible unipotent representations of GF is independent of q. It is governed by the
Weyl group W0, which is only determined by G.

(2) In fact, when G is of type E7 or E8, we have to modify the definition of the pairing
{−,−} a bit for some particular families F called exceptional families.
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(3) When G is simple, only possibilities of a finite group ΓF for a family F are (Z/2Z)m
(for some m ∈ Z>0), S3, S4, S5.

(4) By noting the above description of Rχ, we define a virtual representation Rz for any
z ∈ X(W0) by

Rz =
∑

z′∈X(W0)

{z′, z} · ρz′ .

This virtual representation (or its character) is called an almost character of GF .
(5) By looking at the book [Lus84] (or also [Car85, Sections 13.8 and 13.9]), we can find

tables of all irreducible unipotent representations of GF .

88



13. Week 13: Example session

13.1. Algebraic characterization of regular Deligne–Lusztig representations. In
this course, we have studied Deligne–Lusztig’s construction of a virtual representation
RGT (θ), which is critically based on very deep geometric discussions. The motivating problem
we want to discuss here is the following:

Q1. Is there a purely-algebraic characterization of RGT (θ)?

Let us recall the Deligne–Lusztig character formula:

Theorem 13.1 (Deligne–Lusztig character formula). Let g ∈ GF with Jordan decomposi-
tion g = su. Then we have

RGT (θ)(g) =
1

|(G◦
s)
F |

∑
x∈GF

x−1sx∈TF

θ(x−1sx) ·QG
◦
s

xT (u).

Since any virtual representation is uniquely determined by its character, we can think
of this formula as the characterization of the Deligne–Lusztig virtual representation RGT (θ).

However, the right-hand side contains the Green functions Q
G◦

s
xT . Remember that it is the

restriction of the character of R
G◦

s
xT (1) to the set of unipotent elements; so its definition

unavoidably depends on geometry.
But then, how about looking at the character values only on regular semisimple elements?

Recall the following (an easy consequence of the Deligne–Lusztig character formula):

Corollary 13.2. Suppose that s ∈ GFrs (the set of regular semisimple elements of GF ).

(1) If s is not conjugate to any element of TF , then we have RGT (θ)(s) = 0.
(2) If s is conjugate to an element of TF (suppose that s ∈ TF ), then we have

RGT (θ)(s) =
∑

w∈WGF (T )

wθ(s),

where WGF (T ) := NGF (T )/TF .

The right-hand side of this formula only consists of purely algebraic quantities! So we
next come up with the following question:

Q2. Is the above character formula on GFrs enough to characterize RGT (θ)?

In general, to determine a given representation from its character, we have to look at
all its character values. However, sometimes (depending on a group and a representation),
it is possible to determine a given representation by only looking at its character values
on some special elements. For example, recall that S3 has two 1-dimensional irreducible
representations and only 2-dimensional representation. This means that, to distinguish the
2-dimensional irreducible representation from the others, it is only enough to look at their
character values at 1! This example is maybe too stupid, but in any case we can hope that
we could give an affirmative answer to Q2 in some cases.

Indeed, we can find the following “reasonable” answer27:

27This result is due to Charlotte Chan and I (joint work), which is based on a preceding work of Guy

Henniart.
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Theorem 13.3. Let θ : TF → C× be a regular character, i.e., {w ∈ WGF (T ) | wθ = θ} =
{1}. Suppose that the following inequality holds:

|TF |
|TF ∖ TFrs |

> 2 · |WGF (T )|.

Then RGT (θ) is the unique irreducible representation (up to sign) such that, for any s ∈ GFrs,

(∗) RGT (θ) =

®
0 if s is not conjugate to elements of TF ,∑
w∈WGF (T )

wθ(s) if s ∈ TF .

Here, the subscript “rs” denotes the subset of regular semisimple elements.

Before we proceed, let us give some comments. First, the inequality in the assumption
basically says that we have “many” regular semisimple elements. Thus the intuitive mean-
ing of this theorem is that “if we have sufficiently many regular semisimple elements, the
Deligne–Lusztig character formula on regular semisimple elements is enough to determine
a regular Deligne–Lustig representation”. Because this inequality is first considered in the
work of Henniart for G = GLn, let us call it the Henniart inequality.

Second, recall that |TF | can be described by looking at the characteristic polynomial of
a Weyl element which defines the k-rational maximal torus T . In fact, it is also possible to
determine |TFrs | as long as G and the Weyl element are explicitly specified. Thus, in principle,
we can explicate the Henniart inequality. In particular, we can show that the Henniart
inequality always holds whenever q is sufficiently large; we will present some examples later.

