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Let F be a p-adic field. For a connected reductive group G over F , it is generally
expected that there exists a natural map (local Langlands correspondence)

LLCG : Π(G) → Φ(G)

from the set Π(G) of equivalence classes of irreducible admissible representations
of G(F ) to the set Φ(G) of equivalence classes of L-parameters of G.

Recently, Kaletha proposed an explicit way of constructing the map LLCG for
a wide class of supercuspidal representations called “regular supercuspidal repre-
sentations” of tamely ramified connected reductive groups ([Kal19]). He checked
that the correspondence for those representations indeed satisfies various proper-
ties which are usually expected. Especially, he proved that the standard endoscopic
character relation holds when the supercuspidal representations satisfy the torality,
which is a certain kind of extremal regularity.

To be more precise, let H be an endoscopic group of G and we assume that
both G and H are tamely ramified. Suppose that an L-parameter φ of G factors
through the L-embedding of LH into LG and is toral in the sense of Kaletha (see
[Kal19, Definition 6.1.1], here we assume that the torality as both an L-parameter
of G and H is satisfied). Then, according to [Kal19], we obtain the L-packets ΠG

ϕ

and ΠH
ϕ (namely, the finite sets which should be the fibers of LLCG and LLCH

at φ), which consist of toral supercuspidal representations of G(F ) and H(F ),
respectively. Then the standard endoscopic character relation, which was proved
by Kaletha, is as follows:

Theorem 1 ([Kal19, Theorem 6.3.4], standard endoscopic character relation). As-
sume the residual characteristic p is sufficiently large. For each π ∈ ΠG

ϕ , there

exists a constant ∆spec
H,G(φ, π) ∈ C such that the following identity holds for any

strongly regular semisimple elliptic element δ ∈ G(F ):∑
π∈ΠG

ϕ

∆spec
H,G(φ, π)Θπ(δ) =

∑
γ∈H/st

DH(γ)2

DG(δ)2
∆H,G(γ, δ)

∑
πH∈ΠH

ϕ

ΘπH
(γ),

where

• Θπ (resp. ΘπH
) is the Harish-Chandra character of π (resp. πH),

• γ runs over the stable conjugacy classes of norms of δ in H = H(F ),
• DG and DH are the Weyl discriminants, and
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• ∆H,G is the Langlands–Shelstad transfer factor.

Remark 2. In [Kal19, Theorem 6.3.4], it is stated that the identity holds for a
strongly regular semisimple element ofG(F ) which have a “normal r-approximation”.
In fact, any elliptic regular semisimple element satisfies this condition. Thus we
can state the theorem as above.

Our main result is a generalization of the above theorem to the case of twisted
endoscopy. More precisely, we assume that G is quasi-split and consider an F -
rational automorphism θ of G which preserves an (fixed) F -pinning of G. Then

we obtain a twisted space G̃ = G⋊ θ, which is a bi-G-torsor over F whose double
G-action is given by g1(g ⋊ θ)g2 = (g1gθ(g2)) ⋊ θ. We suppose that the order of
θ is finite. For an endoscopic group H for the pair (G, θ), we consider the same
situation as before; let ΠG

ϕ and ΠH
ϕ be toral L-packets corresponding to a toral

L-parameter φ.

Theorem 3 (Main result, twisted endoscopic character relation). Assume the resid-
ual characteristic p is sufficiently large. For each π ∈ ΠG

ϕ , there exists a con-

stant ∆spec
H,G(φ, π) ∈ C such that the following identity holds for any strongly regular

semisimple elliptic element δ ∈ G̃(F ):∑
π∈ΠG

ϕ

∆spec
H,G(φ, π)Θπ̃(δ) =

∑
γ∈H/st

DH(γ)2

DG̃(δ)2
∆H,G(γ, δ)

∑
πH∈ΠH

ϕ

ΘπH
(γ).

Here,

• Θπ̃ is the θ-twisted character of π, which is a function on (the regular

semisimple locus of) G̃(F ) and can be defined when π is θ-stable,
• DG̃ is the twisted Weyl discriminant, and
• ∆H,G is the Kottwitz–Shelstad transfer factor.

