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1. Introduction: Endoscopy and the Local Langlands correspondence

This article is a summary of the author’s talk at the RIMS workshop “Automorphic forms
and related topics” on February 10, 2017. We report on some results on the endoscopic liftings
of simple supercuspidal representations of classical groups. We first recall the local Langlands
correspondence for classical groups, which is a background of the problems considered in this
article.
For a connected reductive group G over a p-adic field F , we consider the set Π(G) of

equivalence classes of irreducible smooth representations of G := G(F ) and the set Φ(G) of
L-parameters of G. Then the conjectural local Langlands correspondence for G predicts that
there exists a natural map from Π(G) to Φ(G) with finite fibers (L-packets). In other words
there exists a natural partition of Π(G) into L-packets parametrized by Φ(G):

Π(G) =
⨿

ϕ∈Φ(G)

Πϕ.

In the case of G = GLN , this correspondence was established by Harris and Taylor in
[HT01]. In this case, each L-packet Πϕ is a singleton and the naturality of the partition is
formulated in terms of the local L-factors and ε-factors.
Recently Arthur established the local Langlands correspondence for quasi-split classical

groups, namely symplectic or special orthogonal groups, in his book [Art13] (the case of
unitary group was done by Mok in [Mok15]). In these cases, each L-packet is not necessarily
a singleton, and the naturality of the partition is formulated via the endoscopic character
relation.
We next recall what is the endoscopic character relation. Let us assume that a quasi-split

classical group G is an twisted endoscopic group of GLN . That is we have an involution θ
of GLN and an L-embedding ι from the L-group of G to that of GLN such that the image

of the dual group “G of G coincides with some θ̂-twisted centralizer in ’GLN = GLN(C) (here
θ̂ is the dual involution of θ). For example, the dual group of the odd special orthogonal
group SO2n+1 is given by the symplectic group Sp2n(C), and SO2n+1 is a twisted endoscopic
group of GL2n with respect to the natural embedding of Sp2n(C) into GL2n(C). Let ϕ be
an L-parameter of G. Then, since ϕ is a homomorphism from the local Langlands group
WF × SL2(C) to the L-group of G, we get an L-parameter of GLN by composing ϕ with ι:

WF × SL2(C)

ϕ
''NN

NNN
NNN

NNN
N

ι◦ϕ
// LGLN

LG
?�

ι

OO
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Here WF is the Weil group of F . Thus we get a pair of L-packets Πϕ ⊂ Π(G) and Πι◦ϕ ⊂
Π(GLN(F )) which are related via the natural operation on the dual side. In this situation,
we call the unique representation in Πι◦ϕ the endoscopic lifting of Πϕ from G to GLN(F ).
Then the endoscopic character relation is an equality of characters of representations in these
L-packets, and characterizes the endoscopic lifting representation-theoretically:

Θπ,θ(g) =
∑
h7→g

DG(h)
2

DGLN ,θ(g)2
∆G,GLN

(h, g)
∑

πG∈Πϕ

ΘπG
(h),

Here,

• π is the endoscopic lifting of Πϕ from G to GLN(F ),
• ΘπG

(resp. Θπ,θ) is the character of πG (resp. the θ-twisted character of π),
• DG (resp. DGLN ,θ) is the Weyl-discriminant (resp. the θ-twisted Weyl-discriminants),
• ∆G,GLN

is the Kottwitz-Shelstad transfer factor,
• g is a strongly θ-regular θ-semisimple element of GLN(F ), and
• the sum is over stable conjugacy classes of norms h ∈ G of g.

Since the characters of representations satisfy the linear independence, this equality charac-
terizes the each L-packets of G.
Here we consider the following natural problem:

Describe the local Langlands correspondence for G explicitly.

Then, from the above formulation of the local Langlands correspondence for G, we can divide
this problem into the following two problems:

(1) For a given irreducible smooth representation πG ∈ Π(G), determine the finite subset
(L-packet) of Π(G) containing πG and the representation π of GLN(F ) satisfying the
endoscopic character relation.

(2) Determine the L-parameter corresponding to π.

Namely, we can divide the problem of explicit description of the local Langlands correspon-
dence for G into the problems of explicit description of the endoscopic lifting from G to GLN

and the local Langlands correspondence for GLN .
In this article, we report on some results on the first problem for simple supercuspidal

representations, which were introduced by Gross-Reeder in [GR10], of quasi-split classical
groups.

Notation. Let p be an odd prime number. We fix a p-adic field F . We denote its ring of
integers, its maximal ideal, and its residue field by O, p, and k, respectively. For x ∈ O,
x̄ denotes the image of x in k. For an algebraic group G over F , we denote its F -rational
points G(F ) by G.