Now let us prove the above theorem. In the following, we put Gnrs := G ∖ Grs and
Tnrs := T ∖ Trs. According to the disjoint union decomposition GF = GFrs tGFnrs, we divide
the inner product 〈−,−〉 on the space of class function on GF as follows:

〈f1, f2〉• :=
1

|GF |
∑
g∈GF

•

f1(g) · f2(g),

where • ∈ {rs,nrs}. Hence we have 〈f1, f2〉 = 〈f1, f2〉rs + 〈f1, f2〉nrs.

Proof. Suppose that ρ is another irreducible virtual representation of GF satisfying the
same character formula as RGT (θ) on G

F
rs. We put R := RGT (θ) Then our task is to show that

〈ρ,R〉 6= 0.
We have

〈ρ, ρ〉 = 〈ρ, ρ〉rs + 〈ρ, ρ〉nrs
and

〈R,R〉 = 〈R,R〉rs + 〈R,R〉nrs.
Since both ρ and R are irreducible (the latter is due to that θ is regular), we have 〈ρ, ρ〉 =
〈R,R〉 = 1. On the other hand, by the assumption on ρ, we also have 〈ρ, ρ〉rs = 〈R,R〉rs.
Hence we get 〈ρ, ρ〉nrs = 〈R,R〉nrs. Let us put

X := 〈ρ, ρ〉rs = 〈R,R〉rs, Y := 〈ρ, ρ〉nrs = 〈R,R〉nrs
(thus X and Y are non-negative numbers satisfying X + Y = 1).

We have
〈ρ,R〉 = 〈ρ,R〉rs + 〈ρ,R〉nrs.

Again by the assumption on ρ, we have 〈ρ,R〉rs = X. On the other hand, by the Cauchy–
Schwarz inequality, we have

|〈ρ,R〉nrs| ≤ 〈ρ, ρ〉
1
2
nrs · 〈R,R〉

1
2
nrs = Y.
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Therefore, if we have X > Y , then 〈ρ,R〉 cannot be equal to 0. Since X + Y = 1, the
condition X > Y is equivalent to that X > 1

2 .
Let us evaluate X:

X = 〈R,R〉rs =
1

|GF |
∑
g∈GF

rs

RGT (θ)(g) ·RGT (θ)(g).

By the regular semisimple Deligne–Lusztig character formula, RGT (θ)(g) = 0 for any g ∈ GFrs
which is not conjugate to an element of TF . Note that we have

(GF /NGF (T ))× TFrs
1:1−−→ {g ∈ GFrs | g is conjugate to an element of TF }

(x, t) 7→ xtx−1.

Thus, again by using the regular semisimple Deligne–Lusztig character formula, we have

X =
1

|GF |
∑

x∈GF /NGF (T )

∑
t∈TF

rs

RGT (θ)(xtx
−1) ·RGT (θ)(xtx−1)

=
1

|GF |
∑

x∈GF /NGF (T )

∑
t∈TF

rs

RGT (θ)(t) ·RGT (θ)(t)

=
1

|NGF (T )|
∑
t∈TF

rs

∑
w,w′∈WGF (T )

wθ(t) · w′θ(t).

By noting that TFrs = TF − TFnrs, we get

X =
1

|NGF (T )|
∑

w,w′∈WGF (T )

(∑
t∈TF

wθ(t) · w′θ(t)−
∑
t∈TF

nrs

wθ(t) · w′θ(t)

)
.

Here, since θ is regular, the orthogonality relation of characters implies that∑
t∈TF

wθ(t) · w′θ(t) =

®
|TF | if w = w′,

0 otherwise.

Thus we get

X =
1

|NGF (T )|
· |WGF (T )| · |TF | − 1

|NGF (T )|
·

∑
w,w′∈WGF (T )

∑
t∈TF

nrs

wθ(t) · w′θ(t)

= 1− 1

|NGF (T )|
·

∑
w,w′∈WGF (T )

∑
t∈TF

nrs

wθ(t) · w′θ(t).

Hence, the triangle inequality implies that

X ≥ 1− 1

|NGF (T )|
· |WGF (T )|2 · |TFnrs| = 1− |T

F
nrs|
|TF |

· |WGF (T )|.

Note that the Henniart inequality is equivalent to that

|TFnrs|
|TF |

· |WGF (T )| < 1

2
.