Remark 4. By linear independence of θ-twisted characters, a family {∆spec
H,G(φ, π)}π∈ΠG

ϕ

of constants as in Theorem 3 is unique if exists. When π is not θ-stable, we put
∆spec

H,G(φ, π) to be zero. Hence, although the symbol Θπ̃ does not make sense in

such a case, we may understand that the summand ∆spec
H,G(φ, π)Θπ̃(δ) is zero. On

the other hand, the definition of ∆spec
H,G(φ, π) for a θ-stable π is very subtle and

related to the computation of the twisted characters Θπ̃ and the transfer factors
∆H,G(γ, δ) deeply.

Remark 5. According to [Kal19], each regular supercuspidal L-packet or L-parameter
is naturally associated to a pair (S, ϑ) of

• a tamely ramified torus S and
• a “regular” character ϑ : S(F ) → C×

equipped with certain auxiliary data (called “regular supercuspidal L-packet da-
tum”, see [Kal19, Definition 5.2.4]). By Kaletha’s construction, members of a
regular supercuspidal L-packet ΠG

ϕ are parametrized by the set (say JG
G ) of the

G-conjugacy classes (where G := G(F )) in a stable G-conjugacy class of embed-
dings of S into G. In fact, under the assumption that the toral (or, more generally,
regular supercuspidal) L-parameter φ of G factors through the L-group LH of H,
we can show that the corresponding L-packet ΠG

ϕ is θ-stable, that is, stable under

the θ-twist as set (ΠG
ϕ ◦ θ = ΠG

ϕ ). Furthermore, we can describe explicitly the

θ-stable members of ΠG
ϕ in terms of the parametrizing set JG

G .
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Theorem 3 is proved by imitating Kaletha’s proof of Theorem 1 in the framework
of twisted spaces. In the following, we would like to give a few comments on our
proof of Theorem 3. In the following, for an algebraic variety J defined over F , we
let J denote the set J(F ) of its F -valued points.

The first step of the proof is to establish an explicit formula of the twisted
characters of toral supercuspidal representations. On the endoscopic side, where the
group H is not twisted, each character ΘπH

is described by the Adler–DeBacker–
Spice formula ([AS09, DS18]). To explain it, let us take a member πH of ΠH

ϕ ,
which is a toral supercuspidal representation of H, and put r to be the depth of
πH. Let (SH, ϑH) be the pair (a part of the regular supercuspidal L-packet datum)
associated to the toral L-packet ΠH

ϕ . When πH is associated to an embedding

jH : SH ↪→ H under the parametrization in Remark 5 (jH ∈ JH
H ), we get a maximal

torus SH,jH := jH(SH) of H. According to Yu’s construction, πH is obtained by
the compact induction of an irreducible smooth representation σH of a certain open
compact subgroup KσH

(see [AS09, Section 2] for the details):

πH = c-IndHKσH
σH.

Proposition 6 ([AS09, DS18]). When a strongly regular semisimple element γ ∈
H(F ) has a normal r-approximation γ = γ<rγ≥r, we have

ΘπH
(γ) =

∑
h∈SH,jH

\H/Hγ<r

hγ<rh
−1∈SH,jH

ΘσH
(hγ<rh

−1)µ̂
Hγ<r

h−1X∗
Hh(exp

−1
(
γ≥r)

)
,

where X∗
H is an element of the dual of the Lie algebra of Hγ<r (the connected

centralizer of γ<r in H) determined by ϑH (see [AS09, Section 2] for the details)
and µ̂ denotes the Fourier transform of the orbital integral.

Roughly speaking, a normal r-approximation to γ is a nice product decomposi-
tion of γ into two parts: one is γ<r, whose root-values are p-adically shallower than
r; the other one is γ≥r, whose root-values are p-adically deeper than or equal to r
(see [AS08, Definition 6.8] for the precise definition). We note that the deeper part
γ≥r belongs to the connected centralizer Hγ<r of γ<r in H. The important fea-
ture of the above character formula is that these two parts γ<r and γ≥r contribute
to summands separately. Especially, the contribution of γ≥r is expressed by the
quantity on the group Hγ<r

.
In fact, by formulating the notion of an r-approximation in the twisted space

G̃ appropriately, we can reproduce the arguments of Adler–DeBacker–Spice for the
twisted characters. If we introduce the similar notations to above (π ∈ ΠG

ϕ , (S, ϑ),

j ∈ JH
G , σ, X∗), then we obtain the following formula:

Proposition 7. When a strongly regular semisimple element δ ∈ G̃ has a normal
r-approximation δ = δ<rδ≥r, we have

Θπ̃(δ) =
∑

g∈Sj\G/Gδ<r

gδ<rg
−1∈S̃

Θσ̃(gδ<rg
−1)µ̂

Gδ<r

g−1X∗g(exp
−1

(
δ≥r)

)
.