Acknowledgement. The author would like to thank Professor Shoyu Nagaoka and Pro-
fessor Yoshinori Mizuno for giving him an opportunity to talk in the conference. The author
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2. Simple supercuspidal representations of classical groups

We recall the definition of simple supercuspidal representations of classical groups briefly.
See [GR10] or [Oi16b] for the details of the arguments in this section.
We first take a quasi-split classical groupG over F , that is a general linear group, an unitary

group, a symplectic group, or a special orthogonal group. For simplicity, we assume that G
is split. We fix an F -split maximal torus T of G. Then it defines an apartment A(G,T) of
the Bruhat-Tits building of G. By taking a fundamental alcove C of this apartment, we get
the corresponding Iwahori subgroup I of G, which is a minimal parahoric subgroup of G. If
we take a point x of the closure of C, then we get a filtration of I by the Moy-Prasad theory.
We take this point x to be the barycenter of the alcove C, and denote the first two steps of
the filtration by I+ and I++. Then we have an isomorphism

I+/I++ ∼= k⊕l+1,

where l is the rank of G. For an character χ of I+, we say that χ is affine generic if χ satisfies
the following two conditions:

• χ is trivial on I++, and
• χ is not trivial on every summand k of I+/I++.

Let χ be an character of ZI+ such that χ|I+ is affine generic. Here Z is the F -valued points
of the center Z of G. Then we define the normalizer NG(I

+;χ) of χ as follows:

NG(I
+;χ) := {n ∈ NG(I

+) | χn = χ}.
Here NG(I

+) is the normalizer of I+ in G, and χn is the twist of χ via n defined by

χn(x) := χ(nxn−1).

Now we can define simple supercuspidal representations of G. We have the following key
proposition:

Proposition 2.1. (1) We have a decomposition

c-IndG
ZI+ χ

∼=
⊕
χ̃

dim(χ̃) · πχ̃.

Here the sum is over the set of irreducible representations of NG(I
+;χ) containing

χ (namely, irreducible constituents of c-Ind
NG(I+;χ)
ZI+ χ), and πχ̃ := c-IndG

NG(I+;χ)(χ̃).
Moreover, each πχ̃ is irreducible, hence supercuspidal.

(2) For an another pair (χ′, χ̃′), πχ̃ ∼= πχ̃′ if and only if χn ∼= χ′ and χ̃n ∼= (χ̃′)n for some
n ∈ NG(I

+).

We call the irreducible supercuspidal representations of G obtained in this way simple
supercuspidal representations.
By computing the normalizer NG(I

+) of I+, we can describe the set of equivalence classes
of simple supercuspidal representations explicitly. For example, in the case of GLN , we can
compute an Iwahori subgroup and the set of simple supercuspidal representations as follows:

Example 2.2 (the case of G = GLN). We take T to be the diagonal maximal torus, and
choose the fundamental alcove C contained in the chamber corresponding to the upper-
triangular Borel subgroup. Then the corresponding Iwahori subgroup and its filtration are
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given by

I =

Ü
O× O

. . .
p O×

ê
, I+ =

Ü
1 + p O

. . .
p 1 + p

ê
, and

I++ =

â
1 + p p O

. . . . . .

p
. . . p

p2 1 + p

ì
.

The normalizer of I in G is given by
ZGI⟨φa⟩,

for any a ∈ k×, where ZG is the center of G and φa is a matrix defined as follows:Ç
0 IN−1

ϖa 0

å
.

Here IN−1 is the unit matrix of size N − 1 and ϖ is a uniformizer of F . Note that we have
φN = ϖa. Then the set of equivalence classes of simple supercuspidal representations of G

is parametrized by the set ”k× × k× × C×. To be more precise, for (ω, a, ζ) ∈ ”k× × k× × C×,
we define a character χ̃(ω,a,ζ) of ZI

+⟨φa−1⟩ by
χ̃(ω,a,ζ)(z) := ω(z) for z ∈ k× = Z(k) ⊂ Z,

χ̃(ω,a,ζ)(x) := ψ(x12 + · · ·+ xN,N−1 + aϖ−1xN1) for x = (xij)ij ∈ I+, and

χ̃(ω,a,ζ)(φa) := ζ.

Here we fixed a non-trivial additive character ψ of k. Then the representation π(ω,a,ζ) :=

c-IndG
ZI+⟨φa−1⟩ χ̃(ω,a,ζ) is a simple supercuspidal representation, and we can check that every

simple supercuspidal representation of GLN(F ) is equivalent to π(ω,a,ζ) for a unique (ω, a, ζ) ∈”k× × k× × C×.

In a similar way to this example, we can compute sets of representatives of simple su-
percuspidal representations of quasi-split classical groups, and parametrize them by triples
consisting of

(1) a central character ω,
(2) an “equivalence class” of an affine generic character χ on I+, and
(3) images of the normalizer of χ.