Hence, if the Henniart inequality holds, we obtain X > 1
2 . □
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13.2. Henniart inequality for Coxeter tori of exceptional groups. As mentioned
above, as long as the group G and its maximal torus T are specified, it is possible to explicate
the Henniart inequality. For example, for any split adjoint simple group of exceptional type,
the Henniart inequality for a k-rational maximal torus S of “Coxeter type”28 is as in the
following table:

Table 2. Henniart inequalities for Coxeter tori of exceptional groups

G |SF | |SFnrs| condition on q
E6 (q4 − q2 + 1)(q2 + q + 1) q2 + q + 1 q > 2

E7 (q6 − q3 + 1)(q + 1)

®
3(q + 1) q ≡ −1 mod 3

q + 1 q 6≡ −1 mod 3

®
q > 2

q: any

E8 q8 + q7 − q5 − q4 − q3 + q + 1 1 q: any
F4 q4 − q2 + 1 1 q > 2

G2 q2 − q + 1

®
3 q ≡ −1 mod 3

1 q 6≡ −1 mod 3

®
q > 6

q > 3

Therefore, only the cases which do not satisfy the Henniart inequality are

• G is of type E6, q = 2;
• G is of type F4, q = 2;
• G is of type G2, q = 2, 3, 5.

13.3. The case of G2(F3). In the following, let us investigate what is happening in the
case where G = G2 over F3. In fact, in this case, our characterization theorem for regular
Deligne–Lusztig representations does not hold!

First, again recall thatGF -conjugacy classes of k-rational maximal tori ofG are parametrized
by the conjugacy classes in the absolute Weyl groupW0 of G. The group G2 has 6 conjugacy
classes; they are named “∅”, “A1”, “Ã1”, “A1×Ã1”, “A2”, and “G2” (see [Car72, Table 7]).
For any such conjugacy class Γ, let us write TΓ for a k-rational maximal torus corresponding
to Γ. Then the orders of TFΓ and WGF (TΓ) are given as follows (see also [Car72, Table 3
and Lemma 26]):

Table 3. Maximal tori of G2(Fq)

Γ |TFΓ | |TFΓ | (q = 3) |WGF (TΓ)| split rank
∅ (q − 1)2 4 12 2 (split)
A1 (q − 1)(q + 1) 8 4 1

Ã1 (q − 1)(q + 1) 8 4 1

A1 × Ã1 (q + 1)2 16 12 0 (elliptic)
A2 q2 + q + 1 13 6 0 (elliptic)
G2 q2 − q + 1 7 6 0 (elliptic, Coxeter)

These are actually contained in GAP3. To see it, first put:

gap> W:=CoxeterGroup("G",2);

28The Weyl group has a particular conjugacy class consisting of elements called “Coxeter elements”. The

maximal torus S corresponds to the Coxeter conjugacy class.
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Then, by putting

gap> CharTable(W).classnames;

GAP3 gives the following output:

[ "A0", "~A1", "A1", "G2", "A2", "A1+~A1" ]

Moreover, the following gives the list of rational maximal tori corresponding to the above
conjugacy classes:

gap> Twistings(W,[]);

[ (q-1)^2, (q-1)(q+1), (q-1)(q+1), (q^2-q+1), (q^2+q+1), (q+1)^2 ]

Note that “G2” is the conjugacy class of Coxeter elements. Hence TG2 is our maximal
torus S. We can check that SF has a non-regular semisimple element other than unit if and
only if q ≡ −1 (mod 3); in this case, the number of non-regular semisimple elements is 3.
Also note that the rational Weyl group WGF (S) is cyclic of order 6.

From now on, we focus on the case where k = F3.
The group G2(F3) has 23 conjugacy classes, hence has 23 irreducible representations.

Table 4 is the list of 23 conjugacy classes; if a conjugacy class has name “nx”, then it means
that the order of any representative of the class is given by n. The last column of Table 4
expresses which tori contain semisimple elements within the conjugacy classes.

Table 4. Conjugacy classes of G2(F3)

conjugacy class order order of centralizer type tori
1a 1 4245696 unit all

2a 2 576 ss. ∅, A1, Ã1, A1 × Ã1

3a 3 5832 unip. –
3b 3 5832 unip. –
3c 3 729 unip. –
3d 3 162 unip. –
3e 3 162 unip. –

4a 4 96 ss. Ã1, A1 × Ã1

4b 4 96 ss. A1, A1 × Ã1

6a 6 72 – –
6b 6 72 – –
6c 6 18 – –
6d 6 18 – –
7a 7 7 reg. ss. G2

8a 8 8 reg. ss. Ã1

8b 8 8 reg. ss. A1

9a 9 27 unip. –
9b 9 27 unip. –
9c 9 27 unip. –
12a 12 12 – –
12b 12 12 – –
13a 13 13 reg. ss. A2