We note that when δ ∈ G̃ has a normal r-approximation δ = δ<rδ≥r, the shal-

lower part δ<r (resp. the deeper part δ≥r) belongs to G̃ (resp. G). We also remark

that S extends to a “twisted maximal torus” S̃ of G̃ in the sense of Waldspurger
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(see, e.g., [MW16, Section I.1.3]) when π is θ-stable. For these reasons, we may

discuss whether gδ<rg
−1 belongs to S̃ or not for g ∈ G and thus the index set of

the above formula makes sense.
By Propositions 6 and 7, in order to get the identity of Theorem 3, we are

reduced to compare the G-side of the desired identity∑
π∈ΠG

ϕ

∆spec
H,G(φ, π)

∑
g∈Sj\G/Gδ<r

gδ<rg
−1∈S̃

Θσ̃(gδ<rg
−1)µ̂

Gδ<r

g−1X∗g(exp
−1

(
δ≥r)

)

with the H-side∑
γ∈H/st

DH(γ)2

DG̃(δ)2
∆H,G(γ, δ)

∑
πH∈ΠH

ϕ

∑
h∈SH,jH

\H/Hγ<r

hγ<rh
−1∈SH,jH

ΘσH
(hγ<rh

−1)µ̂
Hγ<r

h−1X∗
Hh(exp

−1
(
γ≥r)

)
.

This can be done by utilizing the result of Waldspurger and Ngô ([Wal97, Wal06,
Wal08] and [Ngô10]) on the Lie algebra transfer, which basically enables us to com-
pare the Fourier transforms of orbital integrals on the Lie algebras of a connected
reductive group and its endoscopic group. However, for this, we have at least two
difficulties to overcome:

(1) Fourier transforms of orbital integrals themselves cannot be compared di-
rectly. They must be stabilized (summed up within its stable conjugacy
class) to be compared.

(2) Furthermore, the stabilized sums must be weighted by the transfer factors.

On (1), we consider rearranging the double sums on the G-side or H-side of
the endoscopic character relation. By combining the sum over ΠH

ϕ with the sum

over {h ∈ SH,jH\H/Hγ<r | hγ<rh
−1 ∈ SH,jH} and dividing it again, we can create

the sum over rational Hγ<r = Hγ<r (F )-conjugacy classes within a stable Hγ<r -
conjugacy class of X∗

H. Doing the same process on the G-side, we also get the sum
over an index set needed for the comparison via Waldspurger–Ngô transfer.

On the other hand, the key to (2) is computing the contribution of the shallower
part in the character formula (Θσ̃(gδ<rg

−1) on the G-side and ΘσH
(hγ<rh

−1) on
the H-side) explicitly. For the untwisted characters (ΘσH

(hγ<rh
−1)), this part

was firstly computed in [AS09] and rewritten in [DS18] and [Kal19] via several
endoscopic quantities such as the transfer factors or Kottwitz signs. The compu-
tation for the twisted side (Θσ̃(gδ<rg

−1)) can be done in basically the same way
as the untwisted case. The twisting process of the computation in [AS09] is even-
tually reduced to establish a twisted version of Gérardin’s character formula for
the Heisenberg–Weil representations over finite fields. Once we establish this, we
next have to relate it to the transfer factors. This can be done by utilizing Wald-
spurger’s machinery on the descent in the twisted endoscopy [Wal08], instead of
the Langlands–Shelstad descent [LS90] in the untwisted case.
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Études Sci. (2010), no. 111, 1–169.

[Wal97] J.-L. Waldspurger, Le lemme fondamental implique le transfert, Compositio Math. 105
(1997), no. 2, 153–236.

[Wal06] , Endoscopie et changement de caractéristique, J. Inst. Math. Jussieu 5 (2006),
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