Moreover, as in the above example, the set of (2) is in fact exhausted by affine generic
characters whose only one or two components of k⊕l+1(∼= I+/I++) are twisted by a non-
zero element of k×, and we can parametrize them by k× or µ2 × k×. By a case-by-case
computation, we get the following table:

Remark 2.3. In the above parametrization of simple supercuspidal representations, we have
to fix some non-canonical data. For example, in the case of GLN , in order to parametrize the
set of equivalence classes of affine generic characters of I+, we have to fix a uniformizer ϖ
of F and a non-trivial additive character ψ of k. In the case of the unitary group UE/F (N)
attached to an unramified quadratic extension E/F , we have to fix a trace-zero element of
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Table 1. Parametrizing sets and the depth of simple supercuspidal represen-
tations of classical groups

group (1) (2) (3) depth−1

GLN
”k× k× C× N

unramified UE/F (N) ⁄�UkE/k(1) k× 1 N
SO2n+1 1 k× µ2 2n
Sp2n µ̂2 µ2 × k× 1 2n

split SO2n µ̂2 µ2 × k× µ2 2n− 2
unramified SO2n µ̂2 µ2 × k× µ2 2n− 2
ramified SO2n µ̂2 k× 1 2n

the residue field kE of E in addition to ϖ and ψ. Thus the above parametrizations are
non-canonical and depend on such data.

Remark 2.4. We can characterize the simple supercuspidal representations via the depth of
admissible representations. For an admissible representation π of G, we can define the depth
of π, which is a non-negative rational number, by using the Moy-Prasad theory. Then we
can check that an irreducible admissible representation π of G is simple supercuspidal if and
only if π has the minimal positive depth. In the case of split connected reductive group G,
the minimal positive depth is given by the inverse of the Coxeter number of G. For example,
in the case of GLN , it is

1
N
.

3. Main results

First we explain the endoscopic groups which we consider in this article. We put

JN :=

à
1

−1

. ..

(−1)N−1

í
.

We treat the endoscopic groups of the following four types:

(1) (G,H) = (GL2n, SO2n+1): Let θ be an automorphism of GL2n over F defined by
θ(g) = J2n

tg−1J−1
2n . Then SO2n+1 is an endoscopic group for (GL2n, θ) with respect

to a natural embedding of L-groups:

LH = Sp2n(C)×WF ↪→ GL2n(C)×WF = LG.

(2) (G,H) = (ResE/F GLN ,UE/F (N)): Let E/F be an unramified quadratic extension
of p-adic fields. Let θ be an automorphism of ResE/F GLN over F defined by θ(g) =
JN

tc(g)−1J−1
N . Here c is the Galois conjugation of the quadratic extension E/F . Then

the unitary group UE/F (N) is an endoscopic group for (ResE/F GLN , θ) with respect
to the following embedding of L-groups:

LH = GLN(C)⋊WF ↪→
Ä
GLN(C)×GLN(C)

ä
⋊WF = LG

g ⋊ σ 7→ (g, JN
tg−1J−1

N )⋊ σ.
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(3) (G,H) = (GL2n+1, Sp2n): Let θ be an automorphism of GL2n+1 over F defined by
θ(g) = J2n+1

tg−1J−1
2n+1. Then Sp2n is an endoscopic group for (GL2n+1, θ) with respect

to a natural embedding of L-groups:

LH = SO2n+1(C)×WF ↪→ GL2n+1(C)×WF = LG.

(4) (G,H) = (GL2n, ramified SO2n): Let E/F be a ramified quadratic extension of p-
adic fields. Let θ be an automorphism of GL2n over F defined by θ(g) = J2n

tg−1J−1
2n .

Then the non-split quasi-split even special orthogonal group SO2n,E corresponding to
E/F is an endoscopic group for (GL2n, θ) with respect to the following embedding of
L-groups:

LH = SO2n(C)⋊WF ↪→ GL2n(C)×WF = LG

g ⋊ 1 7→ g ⋊ 1,

1⋊ σ 7→

1⋊ σ if σ ∈ WE,

w ⋊ σ otherwise.

Here, w is the following element:

w :=

á
In−1

0 1
1 0

In−1

ë
.

Now we state our main results.

Theorem 3.1. Let (G,H) be a pair of connected reductive groups over F which is a one of the
above four types. Let πH be a simple supercuspidal representation of H, ϕH the corresponding
L-parameter (thus its L-packet ΠϕH

contained πH), and πG be the endoscopic lifting of ΠϕH

to G.