13b 13 13 reg. ss. A2
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The character table of G2(F3) is as in Table 7. The 23 irreducible representations are
named “Xn” in the decreasing order according to their dimensions. This table is cited from
GAP3 ([S+97]); if you are familiar with GAP3, Table 7 can be output just by typing:

>gap DisplayCharTable( CharTable( "G2(3)" ) );

(see https://webusers.imj-prg.fr/~jean.michel/gap3/htm/chap049.htm#SECT037 for
the details). In the following, we write Xn for the irreducible representation Xn.

We remark that among the 23 irreducible representations, the unipotent representations
are

X1, X2, X3, X4, X5, X7, X8, X9, X10, X21

(X2, X3, X4, and X5 are cuspidal unipotent representations). This can be also seen by
using GAP3:

gap> Display(UnipotentCharacters(CoxeterGroup("G",2)));

In the GAP3 output, the above unipotent representations are expressed as phi{1,0}, G2[1],
G2[E3], G2[E3^2], G2[-1], phi{1,3}’, phi{1,3}’’, phi{2,1}, phi{2,2}, phi{1,6}. (See
https://webusers.imj-prg.fr/~jean.michel/gap3/htm/chap098.htm and also [Lus84,
372 page].)

Table 5. Unipotent representations of G2(Fq)

GAP3 label dimension label (q = 3) dim (q = 3) label (Lusztig)
phi{1,0} 1 X1 1 –
phi{1,6} q6 X21 729 –
phi{1,3}’ qφ3(q)φ6(q)/3 X7 91 (1, r)
phi{1,3}’’ qφ3(q)φ6(q)/3 X8 91 (g3, 1)
phi{2,1} qφ22(q)φ3(q)/6 X9 104 (1, 1)
phi{2,2} qφ22(q)φ6(q)/2 X10 168 (g2, 1)
G2[-1] qφ21(q)φ3(q)/2 X5 78 (g2, ε)
G2[1] qφ21(q)φ6(q)/6 X2 14 (1, ε)
G2[E3] qφ21(q)φ

2
2(q)/3 X3 64 (g3, θ)

G2[E3^2] qφ21(q)φ
2
2(q)/3 X4 64 (g3, θ

2)

φ1(q) = q − 1, φ2(q) = q + 1, φ3(q) = q2 + q + 1, φ6(q) = q2 − q + 1.

We also remark that each unipotent representation is realized in RGTΓ
(1) as in Table 6.

To see this via GAP3, type the following:

gap> DeligneLusztigCharacter(CoxeterGroup("G",2),n);

Here, n means the nth conjugacy class of the Weyl group of G2, where the conjugacy classes
are arranged in the following order (gap> PrintRec(CoxeterGroup("G",2));):

∅, Ã1, A1, G2, A2, A1 × Ã1.

Now we discuss a counterexample to our characterization theorem for regular Deligne–
Lusztig representations. We have SF ∼= Z/7Z and SFnrs = {1}. Moreover, we can check that
WGF (S) acts on the set of regular semisimple elements of SF simply-transitively. Thus we
see that there exists only one regular character θ of SF up to conjugation.

By the dimension formula of Deligne–Lusztig representations, we have

dimRGS (θ) =
|GF |

dimStG · |SF |
.
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Table 6. Unipotent Deligne–Lusztig representations G2(Fq)

Γ RGTΓ
(1)

∅ X1 +X7 +X8 + 2X9 + 2X10 +X21

A1 X1 −X7 +X8 −X21

Ã1 X1 +X7 −X8 −X21

A1 × Ã1 X1 − 2X2 − 2X5 −X7 −X8 +X21

A2 X1 +X2 −X3 −X4 −X10 +X21

G2 X1 +X3 +X4 +X5 −X9 +X21

Note that rG = 2 and rS = 0, hence the sign appearing in the dimension formula is trivial.
In other words, RGS (θ) is a genuine representation. Since we have

• |GF | = q6 · (q2 − 1) · (q6 − 1) (see [Car85, Section 2.9]),
• dimStG = q6 (see [Car85, Proposition 6.4.4]),
• |SF | = q2 − q + 1,

we have
dimRGS (θ) = (q − 1)2 · (q + 1)2 · (q2 + q + 1) = 832.

Thus we conclude that RGS (θ) is the irreducible representation X23.
By the above description of the group SF and the action of WGF (S) on SF , we see that∑

w∈WGF (S)

θw(s) =

6∑
i=1

ζi7 = −1

for any regular semisimple element s ∈ SF , where ζ7 is a primitive 7th root of unity.
Therefore, our characterization theorem in this case is asking whether an irreducible virtual
representation of GF such that

• Θρ(s) = 0 if the conjugacy class of s is one of “8a”, “8b”, “13a”, and “13b” (see
Table 4) and

• Θρ(s) = ±1 if the conjugacy class of s is “7a” (see Table 4)

is necessarily equal to ±RGS (θ) or not.
By looking at the character table (Table 7), we can easily find that X5 and X9 satisfy

these assumptions!
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13.4. Unipotent representations. One may notice that the above counterexample is
given by unipotent representations. In fact, this is not an accident.

Let G be a connected reductive group over k = Fq, T a k-rational maximal torus of G,
and θ a regular character of TF . We suppose that ρ is an irreducible representation of GF

having the same regular semisimple character values as RGT (θ).

Lemma 13.4. Suppose that there exists a character θ′ : TF → C× such that

(i) θ and θ′ are not WGF (T )-conjugate, and
(ii) θ|TF

nrs
≡ θ′|TF

nrs
.

Then we have either 〈ρ,RGT (θ)〉 6= 0 or 〈ρ,RGT (θ′)〉 6= 0.

Proof. By the regularity of θ, we have

1 = 〈RGT (θ), RGT (θ)〉 = 〈RGT (θ), RGT (θ)〉rs + 〈RGT (θ), RGT (θ)〉nrs.(1)

On the other hand, by the assumption (i) and the inner product formula, we have

0 = 〈RGT (θ), RGT (θ′)〉 = 〈RGT (θ), RGT (θ′)〉rs + 〈RGT (θ), RGT (θ′)〉nrs.(2)

Recall that, by the Deligne–Lusztig character formula

RGT (θ)(g) =
1

|(G◦
s)
F |

∑
x∈GF

x−1sx∈TF

θ(x−1sx) ·QG
◦
s

xT (u).

we see that the character of RGT (θ) on GFnrs depends only on θ|TF
nrs

. Thus assumption

(ii) implies that RGT (θ) equals R
G
T (θ

′) on GFnrs. In particular, we have 〈RGT (θ), RGT (θ)〉nrs =
〈RGT (θ), RGT (θ′)〉nrs. Thus, by the equalities (1) and (2), we get 〈RGT (θ), RGT (θ)〉rs 6= 〈RGT (θ), RGT (θ′)〉rs.

We next look at the following two equalities:

〈ρ,RGT (θ)〉 = 〈ρ,RGT (θ)〉rs + 〈ρ,RGT (θ)〉nrs,(3)

〈ρ,RGT (θ′)〉 = 〈ρ,RGT (θ′)〉rs + 〈ρ,RGT (θ′)〉nrs.(4)

Again by the same observation as above, we have 〈ρ,RGT (θ)〉nrs = 〈ρ,RGT (θ′)〉nrs. More-
over, by the assumption on ρ, we have 〈ρ,RGT (θ)〉rs = 〈RGT (θ), RGT (θ)〉rs and 〈ρ,RGT (θ′)〉rs =
〈RGT (θ), RGT (θ′)〉rs. Since we obtained 〈RGT (θ), RGT (θ)〉rs 6= 〈RGT (θ), RGT (θ′)〉rs in the previous
paragraph, we have 〈ρ,RGT (θ)〉rs 6= 〈ρ,RGT (θ′)〉rs. Therefore, by combining these equalities
with (3) and (4), we get 〈ρ,RGT (θ)〉 6= 〈ρ,RGT (θ′)〉. In particular, at least one of 〈ρ,RGT (θ)〉
and 〈ρ,RGT (θ′)〉 is not zero. □

Note that Lemma 13.4 has the following immediate consequence (choose θ′ to be the
trivial character 1 of TF ):

Lemma 13.5. If θ|TF
nrs
≡ 1, then we have either 〈ρ,RGT (θ)〉 6= 0 or 〈ρ,RGT (1)〉 6= 0.

Hence we get the following theorem (note that this result requires NO assumption on q):

Theorem 13.6. Suppose that θ is a regular character of TF whose restriction to TFnrs is
trivial. Suppose that ρ is an irreducible representation of GF equipped with a sign ε such
that, for any regular semisimple element g ∈ GF ,

Θρ(g) = ε ·ΘRG
T (θ)(g).

If ρ is not unipotent, then we necessarily have ρ ∼= εRGT (θ).
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