(1) In the case of (1), the L-packet ΠϕH
is a singleton and πG is again simple supercus-

pidal. Moreover, if πH corresponds to (1, a, ζ) in the sense of the parametrization in
Table 1, then πG corresponds to (1, 2a, ζ).

(2) In the case of (2), the L-packet ΠϕH
is a singleton and πG is again simple supercus-

pidal. Moreover, if πH corresponds to (ω, a, 1) in the sense of the parametrization in
Table 1, then πG corresponds to(ω, a,−ω(−1)) if N is even

(ω, aϵ, ω(−1)) if N is odd,

where ϵ is the fixed trace-zero element of the residue field of E used in the parametriza-
tion in Table 1.

(3) In the case of (3), the L-packet ΠϕH
consists of the adjoint orbit of πH . The order of

this L-packet is 2, and its endoscopic lifting πG is an irreducible tempered represen-
tation of G given by

IndG
P2n,1

π ⊠ ωπ,
6



where P2n,1 is the F -valued points of a parabolic subgroup of GL2n+1 whose Levi sub-
group is given by GL2n ×GL1, π is a simple supercuspidal representation of GL2n,
and ωπ is the central character of π.

(4) In the case of (4), the L-packet ΠϕH
is a singleton and πG is again simple supercusp-

idal.

Remark 3.2. (1) The result in the case of (1) was also obtained by Adrian in [Adr15]
under the assumption that p ≥ (e + 2)(2n + 1), where e is the absolute ramification
index of F . Thus our result (1) is new for 2 < p < (e+ 2)(2n+ 1).

(2) The L-embedding considered in the case of (2) is called the standard base change
embedding, and there exists another embedding called the twisted base change embed-
ding from LH to LG. For this embedding we have analogous results (see [Oi16b] for
details).

(3) In the cases of (3) and (4), we can determine the correspondence of simple super-
cuspidal representations explicitly as in (1) and (2). This computation is in progress
now.

(4) By the works of Bushnell-Henniart ([BH05]) and Imai-Tsushima ([IT15]), we have an
explicit description of L-parameters of simple supercuspidal representations of GLN .
Thus combining it with the above theorem, we get an explicit description of the L-
parameters of simple supercuspidal representations of classical groups of the above
types.

Finally we comment on a rough outline of the proof of the above theorem. We show the
above statements by case-by-case arguments.

(1), (2): The key point of the proof in these cases is to start from a simple supercuspidal
representation of G, not H. To show the assertions directly, we first have to determine
the structure of the L-packet containing πH . However, if we start from a simple
supercuspidal representation πG of G of the form in Theorem (1) or (2), we can
check easily that it is the endoscopic lifting of an L-packet of H which is a singleton
consisting of a supercuspidal representation. Namely, we can avoid the difficulty of
determining the structure of the L-packet.

We write π′
H for the supercuspidal representation of H which is “descended” from

a simple supercuspidal representation πG of G. Then our task is to show that this
representation π′

H is simple supercuspidal and determine its parameter (in the sense
of Table 1). These are done by investigating the endoscopic character relation. Since
we can write the twisted characters of simple supercuspidal representations of G
explicitly in terms of the Kloosterman sums, we get an description of the characters
of π′

H via Kloosterman sums through the endoscopic character relation between πG
and π′

H . Then, by using elementary properties of Kloosterman sums, we can recover
the simple supercuspidality of π′

H from its characters.
(3): In this case, we can not apply the above argument because we do not have a
way to compute the twisted characters of representations which are parabolically
induced from non-θ-stable parabolic subgroups. Thus we start from πH . Our first
task it to determine the structure of the L-packet ΠϕH

. To do this, we consider
the standard endoscopy of H. By using the standard endoscopic character relation
between H and its endoscopic groups, we can bound the depth of representations
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in ΠϕH
and show that every representation in ΠϕH

is either depth 0 supercuspidal
or simple supercuspidal. Then the statement on the structure of ΠϕH

follows from
the uniqueness of a generic representation and the constancy of formal degrees of
representations in an L-packet.

Next we have to determine the endoscopic lifting to G. Since the order of the
L-packet ΠϕH

is 2, ΠϕH
is the endoscopic lift of an L-packet Π′

ϕH
of an endoscopic

group of H. We can check that this endoscopic group is in fact a ramified even special
orthogonal group H′. Since it is known that this endoscopic lifting from H ′ to H is
compatible with the θ-correspondence, we can conclude that Π′

ϕH
consists of a single

simple supercuspidal representation of H ′ by using the depth-preservation theorem
for the θ-correspondence ([Pan02]). Thus our problem is reduced to the case of (4).

(4): From the arguments in the case of (3), we already know the structure of the L-
packet containing a simple supercuspidal representation of H. Thus we can show the
claim by the same method as in the cases of (1) and (2).
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